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ABSTRACT
Corrections to elastic moduli, including the effective shear modulus, of a solid neutron star
crust due to electron screening are calculated. At any given mass density, the crust is modelled
as a body-centred cubic Coulomb crystal of fully ionized atomic nuclei of a single type with a
polarizable charge-compensating electron background. Motion of the nuclei is neglected. The
electron polarization is described by a simple Thomas–Fermi model of exponential electron
screening. The results of numerical calculations are fitted by convenient analytic formulae.
They should be used for precise neutron star oscillation modelling, a rapidly developing branch
of stellar seismology.
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1 IN T RO D U C T I O N

Discovery of quasi-periodic oscillations (QPO) in soft gamma-
repeaters (Israel et al. 2005; Strohmayer & Watts 2005; Watts &
Strohmayer 2006) has stimulated interest in studying properties of
neutron stars and matter at extreme physical conditions by methods
of asteroseismology. The QPO are hypothesized to be related to
neutron star vibrations, particularly to torsional vibrations of a solid
neutron star crust (Duncan 1998; Piro 2005). The crustal oscilla-
tion frequencies are determined by elastic moduli of the neutron
star crust. The main purpose of the present paper is to provide new
results for these quantities under more realistic assumptions about
the state of the crustal matter than in previous studies.

The bulk of the outer neutron star crust is made of fully ion-
ized ions in crystalline state, immersed in a nearly uniform strongly
degenerate electron gas. More specifically, we suppose that at any
given mass density all ions have the same charge Ze and mass M and
form a crystal, if the local temperature T falls below the melting tem-
perature Tm = Z2e2/(a�m), where �m ≈ 175, and a = (4πn/3)−1/3

is the ion sphere radius (n is the ion number density, kB = 1). Typi-
cally, one assumes that the ion crystal is of the body-centred cubic
(bcc) type, as this structure is preferable thermodynamically for a
strictly uniform electron background.

In the inner neutron star crust, at densities above the neutron drip
density ρd ≈ 4.3 × 1011 g cm−3, in addition to the crystal of ions
and electrons, there are neutrons not bound in the atomic nuclei. The
details of the neutron interaction with nuclei are not known very
well. The motion of nuclei about the crystal lattice nodes may be
affected by the presence of neutrons (Chamel 2012). However, for
the purpose of this paper it is irrelevant as we will be concentrating
on the static lattice case. At the bottom of the inner crust at densities
ρ � 1014 g cm−3, there may be a region of non-spherical nuclei,
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known as ‘nuclear pasta’, in which the Coulomb crystal model fails
(e.g. Pethick & Potekhin 1998).

The state of the electron subsystem depends on the matter den-
sity. We shall limit ourselves to such not too low densities, where
electrons are degenerate and ions are completely pressure ionized
(ρ � 10AZ g cm−3, where A is the number of nucleons per nu-
cleus, which is equal to the nucleus mass number in the outer crust;
see for discussion Pethick & Ravenhall 1995; Haensel, Potekhin &
Yakovlev 2007). The degenerate electrons are very energetic (at
ρ � 106 g cm−3 they become ultrarelativistic) and it is typically
considered a good approximation to treat them as a constant and
uniform charge background. In this case, the ion–electron system
is called a one-component plasma (or a Coulomb crystal, if crystal-
lization is assumed).

However, in reality, electrons respond to the ion charge density,
which results in a screening effect. The strength of this electron
polarization can be characterized by the screening parameter κa,
where κ is the Thomas–Fermi (TF) wavenumber:

κa = 2kFa
√

α/(πβ) ≈ 0.19Z1/3β−1/2. (1)

In this case, β = vF/c, vF and kF are the electron Fermi velocity
and wavevector, respectively, α is the fine-structure constant and c
is the speed of light. Furthermore, β = xr/

√
1 + x2

r , where xr is the
electron relativity parameter:

xr = �kF

mc
≈ 1.009

(
ρ6Z

A

)1/3

, (2)

where m is the electron mass and ρ6 is the mass density in units
of 106 g cm−3. The electron polarization is not very weak even
in the inner neutron star crust, where electrons are ultrarelativistic.
For instance, for Z = 40, κa ≈ 0.65. In the outer neutron star
crust, the screening parameter decreases with decrease of Z but
increases with decrease of the mass density (i.e. decrease of the
electron relativity degree). At sufficiently low density, the screening
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parameter exceeds 1, screening becomes strong and full ionization
assumption is eventually violated.

The main purpose of this paper is to study the elastic moduli of
the Coulomb crystal taking into account the electron polarization.
The groundwork for this problem was laid down by Fuchs (1936),
who calculated the elastic moduli of the static bcc Coulomb lattice.
Ogata & Ichimaru (1990) calculated the elastic moduli of the bcc
Coulomb crystal taking into account the motion of ions about their
lattice nodes. They have also introduced in astrophysics the concept
of shear wave directional averaging and an effective shear modu-
lus of polycrystalline neutron star crust, which is used extensively
nowadays. In that work, the moduli were found numerically with
the aid of Monte Carlo simulations (e.g. Brush, Sahlin & Teller
1966). By the nature of the method, the motion of ions was treated
classically.

Horowitz & Hughto (2008) calculated the effective shear modulus
of the Coulomb crystal taking into account electron screening in
the TF model. These authors restricted themselves to a specific
nucleus charge number and mass density and have not reported
on the dependence of the screening correction on these parameters.
The calculation was done numerically using the molecular dynamics
method. Again, the motion of ions was strictly classic.

The effective shear modulus and the Huang elastic shear coef-
ficient S1212 of the one-component plasma crystal with account of
the ion motion were calculated semi-analytically by Baiko (2011).
In that paper, thermodynamic perturbation theory was employed
and the ion motion was included in the harmonic lattice model
framework. Unlike numerical methods of Ogata & Ichimaru (1990)
and Horowitz & Hughto (2008), this approach allowed one to cap-
ture quantum effects. The quantum effects were found to be rather
moderate and of greater importance for lighter elements at higher
densities.

The electron polarization correction to the static Coulomb crystal
effective shear modulus was calculated by Baiko (2012). In this pa-
per, screening was described in the linear response formalism. Two
models of the relativistic electron gas response were considered,
the TF model and the zero temperature random phase approxi-
mation with specific formulae for the dielectric function derived by
Jancovici (1962). The results were on average compatible with each
other, but the calculations with the Jancovici screening model re-
vealed sharp singularities in the dependence of the effective shear
modulus on the charge number Z treated as a continuous vari-
able. The singularities were more pronounced at lower densities.
Consequently, at certain integer Z and low densities these results
deviated significantly from the TF theory. At the same time, neither
corrections to the individual elastic coefficients nor details of the
calculations were reported. Based on the numerical results of Baiko
(2012), Kobyakov & Pethick (2013) produced a fit for the effective
shear modulus screening correction in the TF model.

In their subsequent work, Kobyakov & Pethick (2015) have
reevaluated the concept of the effective shear modulus as it is used in
astrophysics. Instead of the shear wave directional averaging, they
have proposed to use a self-consistent theory (e.g. deWit 2008), de-
veloped to describe elastic properties of polycrystalline matter with
randomly oriented perfect crystallites. In this theory, the effective
shear modulus is given by a non-linear expression containing all the
individual elastic moduli of the perfect lattice.

The goal of the present work is to extend the work of Baiko
(2012) as well as to provide necessary details of these calculations.
In particular, we report on the screening contributions to all second-
order elastic coefficients of the static crystal with the bcc lattice. We
treat electron polarization perturbatively (perturbative calculations

based on the one-component plasma model fail at κa � 1). We
propose simple analytic formulae for screening corrections to all
the elastic moduli in the TF model. We do not analyse modification
due to screening of the ion motion contribution obtained by Baiko
(2011) as this effect would produce too small a correction to the
total elastic moduli.

Besides neutron star crusts, the Coulomb crystals with polarizable
electron background are expected to form in solid cores of white
dwarfs, to which the present results also apply.

2 G E N E R A L F O R M A L I S M

Huang elastic moduli Sαβγλ are the second-order expansion coeffi-
cients of the Helmholtz free energy per unit mass in powers of the
displacement gradients, multiplied by the mass density in the initial,
non-deformed configuration (e.g. equation 5.1 of Wallace 1967)1.
They are also known as the equation of motion coefficients, as they
enter the equation of motion of a material, deformed with respect
to an initial configuration, characterized by an arbitrary uniform
stress.

If a material is under an isotropic initial stress, such as hydro-
static pressure, it is more convenient to use Birch elastic mod-
uli or the stress–strain coefficients Bαβγλ (in the nomenclature of
Wallace 1967). The convenience stems from the fact that under the
isotropic initial stress these coefficients possess the complete Voigt
symmetry and, at the same time, can be used in the equation of
motion in place of the Huang coefficients. The Birch coefficients
had been generalized to the case of a material of an arbitrary sym-
metry under an arbitrary initial stress in Barron & Klein (1965),
where they were denoted as c̊αβγ λ. They had been reintroduced
again in Marcus, Hong Ma & Qiu (2002) as second-order expan-
sion coefficients of the Gibbs free energy in powers of the strain
parameters. Due to their Voigt symmetry, Voigt notation (with only
two indices, e.g. Wallace 1967) is usually used for them. For in-
stance, for the cubic symmetry, the only independent coefficients are
B1111 = c̊1111 = c11, B1122 = c̊1122 = c12, B1212 = c̊1212 = c44. (Let
us note, that under an anisotropic initial stress the Birch coefficients
lose the Voigt symmetry, are no longer equivalent to the equation
of motion coefficients and cannot be obtained from the Gibbs free
energy, as the latter does not exist.)

The relationships between the Huang and Birch coefficients are
well known (e.g. equations 2.24 and 2.36 of Wallace 1967, for
an arbitrary initial stress or equations 2.55 and 2.56 for isotropic
pressure). In particular, for the case of initial isotropic pressure
P and for a material possessing the cubic symmetry, c11 = S1111,
c12 = S1122 + P, c44 = S1212. (Additionally, S1221 = S1212 + P.) These
formulae apply for any partial contribution to these coefficients (i.e.
due to static lattice, electron screening, phonons, etc.).

The Huang elastic moduli of static (st) bcc Coulomb lattice with
a uniform background of opposite charge are (Fuchs 1936)

Sst
1111 = −0.365 539 30 S0

Sst
1122 = −0.115 873 44 S0

Sst
1221 = −0.115 873 44 S0

Sst
1212 = Sst

1221 − P st = 0.182 769 65 S0, (3)

1 This is equivalent to differentiating the appropriate thermodynamic poten-
tial per one ion and multiplying the second derivative by the non-deformed
ion number density.
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where S0 = nZ2e2/a; see also Baiko (2011). The effective shear
modulus obtained via the directional averaging procedure of
Ogata & Ichimaru (1990) reads

μst
eff = 1

5

(
Sst

1111 − Sst
1122 − Sst

1221 + 4Sst
1212

) = 0.119 4572 S0, (4)

and the self-consistent shear modulus of Kobyakov & Pethick
(2015) becomes (assuming the dominance of the electron bulk mod-
ulus over all the other elastic coefficients)

μst
eff,sc ≈ 0.093 S0. (5)

Polarizability of the electron background results in a contribution
Fε to the system Helmholtz free energy per ion. We describe this
effect in the linear response formalism assuming that the electrons
adjust instantaneously to the ion configuration. Thus, the electron
response can be described by a static (ω = 0) longitudinal dielectric
function ε(q). Assuming further that all ions are fixed at their lattice
nodes R (and thus neglecting modification of the ion motion term
by the polarization), we obtain:

Fε = Z2e2

2

∫
dq

(2π)3

4π

q2

[
1

ε(q)
− 1

]

×
(∑

R

exp (iq R) − n

∫
dr exp (iqr)

)
(6)

(e.g. Hubbard & Slattery 1971; Yakovlev & Shalybkov 1989).
Introducing uniform deformation with constant displacement

gradients uαβ , we replace Rα → Rα + uαβRβ and rα → rα + uαβrβ

in the exponentials in equation (6). Also we have to take into ac-
count a dependence of ε(q) on the density, which changes under
the deformation by δn ≈ n(−uαα + 0.5uααuββ + 0.5uαβuβα). (We
can also integrate over the new variable rα + uαβrβ and insert the
new ion number density in front of the integral in the second line
of equation 6, but these two modifications cancel each other out.)
Accordingly, Fε → Fε + δFε , where δFε can be expanded in powers
of the displacement gradients:

nδFε = nZ2e2

2

(∑
R

−
∫

ndR

) ∫
dq

(2π)3

4π

q2

×
{

uαβ

(
Rβ

∂

∂Rα

− δαβn
∂

∂n

)

+ 1

2
uαβuγλ

[
RβRλ

∂2

∂Rα∂Rγ

− 2δγλnRβ

∂2

∂n∂Rα

+ (δαβδγλ + δαλδβγ )n
∂

∂n
+ δαβδγλn

2 ∂2

∂n2

]
+ · · ·

}

×
[

1

ε(q)
− 1

]
exp (iq R), (7)

where we have renamed the integration variable as R for brevity of
notation, while

∑
R is over all lattice vectors of the non-deformed

crystal. The screening (scr) contribution to the isothermal Huang
elastic coefficient Sscr

αβγλ is the coefficient of the uαβuγ λ/2 term.
The factor multiplied by uαβ in the first-order term is −Pscrδαβ ,
i.e. the screening contribution to (minus) pressure. If [1/ε − 1] is
replaced by 1, then the same factors yield the respective static lattice
contributions. In this case, all the terms containing ∂/∂n vanish.
Then it becomes obvious that Sst

1122 = Sst
1221 in accordance with

equation (3) (this does not hold true for the screening contributions).

The relationship S1221 = S1212 + P for both static and screening
contributions can be seen from the fact that at fixed R the q-integral
(before applying the operator in curly brackets) is a function of R2

only. Then

R2
2

∂2

∂R2
1

= 4R2
1R

2
2

∂2

∂(R2)2
+ 2R2

1

∂

∂(R2)
(8)

R1R2
∂2

∂R1∂R2
= 4R2

1R
2
2

∂2

∂(R2)2
(9)

R1
∂

∂R1
= 2R2

1

∂

∂(R2)
(10)

(where subscripts indicate Cartesian components). In this case, the
derivative equation (8) contributes to S1212, the derivative equation
(9) contributes to S1221 and the derivative equation (10) contributes
to −P. Additionally, Sscr

1221 contains a term with ∂/∂n, which is
absent in Sscr

1212, but is present in Pscr.
It is also useful to write this expansion in reciprocal space:

δFε = 4πnZ2e2

2

∑ ′

G

{
uαβ

(
− ∂

∂Gβ

Gα − δαβn
∂

∂n

)

+ 1

2
uαβuγλ

[
∂2

∂Gβ∂Gλ

GαGγ + 2δγλn
∂2

∂n∂Gβ

Gα

+ (δαβδγλ + δαλδβγ )n
∂

∂n
+ δαβδγλn

2 ∂2

∂n2

]
+ · · ·

}

× 1

G2

[
1

ε(G)
− 1

]
. (11)

The G-summation in this formula is over all non-zero reciprocal
lattice vectors.

The derivatives featuring in equation (11) can be easily evaluated
with the following results:

∂

∂n

[
1

ε(G)
− 1

]
= − ε̇

ε2
,

∂2

∂n2

[
1

ε(G)
− 1

]
= 2ε̇2

ε3
− ε̈

ε2
,

∂

∂Gβ

Gα

G2

[
1

ε(G)
− 1

]

=
(

δαβ

G2
− 2GαGβ

G4

) [
1

ε(G)
− 1

]
− GαGβ

G3

ε′

ε2
,

∂2

∂Gβ∂Gλ

GαGγ

G2

[
1

ε(G)
− 1

]

= (δαλδβγ + δαβδγλ)
1

G2

(
1

ε
− 1

)

− (δβλGαGγ + δβγ GαGλ + δαβGγ Gλ

+ δαλGβGγ + δγλGαGβ )
1

G2

[
2

G2

(
1

ε
− 1

)
+ ε′

Gε2

]

+ GαGβGγ Gλ

G4

[
8

G2

(
1

ε
− 1

)
+ 5ε′

Gε2
+ 2ε′2

ε3
− ε′′

ε2

]
,

∂2

∂n∂Gβ

Gα

G2

[
1

ε(G)
− 1

]

= − δαβ ε̇

G2ε2
+ GαGβ

G2

(
2ε̇

G2ε2
+ 2ε̇ε′

Gε3
− ε̇′

Gε2

)
, (12)
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3058 D. A. Baiko

where a dot over ε means the derivative with respect to n (the
electron density is Zn), and a prime over ε means the derivative
with respect to G.

3 C A L C U L AT I O N S W I T H T H E T F
D I E L E C T R I C F U N C T I O N

The TF dielectric function εTF(q) = 1 + κ2/q2 describes exponen-
tial screening of the Coulomb potential with the screening length
equal to 1/κ . In principle, one can use equations (11) and (12) to
find the screening contributions to the Huang coefficients. How-
ever, (1/εTF) − 1 ∼ q−2 at large q and the expression under the
three-dimensional reciprocal lattice sum would decay only as q−4.
Consequently, the convergence would be very slow.

Fortunately, the problem can be reformulated using the ‘screened’
Ewald technique identical to that used in Baiko (2002). The final
practical formula for Sscr

αβγλ in the TF approximation is given in the
appendix, equation (A1). Its derivation is based on several simple
ideas. First, we note that a contribution to Sscr

αβγλ, corresponding to
a given R, can be written as

Z2e2

2

[
RβRλ

∂2

∂Rα∂Rγ

− 2δγλnRβ

∂2

∂n∂Rα

+ (δαβδγλ + δαλδβγ )n
∂

∂n
+ δαβδγλn

2 ∂2

∂n2

]

× 1

R
[exp (−κR) − 1]. (13)

(Interestingly, the R = 0 term produces non-zero contributions to
Sscr

1111, Sscr
1122 and Sscr

1221, but not to the shear coefficient Sscr
1212. This is

the S(1) term in equation A1.)
Then we use the following standard integral:

e−κR − 1

R
= 2√

π

∫ ∞

0
dρe−ρ2R2

(
e−κ2/(4ρ2) − 1

)
, (14)

and split it as
∫ ∞

0 = ∫ A
0 + ∫ ∞

A , where 0 < A < ∞ but otherwise
arbitrary. The integral

∫ ∞
A may be expressed via the complementary

error functions erfc(AR ± κ/(2A)) which decay very rapidly at
large R. We differentiate them as prescribed by equation (13) and
this results in contributions S(2) and S(3) in equation (A1) for

∫
dR

and
∑

R 
=0, respectively. In S(3), it is sufficient to sum over very few
first shells of lattice vectors R to achieve convergence.

Clearly, this procedure relies on the fact that A > 0, and a dif-
ferent treatment of the integral

∫ A
0 is needed. We substitute the

well-known formula:

exp
(−ρ2R2

) =
∫

dq
(2π)3

π
√

π

ρ3
exp

[
iq R − q2/(4ρ2)

]
(15)

in equation (14). After that, for instance, RβRλ∂
2/(∂Rα∂Rγ ) in

equation (13) becomes qαqγ ∂2/(∂qβ∂qλ). Summation over R then
yields a series of delta-functions in reciprocal space via the identity∑

R exp (iq R) = (2π)3n
∑

G δ(q − G). (The R = 0 term now has
to be subtracted as it is already present in the form of S(1). This
results in the S(4) term in equation A1. If A → ∞, S(4) → −S(1)

as it should be.) The q-integral is then taken with the aid of the
integration by parts and the delta-functions. The remaining

∫ A
0 dρ

turns out to be elementary and the result (the S(5) term) contains the
rapidly decaying (for A < ∞) function exp [−(G2 + κ2)/(4A2)].
It is again sufficient to sum over very few first shells of reciprocal
lattice vectors G to achieve convergence.

Figure 1. Screening corrections to elastic moduli calculated using εTF.

Using equation (A1), we have calculated the screening correc-
tions to all Huang elastic coefficients. Since these are perturbative
calculations, only the lowest order terms in κa are described cor-
rectly. They are ∝ (κa)2 and our main results can be summarized
as

Sscr
1111 = −(0.0095 + 0.057β2 − 0.0116β4) (κa)2 S0,

Sscr
1122 = (0.0047 − 0.023β2 + 0.0116β4) (κa)2 S0,

Sscr
1221 = −(0.04 + 0.034β2) (κa)2 S0,

Sscr
1212 = cscr

44 = −0.04 (κa)2 S0. (16)

The dependence of some coefficients on β stems from the dielectric
function dependence on n and variation of the latter for certain
types of deformations. These coefficients are shown in Fig. 1. The
Sscr

1122 coefficient is additionally multiplied by 3 to improve the figure
readability. The screening correction to the effective shear modulus
obtained via the averaging procedure is

μscr
eff = 1

5

(
Sscr

1111 − Sscr
1122 − Sscr

1221 + 4Sscr
1212

)
= −0.027 (κa)2 S0. (17)

Finally, we have expanded the non-linear expression of Kobyakov &
Pethick (2015) for the self-consistent effective shear modulus and
obtained the screening correction to it as

μscr
eff,sc = −0.022 (κa)2 S0. (18)

The polarization contributions to the Huang shear coefficient S1212

and the effective shear moduli are, as expected, negative. This means
that screening reduces lattice resistance to a shear strain. Also they
do not contain contributions associated with the density dependence
of the dielectric function. Naturally, the polarization corrections
equations (16)–(18) are smaller than the electrostatic elastic moduli
equations (3)–(5) within the limits of validity of the perturbative
treatment of screening. The fit (17) has already been proposed by
Kobyakov & Pethick (2013) based on the numerical data of Baiko
(2012). However, their coefficient in equation (17) is ∼20 per cent
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Screening corrections to the elastic moduli 3059

greater than ours due to a minor numerical error on their part.
Results (16) and (18) are new.

It is also convenient to reformulate our results in terms of the
pressure

P scr = Sscr
1221 − Sscr

1212 = −0.034β2 (κa)2 S0, (19)

bulk modulus

1

3

(
cscr

11 + 2cscr
12

) = 1

3

(
Sscr

1111 + 2Sscr
1122 + 2Sscr

1221 − 2Sscr
1212

)
= −(0.057β2 − 0.0116β4) (κa)2 S0, (20)

and

cscr
11 − cscr

12 = Sscr
1111 − Sscr

1122 − Sscr
1221 + Sscr

1212

= −0.0142 (κa)2 S0. (21)

From the results reported so far, one may gain an impression that
the screening corrections can become very large relative to the pure
Coulomb values of the elastic moduli at low mass densities and at
Z � 1. In this regime, our perturbative method does not work. For
instance, at xr = 0.2 and Z = 26, κa ≈ 1.3. However, in this regime
we expect an onset of partial ionization. In this case, matter can
be approximately described as a Coulomb system with an effective
ion charge Zeff < Z. This effective charge will result in reduced
effective values of κa and S0 to be used in equations (3)–(5) and
(16)–(18).

4 C O N C L U S I O N

We have calculated electron polarization corrections to elastic mod-
uli of Coulomb crystals in neutron star crust. The effect was de-
scribed by the TF model of exponential electron screening.

Combining with equations (45) and (46) of Baiko (2011), we
can now write expressions for the total effective shear moduli μtot

eff ,
μtot

eff,sc and the elastic shear coefficient S tot
1212 including the effects of

ion motion and electron screening (unfortunately, the ion motion
contribution is presently not available for μtot

eff,sc):

S tot
1212 = [0.182 769 65 − 0.04(κa)2] S0

−
[

0.2057 + 439

(
T

Tp

)3
]1/3

nTp,

μtot
eff = [0.119 4572 − 0.027(κa)2] S0

−
[

0.050 08 + 136.6

(
T

Tp

)3
]1/3

nTp,

μtot
eff,sc = [0.093 − 0.022(κa)2] S0, (22)

where Tp = �
√

4πnZ2e2/M ≈ 7.8 × 106(Z/A)
√

ρ6X K is the ion
plasma temperature. In this case, X = A/AN, where AN is the number
of nucleons bound in a nucleus (AN = A in the outer crust). We would
like to emphasize that equations (22) do not take into account details
of ‘free’ neutron interactions with nuclei in the inner neutron star
crust. Here it is assumed that these effects result in an effective
(increased) nucleus mass and a renormalized plasma frequency.
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APPENDI X A

In the TF approximation
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where primes mean that the R = 0 and G = 0 terms in the lattice
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