Проблема происхождения радиоизлучения «коричневых карликов»

1. Введение

Коричневыми карликами принято называть звезды с массами приблизительно от 0,01 до 0,08 масс Солнца. Температура в их недрах не достигает значений, необходимых для протекания реакции превращения водорода в гелий, которая обеспечивает длительное свечение обычных звезд. Вместе с тем коричневые карлики на начальном этапе своей жизни все же «сжигают» в термоядерных реакциях некоторые редкие элементы (дейтерий, литий), что делает их на определенном этапе эволюции похожими на звезды. Температура поверхности коричневых карликов обычно находится в пределах 1500 - 3000 К, причем на верхней границе температур они близки по своим параметрам к красным карликам. (см., например, обзоры [1] и [2]).

Недавно на крупных радиотелескопах (VLA, Australian Telescope Compact Array) было обнаружено необычно интенсивное радиоизлучение ультра-холодных звёзд и коричневых карликов, спектральный класс которых более М7. Несмотря на небольшие размеры, порядка Юпитера ($R_* \sim 0.1 R_B$), потоки радиоизлучения на частотах 2-8 ГГц достигали нескольких mJy, что соответствует яркостной температуре излучения до $T_b \sim 10^{13}$ К. При этом импульсы 100% поляризованного излучения регистрировались с интервалом 2-3 часа, совпадающим с периодом вращения звезды (Hallinan et al. 2006, ApJ, **653**, 690). Это свидетельствует о достаточно узкой диаграмме направленности излучения. Важно, что в отличие от известной закономерности для звёзд поздних спектральных классов $L_X/L_R \approx 10^{14-15}$ (Benz & Güdel, 1994, A&A **285**, 621), аналогичная величина для коричневых карликов на 2-4 порядка меньше (Ravi et al. 2011, ApJ **735**, L2).

Первые попытки объяснения особенностей такого излучения были предприняты на основе гиросинхротронного механизма излучения ускоренных в магнитосфере/короне звезды электронов (Osten & Ray 2006, ApJ, 644, L67). Однако гиросинхротронным механизмом трудно объяснить высокую интенсивность и направленность излучения. Поэтому в настоящее время наиболее популярна интерпретация радиоизлучения коричневых карликов излучением электронного циклотронного мазера — ECM, генерируемого энергичными электронами с «конусом потерь» (Hallinan et al. 2008, ApJ, 684, 644; Yu et al. 2011, A&A, 525, A39). Очевидно, что ECM накладывает ограничения на параметры

источника. Для наблюдаемых частот 4.9 и 8.4 ГГц при излучении на электронной циклотронной частоте $v = v_c$ магнитное поле в короне должно быть $B \approx 1.7$ -3 кГс. Аппроксимация дипольным магнитным полем предполагает существование на фотосфере звезды довольно большого магнитного поля $B \approx 7$ кГс (Yu et al. 2011, A&A, **525**, A39).

При этом исключается из рассмотрения плазменный механизм радиоизлучения на том основании, что для его реализации требуется условие $\nu_p >> \nu_c$, т.е. плотность плазмы в источнике должна быть $>> 3 \times 10^{11}$ cm⁻³. Известно, однако, что даже в случае $\nu_c \approx 0.5 \nu_p$ плазменный механизм излучения в коронах звёзд достаточно эффективен (Stepanov et al. 1999, ApJ, **524**, 961; Stepanov et al. 2001, A&A **374**, 1072; Зайцев и др. 2004, ПАЖ **30**, 362).

В работе предполагается исследовать возможность объяснения когерентного радиоизлучения коричневых карликов на основе плазменного механизма. Дело в том, что кроме высокой интенсивности и 100% поляризации плазменный механизм радиоизлучения на частоте вблизи верхнего гибридного резонанса способен объяснить и высокую направленность излучения. В изотропной плазме диаграмма направленности излучения основного тона соответствует дипольному излучению $D(\theta) \propto \cos^2 \theta$. Здесь θ — угол между волновым вектором электромагнитной волны k и вектором внешнего магнитного поля B С ростом магнитного поля диаграмма излучения сужается (Stepanov et al. 2001, A&A 374, 1072). Сужению диаграммы излучения способствует и высокий уровень плазменных волн, когда рассеяние волн на частицах носит индуцированный характер и интенсивность радиоизлучения пропорциональна $\propto \exp(\tau \cos^2 \theta)$, где τ - оптическая толщина процесса. На это обстоятельство впервые обратили внимание Гинзбург и Зайцев (Nature, 1968, 222, 230) при интерпретации радиоизлучения пульсаров. Регулярная рефракция радиоволн в короне с убывающей с высотой плотностью плазмы также приводит к сужению диаграммы излучения. Оба указанных обстоятельства позволили объяснить наблюдавшееся на VLA (Trigilio et al. 2000, A&A **362** 281) высоконаправленное, с шириной диаграммы ~ 5°, радиоизлучение магнитной химически пекулярной звезды CU Virginis на основе плазменного механизма (Куприянова и Степанов, 2001, Изв. Вузов Радиофизика 44, 788).

Таким образом, возможности плазменного механизма радиоизлучения в интерпретации интенсивного радиоизлучения звёзд ещё недостаточно исследованы. Плазменный механизм способен объяснить не только основные типы вспышечного радиоизлучения Солнца, включая суб-терагерцовое излучение вспышек, но, вероятно, и особенности радиоизлучения ультра-холодных звёзд и коричневых карликов. В настоящей работе мы обращаем внимание на возможность образования протяженных корон в магнитных петлях, возникающих в атмосферах коричневых карликов вследствие действия фотосферной конвекции.

Электрические токи, генерируемые в магнитных петлях фотосферной конвекцией, приводят к нагреву плазмы и «подъему» прижатой атмосферы, в результате чего на корональных уровнях выполняется условие $V_p > V_c$, необходимое для реализации плазменного механизма. Второе обстоятельство, на которое мы обращаем внимание, касается механизма накачки корон коричневых карликов энергичными частицами, которые поддерживают длительную генерацию интенсивного радиоизлучения указанных звезд.

2. Генерация магнитных трубок фотосферной конвекцией.

В дальнейшем для определенности рассмотрим параметры коричневого карлика TVLM 513-46546. Это массивный коричневый карлик M8,5V с массой $M_* = 0.07 M_{\oplus} = 0.14 \times 10^{33} \, z$, радиусом $R_* \approx 0.1 R_{\oplus} \approx 7 \times 10^9 \, c$ м и эффективной температурой $T_{eff} \approx 2200 \, K$, удаленный на расстояние $d \approx 10.6 \, nc$. Перенос энергии от центра звезды к поверхности в случае коричневых карликов осуществляется конвекцией. На фотосферных уровнях скорость конвекции для звезд поздних спектральных классов по разным оценкам варьируется от $10^3 \div 10^4 \, c$ m/c (Mohanty, S., Basri, G., Shu, F., Allard, F., Chabrier, G., ApJ 571, 469-486, 2002) до $1.4 \times 10^5 \, c$ m/c (Osterbrock, D.T., ApJ, 118,529-546). Размер грануляционных ячеек для звезд M8V приблизительно совпадает с размером ячеек супергрануляции и составляет $d \approx 1.4 \times 10^7 \, c$ m (Rucinski, S.M., Acta Astronomica, 29, 203, 1979).

Будем отсчитывать высоту в атмосфере коричневого карлика от уровня фотосферы, для которого оптическая толщина инфракрасного излучения в полосе J (с центром на $\lambda=1,2\mu m$) равна единице: $\tau_J(\lambda=1,2\mu m)=1$. На этой высоте при эффективной температуре $T_{eff}\approx 2200\,K$ имеем следующие параметры (Mohanty, S., Basri, G., Shu, F., Allard,F., Chabrier, G., ApJ 571, 469-486, 2002):

- концентрация атомов водорода $n_a \approx 4 \times 10^{19} cm^{-3}$,
- степень ионизации $\frac{n_e}{n_a} \approx 10^{-7}$,
- эффективные частоты столкновений $v_{en} \approx 10^{12} Hz$, $v_{in} \approx 10^{10} Hz$, $v_{ei} \approx 10^{10} Hz$, $v_{ie} \approx 10^{5} Hz$,
- гирочастоты электронов и ионов при магнитном поле B = 1kG:

$$\omega_e = eB/m_e c = 1.9 \times 10^{10} \,\text{s}^{-1}, \ \omega_i = eB/m_i c = 4.4 \times 10^5 \,\text{s}^{-1}.$$

Фотосферная конвекция приводит к разбиению магнитного поля коричневого карлика на тонкие магнитные трубки. Например, в случае формирования магнитных трубок в узлах

нескольких ячеек грануляции сходящимися потоками фотосферной плазмы уравнения для компонент магнитного поля $B_z(r)$, $B_{\varphi}(r)$ в вертикальной цилиндрической трубке имеют следующий вид (Khodachenko, M.L., Zaitsev, V.V., Astrophys. Space Sci., 279, 389,2002)

$$\frac{\partial B_z}{\partial r} = \frac{4\pi\sigma V_r}{c^2} \frac{B_z}{1 + \alpha (B_z^2 + B_\omega^2)},\tag{1}$$

$$\frac{1}{r}\frac{\partial (rB_{\varphi})}{\partial r} = \frac{4\pi\sigma V_r}{c^2} \frac{B_{\varphi}}{1 + \alpha (B_z^2 + B_{\varphi}^2)}$$
(1a)

Пусть для определенности скорость конвективного движения плазмы вблизи магнитной трубки равна

$$V_r(r) = -V_0 r/r_1$$
, $V_z(r) = V_{z0} = \text{const}$ при $r < r_1$
 $V_r(r) = -V_0 r/r_1$, $V_z(r) = 0$ при $r > r_1$, (2)

где r_1 — радиус магнитной трубки, а значения V_{z0} и const находятся из уравнения непрерывности в предположении экспоненциальной зависимости плотности от координаты

z. В формулах (1)
$$\sigma = \frac{ne^2}{m_e(v_{ei} + v_{ea})}$$
 - кулоновская проводимость, $F = \rho_a / \rho$ - относительная

плотность нейтралов, $\alpha = \sigma F^2 \left[c^2 n m_i v_{ia} (2-F)\right]^{-1}$ (a —атомы, i —ионы, e —электроны), r, φ, z — цилиндрические координаты. Второе слагаемое в знаменателях уравнений (1, 1a) связано с вкладом проводимости Каулинга в эффективную проводимость частично ионизированной плазмы. В фотосфере коричневого карлика на уровне $\tau_J(\lambda=1,2\mu m)=1$ эффективная проводимость $\sigma_{eff}=\sigma/(1+\alpha(B_z^2+B_\varphi^2))$ совпадает с кулоновской проводимостью σ , так как

 $\alpha(B_z^2 + B_\varphi^2) \approx \frac{\omega_e \omega_i}{\nu_{en} \nu_{in}} \approx 8.4 \times 10^{-6} << 1$. В этом случае, как следует из (1), радиус магнитной

трубки

$$r_1 \approx c^2 / 2\pi\sigma |V_0| \approx 1.4 \times 10^7 \, cm$$
 (3)

при скорости $|V_0| \approx 10^4 \, c \text{M}/c$, т.е. порядка размера ячейки грануляции.

Шкала неоднородной атмосферы над фотосферой

$$H = \frac{\kappa_B T_{eff}}{m_H GM_*} \approx 9,5km \tag{4}$$

где m_{H} - масса атома водорода, основного элемента атмосферы звезды,

 $G = 6,67 \times 10^{-8} \ cm^3 / z \ c^2$ -гравитационная постоянная. Поскольку атмосфера звезды сильно прижата вследствие малости шкалы высот, то уже на высотах $z \ge 65 \ \kappa m$ выполняется условие

 $lpha(B_z^2+B_\varphi^2)pprox rac{\omega_e\omega_i}{V_{en}V_{in}}>>1$ и радиус трубки теперь зависит от величины магнитного поля в

трубке (Khodachenko, M.L., Zaitsev, V.V., Astrophys. Space Sci., 279, 389,2002):

$$r_1 \approx \frac{F^2}{2 - F} \frac{B_z^2(0) - B_z^2(\infty)}{12\pi n_e m_{Na} V_{in} |V_0|}$$
 (5)

В формуле (5) $m_{Na}=3.82\times 10^{-23}\,\varepsilon$ - масса атома натрия, определяющего степень ионизации в фотосфере коричневого карлика. Полагая $B_z^2(0)>> B_z^2(\infty)$,

 $F=1,\ V_{in}=10^6 \ \Gamma u,\ \left|V_0\right|=(10^4-10^5)c_M/c$ при $z=65\ \kappa m$, и предполагая, что радиус трубки имеет величину порядка размера ячейки грануляции $r_1\approx d\approx 1,4\times 10^7 c_M$, получим значение магнитного поля в трубке

$$B_z \approx \sqrt{r_1 |V_0| / 1.6 \times 10^5} \approx (1 \div 3) 10^3 \Gamma c$$
 (6)

Эти магнитные поля существенно меньше магнитных полей B = 7kG, необходимых для реализации циклотронного мазерного механизма радиоизлучения коричневых карликов (Hallian, S. Yu., et.al, A&A, 525, A39, 2011).

3. Электрические токи в магнитных трубках.

Уравнения (1) и (5) позволяют определить полный электрический ток I_z , протекающий через сечение магнитной трубки параллельно ее оси (Stepanov, A.V., Zaitsev, V.V., Nakariakov, V.M., Coronal Seismology, WILEY-VCH, 2012, P.18.):

$$I_{z} = \int_{0}^{\infty} j_{z} 2\pi r dr = \frac{bcr_{1}}{2} [B_{z}(\infty) - B_{z}(0)], \qquad (6)$$

который зависит от радиуса трубки и степени скрученности магнитного поля

$$b = \frac{B_{\varphi}(r_1)}{B_z(r_1) - B_z(0)} \tag{7}$$

Ток можно выразить через параметры плазмы и скорость конвекции, если в (6) подставить выражение (5) для радиуса трубки:

$$I_{z} = -\frac{cbF^{2}[B_{z}(0) - B_{z}(\infty)]^{2}[B_{z}(0) + B_{z}(\infty)]}{24\pi(2 - F)nm_{i}v'_{ii}V_{0}}$$
(8)

Полагая для определённости $b \approx -\frac{B_{\varphi}(r_1)}{B_z(0)} \approx -(0.1 \div 0.3)$,что типично, например, для магнитных трубок на Солнце, получим оценку величины продольных токов $I_z \approx (0.7 \div 2) \times 10^{10}\,\mathrm{A}$ для

скорости конвекции $|V_0| \approx 10^4 \, c\text{M}/c$ и параметров фотосферы на высоте 65 км над уровнем $\tau_J = 1$, если принять значение магнитного поля на оси трубки $B_z(0) = 10^3 \, \Gamma c$.

4. Диссипация токов и образование плотной короны.

Омическая диссипация электрических токов, текущих внутри магнитной трубки, приводит к нагреву плазмы и увеличению ее концентрации на корональных уровнях за счет подъема плазмы из фотосферно - хромосферных оснований трубки. Компоненты плотности электрического тока в цилиндрической трубке

$$\vec{j} = \left[j_r = 0, \quad j_{\varphi} = -\frac{c}{4\pi} \frac{\partial B_z}{\partial r}, \quad j_z = \frac{c}{4\pi} \frac{1}{r} \frac{\partial (rB_{\varphi})}{\partial r} \right]$$
(9)

задаются формулами (1). Скорость нагрева плазмы вследствие диссипации электрических токов:

$$q_{j}(r) = (\vec{E} + \frac{1}{c}\vec{V} \times \vec{B})\vec{j} = \frac{j^{2}}{\sigma} + \frac{F^{2}}{(2 - F)c^{2}nm_{i}v_{ia}}(\vec{j} \times \vec{B})^{2}.$$
 (10)

Первое слагаемое в правой части уравнения (10) описывает диссипацию тока **j** в магнитной трубке вследствие классической проводимости, обусловленной столкновениями электронов с ионами и атомами. Второе слагаемое в правой части уравнения (10) описывает диссипацию тока за счет столкновений ионов с атомами. С учетом (1) формулу (10) можно представить в виде

$$q_{j}(r) = \frac{\sigma V_{r}^{2} B^{2}}{c^{2}} \frac{1}{1 + \alpha B^{2}} = \frac{2 - F}{F^{2}} n_{e} m_{i} V_{ia} V_{r}^{2}$$
(11)

Здесь $B^2 = B_{\varphi}^2 + B_z^2$ и предполагается выполненным условие $\alpha B^2 >> 1$. Как было показано выше, последнее условие для коричневого карлика M8,5V выполняется для высот z>65 км, отсчитываемых от уровня фотосферы $\tau_J(\lambda=1,2\mu m)=1$. Рассмотрим возможность нагрева плазмы до температуры $T\approx 10^6$ K за счет диссипации электрического тока. Для нагрева необходимо, чтобы скорость нагрева превышала потери на оптическое излучение, т.е.

$$q_{rad} = n_e (n_e + n_a) \chi(T) < q_j \tag{12}$$

Здесь $\chi(T=10^6 K)\approx 10^{-21,94}$ - функция радиационных потерь. Эффективную частоту столкновений ионов с нейтральными атомами представим в виде $v_{ia}\approx 1,6\times 10^{-11} F(n_e+n_a)\sqrt{T}\ \varepsilon u \ .$ Модифицированная формула Caxa (Brown, J.C., Solar Phys., 29,421-423, 1973) для температуры $T=10^6 K$ дает относительную долю нейтральных атомов

водорода $F=10^{-2}$ при общей концентрации частиц $(n_e+n_a)=4.2\times10^{16}$ см $^{-3}$. При указанных значениях χ , V_{ia} , F неравенство (12) выполняется при скоростях конвекции $V_r>7.7\times10^3$ см/c. Это означает, что при характерных для коричневых карликов скоростях фотосферной конвекции $10^4 \div 10^5$ см/c электрические токи нагревают плазму в основаниях магнитных трубок до температур $T\ge10^6$ K, в результате чего шкала неоднородной атмосферы достигает значений $H\ge4.3\times10^8$ см. В этом случае концентрация плазмы уменьшается от значений $(n_e+n_a)=4.2\times10^{16}$ см $^{-3}$ на высоте z=65 км, начиная с которой реализуется нагрев плазмы электрическими токами, до значений 2.4×10^{10} см $^{-3}$ на масштабе $z\approx6\times10^9$ см $_c$, сравнимом с радиусом звезды. При этом плазменная частота на всем интервале высот, где реализуется нагрев, существенно превышает гирочастоту электронов, $\omega_p>>\omega_e$, что предполагает более существенную роль плазменного механизма радиоизлучения коричневых карликов по сравнению с электронным циклотронным мазерным механизмом. На корональных уровнях скорость нагрева плазмы электрическими токами в соответствии с (10) дается формулой

$$q = \frac{j_z^2}{\sigma} + \frac{F^2 B_{\varphi}^2 j_z^2}{(2 - F)c^2 n m_i v_{ia}}$$
 (13)

причем первым слагаемым в (13) можно пренебречь при условии ($\omega_e \omega_i / v_{ei} v_{ia}$) >> 1. Если эффективность столкновений ионов с нейтральными атомами определяется сечением перезарядки, тогда в интервале температур $10^5 \le T \le 10^7$ эффективная частота столкновений $v_{ia} \approx 10^{-11} FnT^{1/2}$. Относительную массу нейтралов можно представить в виде (Verner, D.A.; Ferland, G.J., Atomic Data for Astrophysics. I. Radiative Recombination Rates for H-like, He-like, Li-like, and Na-like Ions over a Broad Range of Temperature, Astrophysical Journal Supplement//1996, V.103, P.467.

McWhirter, R.W.P., "Spectral Intensities", in Plasma Diagnostic Techniques,)

$$F(T) = \frac{\xi(T)}{T} \tag{14}$$

где функция $\xi(T) \approx 0.15$ слабо зависит от температуры при $T \ge 10^6~K$. С учетом сказанного и пренебрегая в правой части формулы (31) первым слагаемым, получим для удельной мощности нагрева

$$q \approx 2.6 \times 10^{-9} \frac{I^4}{n^2 r_0^6 T^{3/2}} \quad \text{erg cm}^{-3} \text{s}^{-1}$$
 (15)

Мощность нагрева уменьшается с увеличением температуры и при достаточно высоких температурах нагрев будет уравновешиваться радиационными потерями, которые при $T \ge 5 \times 10^6~K$ можно аппроксимировать функцией [McWhirter,R.W.P.; Thonemann,P.C.; Wilson,R., The heating of the solar corona. II - A model based on energy balance, Astronomy and Astrophysics//1975, V. 40, P. 63-73.]

$$q_R \approx 3 \times 10^{-27} \, n^2 T^{1/2} \,. \tag{16}$$

Тогда из условия $q \approx q_R$ можно оценить электрический ток $I \ge 3 \times 10^{10} \, A$, который способен поддерживать на корональных уровнях достаточно высокую температуру $T \ge 5 \times 10^6 \, K$.

5. Механизмы накачки магнитных трубок энергичными электронами.

Радиоизлучение с высокой яркостной температурой генерируется в активных областях коричневого карлика, по всей вероятности, непрерывно. Об этом свидетельствует повторяемость радиоизлучения с периодом вращения звезды вокруг своей оси. Это означает, что если активная область в короне коричневого карлика представляет собой совокупность тонких магнитных петель с током, сформированных фотосферной конвекцией, то магнитные петли должны постоянно пополняться энергичными частицами, чтобы скомпенсировать потери, связанные с уходом частиц в конус потерь. Как было показано выше, конвективные потоки фотосферной плазмы, взаимодействуя с магнитным полем в основаниях петли, генерируют электрический ток, который течет от одного основания петли через корональную основанию и замыкается в фотосфере, к другому где выполняется условие $\omega_i \omega_e / v_{ea} v_{ia} << 1$ и проводимость становится изотропной. Таким образом, магнитная петля с фотосферным токовым каналом представляет собой эквивалентный электрический контур (Zaitsev, V.V., Stepanov, A.V., Urpo, S., A&A, 337, 887-896, 1998), собственная частота которого зависит от величины постоянной составляющей электрического тока I_0 , радиуса r_2 , концентрации n_2 , а также длины l корональной части петли:

$$V_{RLC} \approx \frac{1}{2\pi\sqrt{2\pi\Lambda}} \frac{I_0}{cr_2^2\sqrt{n_2m_i}}, \quad \Lambda = \ln\frac{4l}{\pi r_2} - \frac{7}{4}$$
 (13)

Полагая $r_2 \approx 10^8 \, cm$, $n_2 \approx 2.4 \times 10^{10} \, cm^{-3}$, $I_0 \approx 7 \times 10^9 \, A$, $l \approx 6.2 \times 10^9 \, cm$, получим из (13) оценку частоты собственных колебаний эквивалентного электрического контура: $V_{RLC} \approx 7.8 \times 10^{-3} \, \Gamma u$

(период 128 сек.). С колебаниями электрического тока в контуре связаны колебания азимутальной компоненты магнитного поля в магнитной петле, $B_{\varphi}(r,t)=2rI_z(t)/cr_2^2$. Эти колебания, в свою очередь, согласно уравнению $rot\vec{E}=-(1/c)\partial\vec{B}_{\varphi}/\partial t$, приводят к генерации направленного вдоль оси трубки электрического поля. Полагая $I_z(t)=I_0+\Delta I\sin(2\pi v_{RLC}t)$, получим среднее по сечению трубки электрическое поле

$$\overline{E}_z = \frac{4\nu_{RLC}I_0}{3c^2} \frac{\Delta I}{I_0} \tag{14}$$

В самосогласованном уравнении эквивалентного электрического контура сопротивление и емкость оказываются зависящими от электрического тока (Zaitsev,V.V., Stepanov, A.V., Urpo,S., A&A, 337, 887-896, 1998), поэтому можно методом Ван дер Поля определить амплитуду пульсаций в стационарном режиме (Zaitsev,V.V., Stepanov, A.V., Kaufmann, P., Solar Phys. 2014): $\Delta I/I_0 \approx (1 \div 5)10^{-2}$. Тогда из формулы (14) получаем при $I_0 \approx 7 \times 10^9 A$, $\Delta I/I_0 \approx (1 \div 5)10^{-2}$ следующее значение электрического поля: $\overline{E}_z \approx 2.4 \times 10^{-6} czz \approx 7.2 \times 10^{-4} e/cm$.

Для реализации плазменного механизма радиоизлучения коричневого карлика в наблюдаемом интервале частот $f_p = 1,4-7,7 \Gamma \Gamma u$ необходима концентрация плазмы $n = 2,4 \times 10^{10} \div 8,7 \times 10^{11} cm^{-3}$, если частота радиоизлучения совпадает с плазменной частотой, и $n = 6 \times 10^9 \div 2,2 \times 10^{11} cm^{-3}$, если частота радиоизлучения соответствует гармонике плазменной частоты. Для указанных значений концентрации и температуры плазмы поле Драйсера, определяющее энергию и потоки ускоренных электронов, может в зависимости от параметров варьироваться в пределах

$$E_D = 6 \times 10^{-8} \frac{n}{T} e/c_M = 7 \times 10^{-5} \div 10^{-2} e/c_M$$
 (15)

а отношение ускоряющего поля к полю Драйсера $\overline{E}_z/E_D \approx 7 \times 10^{-2} \div 10$. Таким образом, ускоряющие поля могут быть достаточно большими и даже супердрайсеровскими, что обеспечивает достаточно большие концентрации энергичных частиц и большие значения яркостных температур радиоизлучения при реализации плазменного механизма.

6. Параметры плазменной турбулентности.

Яркостная температура при реализации мазер-эффекта плазменного механизма радиоизлучения (Stepanov, A.V., Zaitsev, V.V., Nakariakov, V.M., Coronal Seismology, WILEY-VCH, 2012, P.18.):

$$T_{\rm b} \approx 3 \frac{m_{\rm i}}{m} T \exp \left(\frac{\pi \sqrt{3}}{108} \frac{m}{m_{\rm i}} \frac{v}{c} \frac{\omega_{\rm p}}{v_{\rm T}} L_N w \right)$$
 (16)

Примем для оценок $V=10^{10}\,cm/c$ -скорость быстрых частиц, $V_T=5\times10^8\,cm/c$ - тепловая скорость электронов, $L_N\approx r\approx 10^8\,cm$ - масштаб изменения концентрации в источнике радиоизлучения в предположении преимущественного возбуждения плазменных волн перпендикулярно оси трубки (конусная неустойчивость), $\omega_p=2\pi\times 8,5\cdot 10^9$, $T\approx 10^6\,K$. Тогда из формулы (16) следует, что яркостной температуре $T_B=10^{13}\,K$ соответствует отношение плотности энергии плазменных волн к плотности тепловой энергии плазмы $W_L/n\,\kappa_B T\approx 8\times 10^{-5}$

7. Обсуждение. Выводы.

8. Литература.

- 1. Burrows A., Liebert. J.// Reviews of Modern Physics. 1993. V.65. P.301.
- 2. Helling C., Casewell S.// Astron. Astrophys. Rev. 2014. V.22. P.2.
- 3. Hallinan G., Antonova A., Doyle J.G., Bourke S., Brisken W.F., Golden A.// Astrophys. J. 2006. V.653. P.690.
- 4. Benz A.O., Güdel M.// Astron. Astrophys. 1994. V.285. P.621.
- 5. Ravi V., Hallinan G., Hobbs G., Champion D.J.// Astrophys. J. 2011. V.735. P.L2.
- 6. Osten R., Jayawardhana R.// Astrophys. J. 2006. V.644. P.L67.
- 7. Hallinan G., Antonova A., Doyle J.G., Bourke S., Lane C., Golden A.// Astrophys. J. 2008. V.684. P.644.
- 8. Yu S., Hallinan G., MacKinnon A.L., Antonova A., Kuznetsov A., Golden A., Zhang Z.H.// Astron. Astrophys. 2011. V.525. P.A39.
- 9. Stepanov A.V., Kliem D., Kruger A., Hildebrandt J., Garaimov V.I.// Astrophys. J. 1999, V.524. P.961.
- 10. Stepanov A.V., Kliem B., Zaitsev V.V., Fürst E., Jessner A.,, Krüger A., Hildebrandt J., Schmitt J.H.M.M.// Astron. Astrophys. 2001. V.374 P.1072.
- 11. Зайцев В.В., Кисляков А.Г., Степанов А.В., Клим Б., Фюрст Э.// Письма в АЖ. 2004. Т.30, C.362.
- 12. Ginzburg V.L., Zatsev V.V.// Nature. 1968. V.222. P.230.
- 13. Trigilio C., Leto P., Leone F., Umana G., Buemi C.// Astron. Astrophys. 2000. V.362. P.281.
- 14. Куприянова Е.Г., Степанов А.В.// Изв. вузов. Радиофизика. 2001. Т.44. С.788.
- 15. Mohanty S., Basri G., Shu F., Allard F., Chabrier G.// Astrophys. J. 2002. V.571. P.469.

- 16. Osterbrock D.T.// Astrophys. J. V.118. P.529.
- 17. Ručinski S.M.// Acta Astronomica. 1979. V.29. P.203.
- 18. Mohanty S., Basri G., Shu F., Allard F., Chabrier G.// Astrophys. J. 2002. V.571. P.469.
- 19. Khodachenko M.L., Zaitsev V.V.// Astrophys. Space Sci. 2002. V.279. P.389.
- 20. Stepanov A.V., Zaitsev V.V., Nakariakov V.M.// Coronal Seismology: Waves and Oscillations in Stellar Coronae. 2012. WILEY-VCH Verlag GmbH&Co. P.212.
- 21. Brown J.C.// Solar Phys. 1973. V.29. P.421.
- 22. Verner D.A., Ferland G.J.// Astrophys. J. Suppl. 1996. V.103, P.467.
- 23. McWhirter R.W.P., "Spectral Intensities", in Plasma Diagnostic Techniques.
- 24. McWhirter R.W.P., Thonemann P.C., Wilson R.// Astron. Astrophys. 1975. V.40. P.63.
- 25. ZaitsevV.V., Stepanov A.V., Urpo S.// Astron. Astrophys. 1998. V.337. P.887.
- 26. Zaitsev V.V., Stepanov A.V., Kaufmann P.// Solar Phys. 2014. V.289. P.3017.