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1. The hypothesis of density waves was proposed in
[1] to explain the spiral design of spiral galaxies. Spiral
density waves in the linear approximation were con�
structed in [2] for a galactic disk described by hydrody�
namic or collisionless kinetic equations. Serious diffi�
culties are inherent in the model proposed in [2],
which remained topical until recently. First, it was
shown in [3] that the solutions derived in [2] are unsta�
ble in a wide range of the parameters describing mod�
els of galaxies. Second, in contrast to the assumption
of the linear model [2], the difference between the in�
and off�arm densities is not small for actual galaxies
[4]. Third, recent observations imply that many galax�
ies include dark�matter halos whose masses are, in
many cases, much greater than the observed total mass
of stars and gas [5]. This fact should also be taken into
account at present in any description of galactic spiral
designs. Finally, it is worthy to note that stars in spiral
galaxies are most actively formed in increased density
regions (in the spiral arms) [6]. However, these regions
of active star formation are too narrow to be directly
related to spiral waves [2]. In this respect, the possibil�
ity of existing large�scale shocks and corresponding
narrow star formation regions related to spiral density
waves was discussed in [7].

At the same time, we point to work [8] (see also [4,
9]) as the first nonlinear analysis of the spiral design
performed in order to overcome the difficulties of the
linear theory. Spiral density waves were treated as
envelope solitons of small�scale perturbations. How�
ever, the soliton revealed in [8] was radially local and
not azimuthally periodic.

In this work, an analytical solution of the hydrody�
namic equations for the galactic disk is constructed in
the form of nonlinear spiral waves in a certain disk
annulus where variation in the azimuthally averaged
angular velocity of rotation is negligible. It is assumed
that the gravitational force is axially symmetric and

caused by symmetrically distributed dark matter
and/or radiating matter in the central part of the gal�
axy. The obtained solution describes the spiral design
not only in a small part of the disk, as was done in [8],
but in the entire annulus considered.

2. Following [2, 6], we describe the dynamics of the
gas component of the galactic disk by the following
system of two�dimensional hydrodynamic equations:

(1)

where Φ is the gravitational potential and σ is the two�
dimensional gas density. The gas�kinetic pressure is
neglected in Eqs. (1); i.e., the speed of sound is
assumed to be much lower than the typical velocities vr

and vϕ. First, such a description refers to the initial
stage of galaxy evolution when the number of stars is
still small. Second, it was shown in [10] that this
approach is applicable even when stars are the major
part of the galaxy matter.

Consider the galactic�disk annulus r1 < r < r2, 0 <
ϕ < 2π, where the angular velocity Ω0 averaged over the
angle ϕ can be assumed constant. This approximation
holds at least for some galaxies (see Fig. 1 and review
[4]). Under the assumption that the angular velocity is
strictly independent of the variables ϕ and r, the grav�
itational potential has the form

(2)
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Correspondingly, we assume that there is axisymmet�
ric gravitational potential (2) and seek a nonaxisym�
metric solution of system (1) describing the spiral
design. To be more correct, the deviation of the gravi�
tational potential from Eq. (2) is assumed to be so
small that its effects on the velocity and density fields
are small in comparison with the typical field values in
our solution based on the symmetric potential. In par�
ticular, the effect of the asymmetry of the gravitational
potential on the asymmetry of the density field is small
in comparison with the asymmetry of the density field
for the constructed solution. A symmetric potential of
the form given by Eq. (2) can be generated by the cen�
tral stellar�gaseous part of the galaxy (this is similar to
the approach [10]) and/or the spherical dark�matter
halo [5].

The model disregarding the self�gravity is applica�
ble due to the following estimates. The Poisson equa�
tion leads to relation between the gravity force (∇Φ)gas

caused by the gas and the two�dimensional gas density
σgas(r):

The ratio δ of this force to, e.g., the term vr(∂vr/∂r) in
Eq. (1), is estimated as

where vr and k are the typical radial velocity and wave�
number of the velocity field in the constructed soliton.
If, in contrast to [2, 10], loosely wounded spirals are
considered (see Fig. 1) when the spiral design has only
one or two turns, then k is estimated as 1/R, where R is
the typical radius of the considered region of the gal�

axy. In this case, using the relation Gρdark ~  ~

/R2 between the rotation velocity vϕ and the three�
dimensional density ρdark of the dark matter, we have

Hence, if the ratio of the mass of the gas in the consid�
ered annulus to the dark�matter mass is small and the
velocity perturbations with respect to the solid�rota�
tion velocity in Eq. (1) are large (nonlinear), the
anisotropic contribution from the self�gravity of the
gas is negligible.

We seek the solution of system (1) in the form

(3)

where ψ = –ωt + mϕ + φ(r) and θi are dimensionless
2π�periodic functions. Such an ansatz corresponds to
only one assumption that the spiral�wave shape in the
variable ϕ is independent of the radius r. Representa�
tion (3) is similar to the general concept of the spiral
design [2, 9, 10], but we do not assume the trigono�
metric form of the functions θi .

If the functions , σ0, and φ are such that ansatz
(3) is the solution of Eqs. (1), then it is reasonable to
expect that representation (3) as a function of ϕ and t
specifies the simplest periodic soliton of nonlinear sys�
tem (1) for any r. Indeed, single�soliton solutions of
classical nonlinear equations have the self�similar
form, i.e., the wave quantity is a function of ψ = x – vt.
This is also most probably valid for periodic solitons;
e.g., this is the case for periodic solitons of the
Korteweg–de Vries equation [11]. In [8], a function of
the variables r, ϕ, and t that is similar to that given by
Eqs. (3) and is a solution of the dynamic equations for
the gas disk in the cylindrical coordinates is also called
soliton.
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Fig. 1. (a) Rotation curve of the galaxy Mrk 1040. The fig�
ure is taken from review [4]. Two regions of constant angu�
lar velocity are clearly seen. The tentative “spiral�structure
rotation curve” vspiral = ωr is plotted on the basis of the
estimate for the corotation�circle location [4] to illustrate
the ratio between ω and Ω0 outside the corotation circle.

(b) The galaxy M74 and the logarithmic spirals r = r0emϕ/q,

r0em(ϕ + π)/q with appropriately chosen parameters (m/q ≈
0.2) superimposed onto its arms.
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The simplest solution given by Eqs. (3) is a solid
rotation vϕ = Ω0r and vr = 0. Ansatz (3) also includes
the linear regime. Indeed, substituting the following
velocity field into Eqs. (1):

we find that the functions a(r) and b(r) obey the fol�
lowing system of equations (the terms with derivatives
with respect to r are fortunately cancelled):

(4)

Equations (4) imply that small perturbations in this
case are not plane waves, but can be arbitrary functions
of r. This means that it would be better not to apply
such a model in the linear approximation, because
allowance for self�gravity and dissipation would inevi�
tably affect the dependence of perturbations on r.
However, Eqs. (4) lead to a relation between the
amplitudes and phases of the functions a and b and to
the following dispersion relation specifying the rota�

tion frequency ω of the spiral design
1
:

(5)

3. The substitution of Eqs. (3) into Eqs. (1) shows
that Eqs. (3) specify the solution if, and only if,

(6)

where q, r0, µ, and γ are arbitrary parameters. If
Eqs. (6) are satisfied, then we arrive at the following
system of two ordinary first�order differential equa�
tions for the functions θr(ψ) and θϕ(ψ):

(7)

The periodicity of the functions θi(ψ) is ensured by the
boundary conditions θi(0) = θi(2π). By solving the
boundary value problem formulated above for θr(ψ)
and θϕ(ψ) in the interval 0 < ψ < 2π and taking into
account the discussion in Section 2, we thereby con�
struct a periodic one�soliton solution of system (1) for
fixed r. Note that the existence of waves given by
Eqs. (3) with the phase and amplitude given by
Eqs. (6) with an arbitrarily strong nonlinearity is a

1 Note also the existence of the solution  = m + 2 correspond�
ing to a decreasing function ψ(χ) (in particular, ψ(2π) = –2π) in
the nonlinear analysis developed in Section 3. The characteris�
tics of the resulting solitons for  = m ± 2 are similar.
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remarkable fact related to the structure of the hydro�
dynamic operator (v ⋅ ∇)v.

The third of Eqs. (1) together with Eqs. (3) yields
an explicit algebraic expression for  in terms of θr

and θϕ. The periodicity condition for the function
θσ(ψ) yields γ = –2. As a result,

(8)

It is easy to obtain the first integral of system (7):

It is seen that the phase trajectories of system (7) are
embedded nonconcentric circles specified by the con�

stant C, |C | ≥ 1. The circle radii are λ = . The
sign of the constant C determines the resulting sign of
vϕ, i.e., the direction of rotation. The point (0, 1)
(C = 1) is also a solution and corresponds to solid rota�
tion. The small circles correspond to the linear regime
of small velocity perturbations. The increase in the
radius corresponds to an increase in the soliton non�
linearity. Let us parameterize the circles in terms of the
polar angle χ as follows:

(9)

From the first of Eqs. (7), ψ is expressed in terms of χ
as

(10)

Explicit formulas for the function ψ(χ) are obtained
from Eq. (10) using Eqs. (9). Assuming that ψ(0) = 0,
we find ψ(χ) = ψ1(χ) for the angles 0 < χ < π and
ψ(χ) = ψ1(χ) – π for π < χ < 2π, where

(11)

The boundary conditions θr, ϕ(0) = θr, ϕ(2π) are satis�
fied if ψ(2π) = 2π. This requirement has the meaning
of a “nonlinear dispersion relation” specifying the fre�
quency  in terms of the parameters q, r0, m, and the
constant C specifying the circles. It is remarkable that,
meanwhile, the requirement ψ(2π) = 2π yields the
same dispersion relation given by Eq. (5) as in the lin�
ear case. (The constant C does not appear in the non�
linear dispersion relation.) The quantities q and r0

remain arbitrary for any m value. In particular, this
means that neither leading nor trailing spirals are pref�
erential in the developed theory.

Equation (11) together with Eq. (5) yields ψ(χ) = χ
for λ  0. This corresponds to the linear regime. As
the soliton amplitude increases, its profile becomes
essentially anharmonic. The function χ(ψ) becomes
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multivalued at some point ψcr for certain C = Ccr.
Hence, the functions θi(ψ) also become multivalued.
This situation, called wave breaking in hydrodynam�
ics, means that the accepted model fails in this case
and dissipation must be taken into account. The bro�
ken front is smoothed and describes a shock if dissipa�
tion is taken into account. The quantities Ccr and χcr =
χ(ψcr, Ccr) are found from the system of equations

ψ'(χ, C) = 0,
ψ''(χ, C) = 0.

Figure 2 shows Ccr as a function of q for two m values.
A decrease in Ccr with increasing q is fairly clear, since
larger q values correspond to more densely wounded
spirals.

Figure 3 shows the functions θϕ(ψ) and exp[θσ(ψ)]
for various values of the parameter C. The transition of
the soliton from the linear regime to the essentially
nonlinear regime with a variation in C from 0 to Ccr is
clearly seen. It is seen that if C is sufficiently close to
Ccr, then fixed relative variations in θϕ in the soliton
correspond to much larger relative variations in the in�
and off�spiral densities. This is also explained by the
following consideration. If fluctuations of θϕ in the
soliton are about θϕ, then, according to the algebraic

relation between θr, θϕ, and , fluctuations of θσ are
about θσ. In this case, fluctuations of σ are much larger
than the mean value of σ, since an exponential func�
tion enters into the second of Eqs. (3). It is also seen in
Fig. 3 that the density becomes infinitely high if
(ψ, C) = (ψ, C)cr. This follows from Eqs. (8) and (10)
and the fact that the numerator in integral (10) is also
zero if ψ'(χ) = 0.

4. The above consideration shows that the spiral
design is a specific type of nonlinear waves inherent in
a gas disk in a symmetric external field. This disproves
the conventional opinion that a lower symmetry gen�
erator is necessary to sustain the spiral design (bar [12]
or satellite galaxy [13]). The logarithmic shape of spi�
rals is predicted in agreement with observations (see

θσ
'

Fig. 1 in [13]). The angular velocity of the spiral design
is related to the number of arms and gas angular veloc�
ity by formula (5). For example, |ω| = 4Ω0 for m = –2,
which is fairly reasonable taking into account Fig. 1. In
this respect, this model seems to be the most appropri�
ate model for galactic�disk regions outside the corota�
tion circle. The presence of density fluctuations
exceeding the velocity�field fluctuations, which is
often observed in the spiral design [4], is explained. It
is reasonable to associate the region with the sharp
peak of the function θσ(ψ) for C  Ccr with a narrow
star�formation region in the spiral arm. The con�
structed model implies the breaking of waves with suf�
ficiently large amplitudes. This can provide a mecha�
nism for the generation of galactic shocks. The stabil�
ity of the derived solution is probably related to its
soliton�like form in the sense of [8], but we think that
this should be carefully checked.
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the soliton amplitude λ = (dash�dotted curve) 0.2, (dashed
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