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Shear modulus of a body-centered cubic Coulomb crystal of ions is calculated by thermodynamic perturbation
theory taking into account ion motion. Classic and quantum regimes of ion motion are considered. The cal-
culations in the classic range of high temperatures agree well with previous Monte Carlo simulations. In this
case, the shear modulus is given by a sum of a positive contribution due to the static lattice and a negative ∝ T
contribution due to the ion motion. In the quantum regime of low temperatures, the contribution to the shear
modulus due to the ion motion saturates at a negative constant value, determined by zero-point ion vibrations.

The correction to the static lattice shear modulus due to the polarization of the electron background is also
calculated. The background polarization is described by a dielectric function in the linear response formalism.
We compare two dielectric functions (simple Thomas-Fermi and more realistic Jancovici) and find dependence
of the correction to the shear modulus on the ion charge number and the electron degree of relativity.

The numerical results are approximated by simple analytical formulas. They can be applied to matter in
white dwarf cores and neutron star crusts for precise modeling of oscillations of these astrophysical objects.

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

One-component plasma (OCP) is a system of identical point charges (hereafter, ions) with strictly uniform
charge-compensating background of opposite charge. The classic OCP is characterized by one parameter Γ =
Z2e2/(akBT ), where Z is the ion charge number, a = (4πn/3)−1/3 is the ion sphere radius (n is the ion number
density), and T is the temperature. Numerical simulations (e.g., Ref. [1]) show that at Γ � 175 OCP freezes into
a body-centered cubic (bcc) Coulomb crystal. Quantum effects become important in OCP at low temperatures
T � Tp, where Tp = (�/kB)

√
4πZ2e2n/M is the ion plasma temperature (M is the ion mass).

The OCP model provides an excellent description of a number of physical systems as well as is of considerable
fundamental interest. The motivation for this work mainly comes from the theory of degenerate stars. It is well
known (e.g., Ref. [2]) that matter in the cores of white dwarfs and the crusts of neutron stars can be modeled
as a Coulomb crystal of fully pressure-ionized atomic nuclei with nearly incompressible background of strongly
degenerate electrons. Eigenmodes of oscillations of these stars have presumably been observed [3] and the
accurate knowledge of elastic properties of their matter is now required for qualitative asteroseismology.

Hence, in this paper we analyze the shear modulus of the bcc Coulomb crystal. We discuss the effect of ion
vibrations (see also [4]) and present new calculations of the contribution to the shear modulus due to the finite
polarizability of the actual electron background.

2 Deformation and Elastic Moduli

The Hamiltonian of the Coulomb crystal is a sum of the energy of the static lattice UM (Madelung energy) and the
Hamiltonian of a collection of independent harmonic oscillators Ĥ2 describing ion vibrations (phonon modes):
Ĥ0 = UM + Ĥ2. Kinetic energy of uniform electron background (degenerate electron gas) plays no role.
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The Madelung energy is constant UM = −ζNZ2e2/a, where ζ ≈ 0.9 and N is the total number of ions.
The Hamiltonian of the phonon gas can be written as Ĥ2 =

∑
ks �ωks(a

†
ksaks + 1/2), where k and s denote

phonon mode wavevector and polarization, respectively, ωks is the phonon frequency, and a†ks and aks are phonon
creation and annihilation operators in mode ks.

We apply an infinitely small uniform deformation described by a constant displacement gradient uαβ to the
Coulomb crystal. As a result, the lattice vectors R will deform Rα → Rα + uαβRβ . (Here and below Greek
indices denote Cartesian coordinates and summation over repeated indices is assumed.) Accordingly, there will
be a variation of the crystal Hamiltonian: Ĥ0 → Ĥ0 + δĤ , where δĤ = δUM + δĤ2.

Variation of the Madelung energy can be expanded in powers of uαβ as

δUM

V
= −P stuαα +

1

2
Sst
αβγλuαβuγλ , (1)

where V is the crystal volume. Pressure of the static lattice P st and the coefficients Sst, which are the elastic
moduli of the static Coulomb crystal, were calculated by Fuchs [5].

Variation of the oscillatory part of the crystal Hamiltonian can also be expanded in powers of the displacement
gradient and written as [4, 6]

δĤ2 =
1

2

∑
kss′

(
Φkss′

αβ uαβ +
1

2
Φkss′

αβγλuαβuγλ

)
(aks + a†−ks)(a−ks′ + a†ks′) , (2)

where expansion coefficients Φ can be obtained by deforming the crystal dynamic matrix. The expressions for
the coefficients Φ in terms of rapidly converging lattice sums are given in [4].

The Hamiltonian variation δĤ2 naturally causes variation of the crystal thermodynamic functions. For con-
stant temperature deformations the relevant thermodynamic potential is the free energy F . Its variation can be
found with the aid of the thermodynamic perturbation theory (e.g., Ref. [7])

δF =
∑
i

(δĤ2)iiwi +
∑′

i,j

|(δĤ2)ij |2wi

E
(0)
i − E

(0)
j

+
1

2T

⎛
⎝[∑

i

(δĤ2)iiwi

]2

−
∑
i

[(δĤ2)ii]
2wi

⎞
⎠+ . . . (3)

In this case, i and j enumerate eigenstates of Ĥ2, i.e., all possible combinations of all non-negative occupation
numbers in all phonon modes, while wi and E

(0)
i are the probability and the unperturbed energy of the i-th

eigenstate. Expanding Eq. (3) in powers of displacement gradients, one obtains partial pressure associated with
ion motion (phonon pressure P ph) as well as phonon contributions to the elastic moduli Sph

αβγλ:

δF

V
= −P phuαα +

1

2
Sph
αβγλuαβuγλ . (4)

3 Effective Shear Modulus

For isotropic material Lagrangian variation of the stress tensor is (e.g., Ref. [8])

δσαβ = Kεγγ δαβ + 2μ

(
εαβ − 1

3
εγγ δαβ

)
, (5)

where K and μ are compression and shear moduli, respectively, while εαβ = (uαβ + uβα)/2 is the strain tensor.
For anisotropic material under non-zero stress in the non-deformed configuration one has (e.g., Ref. [9])

δσαβ = Bαβγλεγλ = Sαβγλεγλ − P (εαβ − εγγδαβ) , (6)

where P is the pressure and Bαβγλ is another set of elastic coefficients. In cubic symmetry there are only three
independent S coefficients S1111, S1122, and S1212. Additionally, S1221 = S1212 + P .

In applications (for instance, calculations of vibration frequencies of white dwarfs or neutron stars) it is usually
desirable to express stress in the form of Eq. (5), while, microscopically, the matter is expected to have crystal
symmetry. If we rewrite Eq. (5) in the form of Eq. (6), we shall see that μ must be identified with S1212.
Alternatively, we can use the isotropisation procedure proposed by Ogata and Ichimaru [10]. Then we obtain
effective shear modulus μeff = (S1111 − S1122 − S1221 + 4S1212)/5.
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4 Numerical Results

The total shear modulus of the Coulomb lattice (both S1212 and μeff ) is given by a sum of the static lattice and
ion motion (i.e. phonon) contributions:

S1212 = Sst
1212 + Sph

1212 = 0.1827nZ2e2/a+ Sph
1212, μeff = 0.1194nZ2e2/a+ μph

eff . (7)

The static lattice term was evaluated by Fuchs [5]. The total shear modulus of a vibrating classic Coulomb
bcc lattice was found by Ogata and Ichimaru [10] by Monte Carlo (MC) simulations. The advantage of the
MC method is its ability to take into account anharmonic effects. The disadvantage is extensive computer time
requirements and the inability to include quantum effects.

In Ref. [4] we have calculated the phonon contribution to the shear modulus using Eqs. (3) and (4). Evaluation
of the sums over i in (3) reduces to a 3D integral over the first Brillouin zone of the nondeformed lattice. This
integration can be done numerically by the method proposed in [11]. Our results are shown in Fig. 1 by dashes.
At high T the crystal is essentially classic. Calculations in this regime agree well with results of [10] and with
our perturbative calculations, in which quantum effects are explicitly excluded (dots in Fig. 1). At low T � Tp,
quantum zero-point vibrations dominate and phonon contributions to elastic moduli approach constant values. In
this regime the perturbation theory has a clear advantage over MC method. Our numerical results can be fitted as

μph
eff = −nkBTp

[
0.36863 + 136.6 (T/Tp)

3
]1/3

, Sph
1212 = −nkBTp

[
0.59033 + 439 (T/Tp)

3
]1/3

. (8)

These fits are displayed in Fig. 1 by thin solid lines. The maximum error of the fits is 2.2%.
The static lattice shear modulus is greater than zero. The phonon contribution is negative and grows with

temperature. Naturally, it reduces the lattice resistance to the shear stress.

5 Polarizable electron background

Another contribution, Uε, to the system energy comes from the polarizability of the electron background. We
describe these effect in the linear response formalism by a static (ω = 0) dielectric function ε(q) assuming that
all ions are fixed at their lattice nodes R (thus neglecting modification of the ion motion term by the polarization):

Uε =
Z2e2

2

∫
dq

(2π)3
4π

q2

[
1

ε(q)
− 1

](∑
R

eiqR − n

∫
dreiqr

)
(9)

(e.g. Ref. [12]). We compare two expressions for the dielectric function. First is the Thomas-Fermi (TF) dielectric
function εTF(q) = 1 + κ2

TF/q
2. It describes exponential screening of the Coulomb potential with the screening

length equal to 1/κTF =
√
πβ/α/(2kF), where β = vF/c, vF and kF are Fermi velocity and wavevector of

electrons, α is the fine-structure constant, and c is the speed of light. Second expression is the more realistic static
dielectric function of degenerate relativistic electron gas at T = 0 obtained by Jancovici (J) [13].

Polarization contributions to the elastic moduli are obtained by expansion of Eq. (9) (with deformed lattice
vectors) in powers of displacement gradients. The calculation with the Jancovici dielectric function εJ can be
performed by switching to a sum over reciprocal lattice vectors G with the aid of the identity

∑
R exp (iqR) =

(2π)3n
∑

G δ(q−G). This sum will converge fairly rapidly because (1/εJ)− 1 ∼ q−4 at large q. By contrast,
(1/εTF)− 1 ∼ q−2 at large q and the respective reciprocal lattice sum would converge rather slowly. Therefore,
for calculations with εTF it is convenient to apply Ewald transformations. Practical formulas for calculations of
the polarization contribution to the elastic moduli will be presented elsewhere.

The polarization contribution to the effective shear modulus is also negative. It is shown in Fig. 2 as a function
of Z for two values of the electron relativity parameter x = �kF/mc, where m is the electron mass. Dotted and
solid lines show calculations with εJ for x = 1 and 10, respectively (filled squares and circles indicate integer Z).
Dash-dotted and dashed curves represent respective results with εTF. Jancovici dielectric function has a slope
change of its q-dependence at q = 2kF. This gives rise to a singular structure of the shear modulus seen in Fig. 2.
The singularities occur for such Z where lengths of some reciprocal lattice vectors coincide with 2kF. It must be
emphasized that εJ takes into account neither finite temperature of the electron gas nor band structure of electrons
in the Coulomb crystal. Both effects are expected to be crucial at and near the singularities. TF results are smooth
and on average overestimate slightly the polarization contribution to the shear modulus.
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Fig. 1 Phonon elastic coefficient −Sph
1212 and effective

shear modulus −μph
eff (upper and lower dashed curves) in

units of nkBTp vs. T/Tp. Solid curves and dots show ana-
lytic fits (8) and classic numerical results, respectively.

Fig. 2 Correction to the effective shear modulus due to elec-
tron background polarization vs. Z. Dotted, solid, dash-
dotted, and dashed lines show results of calculations with
εJ, x = 1, 10, and with εTF, x = 1, 10, respectively.

6 Conclusion

Effective shear modulus of the bcc Coulomb crystal of ions is calculated taking into account ion motion about
their lattice nodes as well as weak polarizability of the charge-compensating electron background. The ion
motion contribution to the shear modulus is negative and is determined by a single parameter T/Tp (Fig. 1).
Our results are in good agreement with MC simulations at classic (high) temperatures. In quantum temperature
range this contribution saturates at a negative constant value, determined by zero-point ion vibrations. The
polarization contribution to the shear modulus is also negative and depends on electron degree of relativity and
ion charge number (Fig. 2). Two different dielectric functions, Thomas-Fermi and Jancovici, yield similar (on
average) results for the polarization correction, with Jancovici dielectric function producing singularities in the
Z-dependence of the shear modulus. Presumably, these singularities are smoothed out if temperature and band-
gap effects are taken into account in the dielectric function. Our results can be applied to matter in white dwarf
cores and neutron star crusts for precise modeling of oscillations of these astrophysical objects.

Acknowledgements The work was supported by Ministry of Education and Science of Russian Federation (contract No.
11.G34.31.0001), by RFBR (grant 11-02-00253-a) and by Rosnauka (grant NSh 3769.2010.2).

References
[1] G.S. Stringfellow, H.E. DeWitt, W.L. Slattery, Phys. Rev. A 41, 1105 (1990).
[2] P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1: Equation of State and Structure. Springer, New York

2007.
[3] G.L. Israel et al., ApJ 628, L53 (2005).
[4] D.A. Baiko, MNRAS 416, 22 (2011).
[5] K. Fuchs, Proc. Roy. Soc. London 153, 622 (1936).
[6] M. Born, K. Huang, Dynamical Theory of Crystal Lattices; Izdatelstvo inostrannoi literatury, Moscow 1954.
[7] L.D. Landau, E.M. Lifshitz, Statistical Physics. Part I. Pergamon Press, Oxford 1980.
[8] L.D. Landau, E.M. Lifshitz, Theory of Elasticity. Pergamon Press, Oxford 1986.
[9] D.C. Wallace, Phys. Rev. 162, 776 (1967).

[10] S. Ogata, S. Ichimaru, Phys. Rev. A 42, 4867 (1990).
[11] R.C. Albers, J.E. Gubernatis, Los Alamos Scientific Laboratory Report No. LA-8674-MS 1981.
[12] D.A. Baiko, Phys. Rev. E 66, 056405 (2002).
[13] B. Jancovici, Nuovo Cimento 25, 428 (1962).

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org


