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Abstract. It is well known that neutron star crust in a wide range of mass densities and
temperatures is in a crystal state. At a given density, the crystal is made of fully ionized atomic
nuclei of a single species immersed in a nearly incompressible (i.e., constant and uniform) charge
compensating background of electrons. This model is known as the Coulomb crystal model. In
this talk we analyze thermodynamic and elastic properties of the Coulomb crystals and discuss
various deviations from the ideal model. In particular, we study the Coulomb crystal behavior
in the presence of a strong magnetic field, consider the effect of the electron gas polarizability,
outline the main properties of binary Coulomb crystals, and touch the subject of quasi-free
neutrons permeating the Coulomb crystal of ions in deeper layers of neutron star crust.

1. Introduction

Coulomb crystals are expected to form in such astrophysical objects as cores of white dwarfs
and crusts of neutron stars. At a given density, the crystal is made of fully ionized atomic
nuclei of a single species (with charge Ze, mass M , and number density n) immersed in a nearly
incompressible (i.e., constant and uniform) charge compensating background of electrons. In
this paper we review the structure, thermodynamics, and elastic properties of Coulomb crystals
and discuss a number of modifications of the ideal Coulomb crystal model. In particular, we
consider realistic (i.e., polarizable) electron background, analyze Coulomb crystal behavior in a
strong magnetic field, and study ordered binary Coulomb crystal mixtures.

Let us recall the structure of the crust of a not too hot neutron star or an old white dwarf
(e.g., [1]). On the top, there is a region composed of partially ionized atoms and non-degenerate
electrons. As one goes deeper, the electrons form strongly degenerate gas, that to a good
approximation can be treated as a uniform charge-neutralizing background, while ions get
completely ionized by electron pressure. At densities greater than 106 g cm−3 electrons become
relativistic. Central densities of white dwarfs are . 1010 g cm−3. Yet even deeper, above the
neutron drip density of ∼ 4 · 1011 g cm−3, the atomic nuclei become extremely neutron-rich
and, in addition to nuclei and electrons, free neutrons appear. These neutrons are most likely
superfluid and they practically play no role in our considerations. Finally, at densities greater
than 1014 g cm−3, the atomic nuclei acquire non-spherical shapes, start touching each other,
and form the so-called region of nuclear pasta. In this work, we shall limit ourselves to the
intermediate regions and exclude the partially ionized and nuclear pasta phases.

2. Review of thermodynamic and elastic properties

Ideal Coulomb crystal is expected to have a body-centered cubic (bcc) lattice, which is
thermodynamically preferable at all temperatures (below melting). The lattice phonon wave
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Figure 1. (a) Phonon dispersion curves in 4 directions of the wave vector vs. ka (cf. Fig. 2a
for our direction specification convention), where a = (4πn/3)−1/3 is the ion sphere radius; (b)
density of phonon states; (c) specific heat, energy, and entropy of the Coulomb bcc lattice.

vectors k are restricted to its first Brillouin zone (BZ), which has the shape of a rhombic
dodecahedron. To study crystal thermodynamics one needs to find phonon frequencies ω on a
dense k-grid in the BZ. These are solutions of a secular equation det{Dαβ(k)− ω2

i (k)δ
αβ} = 0,

where Dαβ(k) is the dynamic matrix. The tricky part about Coulomb crystals is that one needs
to take into account interactions of a given ion with all other ions (not just with the nearest
neighbors) when constructing the dynamic matrix. At any wave vector k in the BZ there are
3 phonon modes (cf. Fig. 1a). In each direction 2 modes are acoustic (ω1,2 ∝ k as k → 0; in
certain high symmetry directions these 2 modes coincide), while the third one is optic (ω3 → ωp

as k → 0). At any k the phonon frequencies satisfy the Kohn’s sum rule
∑3

i=1 ω
2
i = ω2

p, where

ωp =
√

4πnZ2e2/M is the ion plasma frequency.
In Fig. 1b we show the phonon density of states (DOS) ν(x) (where x ≡ ω/ωp) of the ideal

Coulomb bcc lattice [2]. By definition DOS is the fraction of phonon states per unit interval
of frequencies. At x → 0, DOS depends quadratically on x, which is a well-known sign of the
presence of acoustic phonons. There are points where the derivative of DOS becomes infinite.
These are the Van Hove singularities associated with saddle points of the frequency dependence
on k. For the Coulomb crystal there is no forbidden gap between acoustic and optic phonons.

Consider the ideal Coulomb crystal energy. Its part related to ions can be subdivided into
4 terms E = UM + E0ph + Uharm + Uanharm. In this case, UM is the electrostatic (Madelung)
energy of static ions and neutralizing background, E0ph + Uharm is the phonon energy, in which
one can distinguish the zero-point, E0ph, and the thermal, Uharm, contributions, and Uanharm

is the anharmonic energy. The latter can be important, but is neglected for the purpose of
this work. Also neglected are the energy of the electron gas alone, which is the same for any
crystal structure, and the polarization correction to the electron-ion interaction energy (see Sect.
3). Phonon thermodynamic quantities are given either by three-dimensional BZ integrals or by
one-dimensional integrals with the DOS and can be computed numerically [3, 4]. For instance,

Uharm =
∑

ki

~ωi(k)

e~ωi(k)/T − 1
= 3N~ωp

∫ ∞

0

xν(x)dx

exp (x/t)− 1
, (1)

where t = T/Tp and Tp = ~ωp is the ion plasma temperature. The lattice specific heat
C/N = d(Uharm/N)/dT , energy Uharm/(NT ), and entropy S/N are illustrated in Fig. 1c. At
high T , C/N ≈ 3 (Dulong-Petit law) and at low T , C ∝ T 3 according to the Debye law.

Let us outline the calculation of the Coulomb crystal elastic moduli. Suppose one applies
an infinitesimal uniform deformation to the crystal Rα → Rα + uαβRβ , where R are lattice
vectors and uαβ are small constant displacement gradients, Fig. 2a (arrows in this plot show our
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Figure 2. (a) Bcc lattice structure before and after a uniform deformation; (b) phonon
contribution to the effective shear modulus; (c) total effective shear modulus.

specification convention for vector directions). The electrostatic energy of the deformed lattice
can be expanded in powers of uαβ . The zero-order term is the Madelung energy, the linear term
is the electrostatic pressure times the volume change, and the coefficients of the quadratic terms
are various static lattice elastic moduli. All these quantities have been found by Fuchs [5].

The potential energy of harmonic lattice vibrations can be also expanded in powers of uαβ ,

which results in the phonon Hamiltonian Ĥph = Ĥ0 + δĤ. In this case Ĥ0 is the standard

(nondeformed) expression Ĥ0 =
∑

ki ~ωki(0.5 + a†kiaki) and

δĤ = 0.5
∑

kii′

(

Φ
kii′

αβ uαβ + 0.5Φkii′

αβγλuαβuγλ

)

(aki + a†−ki)(a−ki′ + a†
ki′) , (2)

where a† and a are the phonon creation and annihilation operators, while the quantities Φ are
closely related to derivatives of the dynamic matrix [6]. The term δĤ should now be treated as
a perturbation and the respective change of the crystal free energy can be found with the aid of
the thermodynamic perturbation theory (e.g., [7]). Expanding the free energy in powers of uαβ
one obtains phonon contributions to crystal elastic moduli as the quadratic term coefficients [6].
It is worth mentioning that in this way the quantization of ion motion is naturally included.

In isotropic matter there are only 2 independent elastic moduli, the compressibility modulus
K and the shear modulus µ (e.g., [8]). In cubic crystals there are 3 independent elastic coefficient
(e.g., [9]). However, we do not expect the neutron star crust to represent a single crystal.
Likely, there are small domains with various orientations of the crystal axes and the matter
is “effectively” isotropic. To describe this we follow an isotropisation procedure for the elastic
coefficients proposed in [10] and obtain an effective shear modulus of the crystal µeff .

In Fig. 2b we plot the phonon contribution to the effective crystal shear modulus. It is
negative and it grows in magnitude with temperature. As expected, excitation of phonons
reduces the shear modulus and the crystal resistance to the shear stress. At low T a quantum
effect is observed. The phonon contribution does not disappear even at T = 0. It saturates at a
constant negative value associated with zero-point vibrations. The total crystal shear modulus

µeff = µstatic
eff + µph

eff = 0.1194nZ2e2/a− n~ωp

[

0.05008 + 136.6(T/Tp)
3
]1/3

. (3)

It has 2 contributions, the static lattice part proportional to the typical Coulomb energy Z2e2/a
and the phonon part proportional to the typical phonon energy ~ωp. In Fig. 2c we show the
total effective shear modulus of carbon at 1010 g cm−3 as a function of temperature. The bars
(1σ) represent classic Monte-Carlo (MC) results from [10]. The dot-dashed (blue) line is our
analytic calculation without quantum effects (cf. dot-dashed curve in Fig. 2b). It describes the
bars reasonably well. The solid (red) line is our more accurate results with quantum effects
included.
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Figure 3. (a) Contours of zero energy difference between bcc and fcc lattices at T = 0; (b)
phonon dispersion curves for the TF model of polarizable electron background (note that lower
acoustic branch curves for κTFa = 0, 0.01, 0.1 have merged); (c) ratio of phonon heat capacity
with screening to that of the ideal Coulomb crystal (OCP).

3. Electron polarization

In reality the electron gas is not uniform. It is polarizable or, in other words, there is electron
screening of the ion charge. This screening adds a term Uǫ to the lattice energy, which is different
for different crystal structures. It can be readily written in the linear response framework as

Uǫ =
Z2e2

2

∫

dq

(2π)3
4π

q2

[

1

ǫ(q)
− 1

]

(

∑

R

eiqR − n

∫

dreiqr

)

, (4)

where ǫ(q) is the electron dielectric function. We study 2 models of the dielectric function, the
simple Thomas-Fermi (TF) model ǫTF(q) = 1 + κ2TF/q

2 and the more realistic RPA dielectric
function of the degenerate relativistic electron gas ǫJ obtained by Jancovici [11]. In this case
κTF = 2kF

√

α/(πβ) is the TF wave number, which measures the screening strength, β = vF/c,
α = 1/137, while vF and kF are the electron Fermi velocity and wave number. It is important
to realize that the linear response formalism is strictly valid only for κTFa ≪ 1.

First of all, if one adds the term Uǫ to the energy, structural transitions appear [12]. Solid
(red) lines in Fig. 3a correspond to zero energy difference between the face-centered cubic (fcc)
and the bcc structures if the lattice energy is approximated as UM + Uǫ. Inside the domains
the fcc lattice is preferable at T = 0. Dashed lines are lines of constant charge from Z = 1
to Z = 26. The structural transitions appear only for the more realistic Jancovici dielectric
function. Calculations with ǫTF always predict a lower energy for the bcc lattice.

The phonons in the crystal with electron screening are also different. In Fig. 3b we show
dispersion curves calculated with ǫTF in the (111) direction of the BZ, where 2 acoustic modes
coincide. The main effect is that the optic mode is converted into an acoustic one at wave vectors
smaller than the TF wave number [13]. It is remarkable that there is virtually no difference
between the dispersion curves calculated with the TF and Jancovici dielectric functions [12] and
thus the TF description of the phonon modes is quite adequate (unlike Uǫ).

Once the phonon frequencies are known, one can analyze various crystal thermodynamic
functions. For instance, one can calculate and compare free energies of the fcc and bcc lattices
to see whether the structural transitions exist at higher temperatures. It appears that at T = Tp

the bcc lattice is always preferable [12] and, therefore, the structural transitions may start
happening at some point after solidification during the star cooling process.

Another example is the heat capacity. In Fig. 3c we show the ratio of the phonon heat
capacities with and without electron screening (TF model) for zirconium in the inner neutron
star crust at ρ = 7 · 1011 g cm−3. At these high densities electrons are ultrarelativistic and the
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Figure 4. (a) Phonon dispersion curves of a magnetized crystal; (b) and (c) magnetized crystal
specific heat in logarithmic and linear scales; (d) ion specific heat of magnetized inner neutron
star crust.

screening parameter κTFa is determined only by Z. One sees that the background polarizability
enhances the heat capacity in quantum regime but rather moderately (by about 20% at best).
The reason for the increase is the conversion of the optic mode into the acoustic one, which can
then be excited at arbitrarily low temperatures and contributes to the Debye T 3 asymptote.

4. Magnetized Coulomb crystal

Suppose the ideal Coulomb crystal is placed in an external uniform magnetic field. All
results are weakly sensitive to the field direction. We assume that the field is directed
towards one of the nearest neighbors, i.e. direction (111). The secular equation takes the form
det{Dαβ(k)−ω2

i (k)δ
αβ− iωi(k)ωBǫ

αγβnγ} = 0, where n = B/B and ωB = ZeB/(Mc) is the ion
cyclotron frequency. The most important parameter turns out to be b = ωB/ωp. When b ≫ 1
the magnetic field is really important and the crystal is said to be strongly magnetized.

It is very useful to recall a simple problem of a charged harmonic oscillator in a magnetic field
(e.g., [14]). We have the obvious equation of motion r̈+ω2

0r = ωBv×n with the Lorenz force on
the right-hand side, ω0 being the oscillator frequency in the absence of the field. Assuming the
field is along the z-axis and introducing the new variable ξ = x + iy, we arrive at 2 equations:
z̈ + ω2

0z = 0 and ξ̈ + ω2
0ξ = −iωBξ̇, from which we immediately get the eigenfrequencies of the

magnetized system as ω1,3 =
√

ω2
0 + ω2

B/4 ∓ ωB/2 and ω2 = ω0. If we assume now that the

frequency ω0 is that of an acoustic phonon, ω0 = ck, and ωB ≫ ω0, we get 3 solutions, one of
which (ω1) depends on k quadratically and is ∝ 1/B, another (ω3) is at cyclotron frequency, so
that it is ∝ B, and the last one (ω2) is independent of B. This simple picture is quite adequate
for qualitative understanding of the magnetized crystal phonon spectrum.

Exact solution of the crystal secular equation [15] shows that the behavior of its phonon
modes is qualitatively different for kB 6= 0 and kB = 0. In the former case (see Fig. 4a, where
the angle between k and B is ≈ 55o) branch 1 has quadratic dependence on k at k → 0, while
branch 3 to a good accuracy is at the ion cyclotron frequency. Branch 2 is optic and sweeps
the space between the upper acoustic field-free branch and the ion plasma frequency becoming
B-independent at b ≫ 1. The situation is different for k perpendicular to B. In this case
branches 1 and 2 remain acoustic, while branch 3 is optic. At any k the frequencies satisfy a
modified Kohn’s sum rule

∑3
i=1 ω

2
i = ω2

p + ω2
B.

Once the phonon frequencies are known the magnetized crystal thermodynamic functions
can be calculated via BZ integration using the same general formulas as in the field-free case
[15, 16]. The most important feature of the magnetized crystal heat capacity is that the branch
1 contribution (and the total heat capacity) behaves as T 3/2 at low temperatures instead of
the Debye T 3 law [17]. This is a direct consequence of the quadratic dependence of the branch
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Figure 5. (a) Binary crystal structure; (b) binary crystal dispersion curves; (c) the ratio of
binary crystal heat capacities obtained from the linear mixing theory and from the exact phonon
spectrum.

frequency on k. Branch 2 contribution behaves as T 4 as a result of these phonons being acoustic
only in the plane perpendicular toB and optic otherwise. Branch 3 heat capacity is exponentially
suppressed at low T as a result of its optic nature. Consequently at low T the total specific
heat of a strongly magnetized Coulomb crystal is bigger than that of the non-magnetized one by
many orders of magnitude, Fig. 4b. At high T the specific heat has a peculiar staircase structure
for strong magnetization, Fig. 4c. The reason is that the frequencies of the branches are very
different (∝ 1/B, independent of B, and ∝ B) and get saturated at very different temperatures.

Let us see if magnetization can modify the heat capacity of the inner neutron star crust [16],
where practically all the crust mass is located. Curves in Fig. 4d show the total ion heat capacity
as a function of mass density assuming the smooth composition model of ref. [1]. We see that
the non-magnetized curve (stars) merges with the B = 3 · 1015 G curve (solid, red), while the
B = 3 · 1016 G curve (dot-dashed, magenta) is somewhat above. In order to have a meaningful
enhancement of the heat capacity at these high densities it is necessary to have a really huge
field on the order of 1017 G (dashed, blue curve). If such fields exist in magnetars, this will be
very important for their cooling models. At lower densities and temperatures in the external
crust a smaller field will have a similar substantial effect, which should be important for the
dynamics of bursts and superbursts as well as for afterburst relaxation modeling.

Recently, it has been argued by Chamel (e.g., [18]) that free neutrons in the inner neutron
star crust are not actually free but are entrained by nuclei. In this case they increase the effective
mass of the nuclei and decrease the ion plasma and cyclotron frequencies. By doing this at given
T they make the crystal less quantum and thus increase its specific heat. We have included this
effect by adopting the fraction of entrained neutrons from Tab. I in [18]. The result (dotted,
green curve “ent” in Fig. 4d) is the dramatic increase of the specific heat comparable to that of
the superstrong magnetic field in the standard model without neutron entrainment.

5. Binary Coulomb crystals

The last topic of this work is binary Coulomb crystals. This subject may be important for
the white dwarf cores, where one has CO mixture, and also for the neutron star crusts, where
one can expect various mixtures at various densities. In this work the one-to-one ratio of two
constituents is assumed as well as their ordered distribution over nodes of a bcc lattice (Fig. 5a).
This structure has to be treated as a simple cubic lattice with 2 different ions in the elementary
cell. The BZ of this lattice is a cube. According to [19] such a crystal is unstable if the charge
ratio is ≥ 3.6 irrespective of the mass ratio.

As in Sect. 2 one can construct the dynamic matrix and solve the respective secular
equation at every point k of the BZ to find phonon frequencies [19]. In this case there are
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6 frequencies at each k, which satisfy a modified Kohn’s sum rule
∑6

i=1 ω
2
i = 2ω2

s , where

ωs = Ts/~ =
√

πne2(Z1 + Z2)(Z1/M1 + Z2/M2) is the binary mixture plasma frequency (n
is the number density of all ions). In Fig. 5b, 3 sets of dispersion curves are plotted in the
direction (211) up to the BZ boundary in this direction. The solid (red) curves correspond to
identical ions while dotted (black) curves show dispersion relations of a bcc lattice of identical
ions in the same direction. Naturally, solid and dotted curves coincide but the dotted ones can
be extended further (cf. Fig. 1a), up to the boundary of the bcc lattice BZ. The dot-dashed
(blue) and dashed (green) curves correspond to charge and mass ratios of 3, respectively.

It is customary to obtain thermodynamic functions of any mixture from the so-called linear
mixing theory, in which, say, the binary mixture total heat capacity is Clm = N1c1 + N2c2,
where Ni is the total number of particles of the i-th type and ci is the specific heat of the system
composed only of the i-th ion species at the same temperature and electron number density as
in the mixture. But now we know the exact frequencies of the ordered binary crystal mixture
and thus are in a position to calculate its exact specific heat Cbin [19]. This allows one to assess
the validity of the linear mixing theory for application to such mixtures.

In Fig. 5c we plot the ratio of the linear mixing specific heat to the exact binary crystal
specific heat. At high temperatures the linear mixing theory reproduces the Dulong-Petit law
and consequently is very accurate. But at low temperatures it overestimates the specific heat
substantially. For instance, by 80% for iron/oxygen mixture and by almost 30% for CO mixture
[19, 2]. This will affect quantitatively the cooling curves of white dwarfs and may be important
for modeling neutron star crust thermal relaxation if this structure is realized.

6. Conclusion

The work on Coulomb crystal theory continues. For the sake of white dwarf cooling theory it
is desirable to calculate the crystal anharmonic energy in quantum regime (only classic crystal
anharmonic energy is currently known). It is also worthwhile to study Coulomb crystal mixtures
with substitutional disorder. Both topics are currently work in progress.
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