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ABSTRACT
Using the Metropolis method to compute path integrals, the energy of a quantum strongly
coupled Coulomb liquid (1 ≤ � ≤ 175), composed of distinguishable atomic nuclei and a
uniform incompressible electron background, is calculated from first principles. The range
of temperatures and densities considered represents fully ionized layers of white dwarfs and
neutron stars. In particular, the results allow one to determine reliably the heat capacity of ions
in dense fluid stellar matter, which is a crucial ingredient for modelling the thermal evolution
of compact degenerate stars.
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1 IN T RO D U C T I O N

A one-component plasma (OCP) is a system of identical point
charges immersed into a uniform incompressible background of
opposite charge to ensure overall charge neutrality. This system is
of paramount importance for the astrophysics of degenerate stars,
i.e. white dwarfs and neutron stars, where the point charges are bare
atomic nuclei (ions), while a degenerate nearly ideal electron gas
constitutes the background. For both types of star, mass densities
at which matter can be viewed as an OCP cannot be too low, to
ensure that atoms are fully ionized and electron screening is, to a
good approximation, negligible. In white dwarfs, the OCP phase
may extend all the way down to the centre of the star (i.e. up to
the highest available densities); however, several different types of
atomic nuclei may be present at some densities simultaneously (e.g.
C and O). Studying such a multi-component plasma is beyond the
scope of the present article. In neutron stars, matter can be treated as
an OCP at least in the outer crust, i.e. all the way up to the neutron-
drip density, ρd ≈ 4.3 × 1011 g cm−3 (with the same caveat regarding
multi-ionic mixtures). It is possible that the same treatment remains
valid up to higher, subnuclear, densities (in the inner crust), if
the effect of dripped neutrons on the interionic interaction is
negligible.

The thermodynamic state of the OCP is described by just two
dimensionless parameters. The Coulomb-coupling parameter � =
Z2

i e
2/(aT ) measures the strength of the typical potential energy

with respect to the typical kinetic energy of ions. In this case, T
is the temperature (kB ≡ 1), Zi is the ion charge number, e is the
elementary charge, and a = (4πn/3)−1/3 is the ion-sphere radius
(n is the ion number density). If one neglects the quantum aspect
of the ion motion, � alone determines the thermodynamics of the
OCP fully. In particular, � = 1 signals the gas–liquid transition,
while � = �m ≈ 175 corresponds to the liquid–solid transition.
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The strength of ionic quantum effects is measured by the second
parameter, which can be chosen as the ratio of T to the ion plasma
temperature Tp = �

√
4πnZ2

i e
2/Mi , where Mi is the ion mass. In

a quantum system, one has T � Tp. Another parameter often used
is the ratio rs = a/a0, where a0 = �

2/(MiZ
2
i e

2) is the ionic Bohr
radius. These quantities are related to each other as

T

Tp
= 1

�

√
rs

3
. (1)

The thermodynamics of the OCP has been studied by many
authors. In particular, the classic OCP has been studied since
the 1960s (Brush, Sahlin & Teller 1966) by Monte Carlo (MC)
and molecular dynamics (MD) methods and its thermodynamic
properties are now firmly established (e.g. Slattery, Doolen &
DeWitt 1982; DeWitt & Slattery 1999; Caillol 1999). The impor-
tance of ionic quantum effects in white dwarfs (for cooling, in
particular) has been appreciated since about the same time (e.g.
Van Horn 1979) and was emphasized once again by Chabrier,
Ashcroft & DeWitt (1992). However, there was no practical way
to incorporate them. Lamb & Van Horn (1975) have constructed
the first quantitative evolutionary model of white dwarfs with
realistic thermodynamics, but the treatment of quantum effects was
incomplete.

An important study of the quantum OCP from first principles has
been conducted by Jones & Ceperley (1996). These authors used the
path-integral Monte Carlo method (PIMC), with 54 distinguishable
particles in a simulation cell with periodic boundary conditions. For
the liquid phase, they have calculated the thermal energy at � ≤ 160
and rs = 100, 200 and 1200. For carbon, these rs correspond to mass
densities ρ ≈ 1.6 × 1013, 2 × 1012 and 1010 g cm−3, respectively. At
such densities, carbon can barely exist, because it burns in nuclear
reactions and suffers beta captures. Hence, in practice, the important
range for carbon seems to be rs � 1200. For heavier elements, the
situation is similar. For helium, it is possible to attain lower values
of rs. For instance, according to table 2 of Piersanti, Tornambe &
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Yungelson (2014), helium may be found at ρ ∼ 108 g cm−3 (rs

≈ 140) and � ∼ 1, which, however, is not a very quantum state
according to our equation (1). Alternatively, in table 3 of the same
work, helium exists at ρ ∼ 106 g cm−3 (rs ≈ 650) and � ∼ 50,
which is considerably more quantum.

In the present article, we have decided to focus on the ther-
modynamics of the strongly coupled liquid regime in the range
of densities rs ≥ 600, where reliable quantum results are largely
absent. The case of higher densities at � ∼ 1 is essentially classic
(but may be worth a separate study).

2 PATH IN T E G R A L M O N T E C A R L O

Presently, only numerical techniques exist for first-principle studies
of quantum strongly coupled Coulomb plasma. This is true for both
liquid and solid phases in which all anharmonic effects cannot be
accounted for analytically. Following Jones & Ceperley (1996), we
employ the PIMC method. Its detailed exposition is given in an
extremely helpful review by Ceperley (1995).

In our simulation, there are N = 250 distinguishable particles
(ions) placed in a cubic simulation cell with periodic boundary
conditions. Each particle interacts with all periodic images of the
other particles and with the uniform background. Hence, any two
particles interact not via the Coulomb potential, but via the Ewald
potential, which is the sum of the Coulomb potentials of all periodic
images and the background term. In this way, an approximate
description of an infinite system is achieved.

In order to calculate various thermodynamic averages for a
quantum system, it is represented by a classic one, in which N
quantum particles are replaced by N classic ring polymers with M
numbered nodes (‘beads’) each and M links connecting beads with
consecutive numbers (M is a positive integer). In each ring, there is
an interaction between any two linked beads, which does not allow
them to move arbitrarily far away from each other (‘kinetic spring’).
There is also an effective interaction between polymers originating
from an interaction between beads having the same number in all
rings.

If the effective interaction (known as ‘link action’: see Ceperley
1995, for details) were known exactly, then the classic and quantum
systems would be exactly isomorphic for any M. However, this is
not the case, and various approximations for the link action have
been proposed. The simplest of them is known as the primitive
approximation. Within its framework, the link action is directly
related to the actual potential energy of N beads having the same
number in their respective rings and interacting only between
themselves via the Ewald potential. The primitive approximation
can be shown to become exact in the M → ∞ limit.

Ceperley (1995) emphasized the utility of another approximation,
pair action, for its ability to produce correct results at smaller
M than the primitive approximation in some problems (see also
Militzer & Graham 2006; Militzer 2016). A smaller M translates
into less time-consuming computations. We have managed to
construct the pair action for the Ewald potential including off-
diagonal terms for practically relevant ranges of action arguments
(not too close to zero and not too far off the diagonal). However,
it has been found that the primitive approximation reproduced
the zero-point energy of a Coulomb crystal (the major contri-
bution to which is given by the well-known harmonic lattice
value) at smaller M than the pair action. Consequently, we have
chosen to use the primitive approximation for the action in this
study.

In the primitive approximation, one needs to sample the proba-
bility distribution

π (R1, R2, . . . , RM = R0) = 1

Z
exp

[
−

M∑
m=1

Sm

]
,

e−Sm = 1

(4πλτ )3N/2
exp

{
−
[

(Rm − Rm−1)2

4λτ
+ τV (Rm)

]}
, (2)

where Rm denotes the three Cartesian coordinates of all N beads
with number m, i.e. 750 numbers in our simulation (beads 0 are the
same as beads M). Furthermore, Z is the partition function, which
ensures that the distribution π is normalized, λ = �

2/(2Mi), τ =
1/(MT), and V(Rm) is the potential energy of all beads of number m.

The sampling was done with the aid of the Metropolis algorithm.
We have combined two types of move: a single bead moves
using free-particle sampling and ‘classic’ moves. In the latter, we
attempted to move a polymer as a whole using uniform sampling
probability density within a cube with size chosen to ensure decent
move acceptance rates. The latter type of move has improved the
quality of our results considerably at nearly classic ρ and T.

The following quantity was used as the energy estimator (ther-
modynamic estimator):

E =
〈

3N

2τ
− (Rm − Rm−1)2

4λτ 2
+ V (Rm)

〉
, (3)

where m is an arbitrary integer between 1 and M, to which the
results should not be sensitive. Angle brackets mean averaging with
the probability distribution (2).

3 R ESULTS

The thermal energy of the liquid (equal to the total internal energy
minus the Madelung energy of the body-centred cubic lattice,
E0) calculated by the method described in Section 2 is presented
in Fig. 1(a) and Table 1. Dots in Fig. 1(a) are computational
results (including the extrapolation procedure below), while solid
lines simply connect them to improve graph readability. We have
calculated the thermal energy for 25 values of � evenly spaced
between 1 and 175 (�� = 7.25) and for 15 values of rs = 600,
750, 950, 1200, 1500, 1900, 2400, 3000, 3800, 4800, 6000, 8600,
15 000, 30 000 and 120 000. This corresponds to ∼7 orders of
density variation and, e.g. for carbon, spans the range from 104–
8 × 1010 g cm−3, while for helium the respective range of densities
is from 0.2–106 g cm−3. Calculations are unreliable at the lower end
of the density range and those Zi for which complete ionization is
not reached, because electronic degrees of freedom are not taken
into account. Solid curves with dots correspond to different rs, with
the rs = 600 curve being on top, rs = 750 the second curve from the
top, rs = 950 the third, etc., and, finally, rs = 120 000 is the second
curve from the bottom. The (red in the online version) curve at the
very bottom shows the classic liquid thermal energy as calculated
by Caillol (1999) and fitted by Potekhin & Chabrier (2000).

In Fig. 1(b), we compare solid curves from Fig. 1(a) for rs = 600,
1500, 2400, 4800, 8600 and 15 000 with the thermal energy of the
classic liquid combined with the first quantum Wigner–Kirkwood
correction (Hansen 1973) at the same rs (dotted curves). Long
dashes also include the second quantum correction of Hansen &
Viellefosse (1975). The agreement with our results is quite good
in the more classic range of parameters, but becomes worse with
decreasing rs or decreasing T (i.e. increasing �). The first quantum
correction provides an adequate description of our computed values
for all � in the liquid at rs � 20 000. The Hansen–Viellefosse term
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(a) (b)

Figure 1. (a) Calculated thermal energy of a Coulomb liquid versus �. From top to bottom: rs = 600, 750, 950, 1200, 1500, 1900, 2400, 3000, 3800, 4800,
6000, 8600, 15 000, 30 000 and 120 000. The curve at the very bottom (red in the online version) is the classic liquid energy. Bars represent selected data points
of Jones & Ceperley (1996) at rs = 1200. (b) Same as in panel (a) but for rs = 600, 1500, 2400, 4800, 8600 and 15 000 only. Dotted and long-dashed curves
incorporate, respectively, the first and the second quantum Wigner–Kirkwood corrections to the classic energy.

Table 1. Numerical results for (E − E0)/NT.

rs

� 600 750 950 1200 1500 1900 2400 3000 3800 4800 6000 8600 15e3 3e4 12e4

175.00 10.364 9.457 8.613 7.886 7.285 6.723 6.244 5.851 5.499 5.202 4.970 4.659 4.336 4.102 3.924
167.75 9.979 9.118 8.313 7.624 7.050 6.519 6.070 5.700 5.367 5.086 4.862 4.581 4.281 4.067 3.901
160.50 9.595 8.778 8.020 7.362 6.820 6.320 5.893 5.544 5.234 4.975 4.763 4.500 4.226 4.028 3.871
153.25 9.216 8.440 7.723 7.103 6.591 6.120 5.719 5.396 5.101 4.860 4.665 4.430 4.169 3.989 3.850
146.00 8.832 8.103 7.426 6.846 6.363 5.920 5.546 5.247 4.973 4.753 4.570 4.346 4.115 3.946 3.818
138.75 8.457 7.771 7.131 6.588 6.138 5.723 5.379 5.095 4.844 4.640 4.480 4.273 4.052 3.908 3.788
131.50 8.080 7.436 6.838 6.332 5.913 5.530 5.210 4.948 4.718 4.526 4.379 4.193 3.997 3.861 3.756
124.25 7.705 7.103 6.549 6.077 5.686 5.332 5.038 4.804 4.594 4.418 4.286 4.113 3.937 3.820 3.723
117.00 7.335 6.775 6.267 5.826 5.468 5.143 4.873 4.655 4.468 4.310 4.188 4.038 3.882 3.769 3.685
109.75 6.968 6.449 5.977 5.575 5.252 4.954 4.712 4.513 4.343 4.205 4.098 3.958 3.821 3.723 3.648
102.50 6.599 6.127 5.698 5.331 5.035 4.767 4.546 4.371 4.221 4.097 3.998 3.880 3.756 3.672 3.608
95.25 6.235 5.807 5.418 5.088 4.827 4.584 4.388 4.236 4.096 3.992 3.904 3.804 3.696 3.622 3.568
88.00 5.878 5.492 5.141 4.848 4.623 4.405 4.232 4.098 3.979 3.885 3.812 3.721 3.633 3.568 3.521
80.75 5.526 5.184 4.872 4.618 4.411 4.224 4.083 3.963 3.862 3.779 3.717 3.643 3.562 3.510 3.470
73.50 5.176 4.876 4.607 4.389 4.215 4.053 3.930 3.830 3.740 3.675 3.622 3.556 3.494 3.448 3.416
66.25 4.837 4.578 4.352 4.165 4.018 3.885 3.779 3.698 3.624 3.569 3.526 3.471 3.419 3.384 3.357
59.00 4.504 4.289 4.100 3.944 3.825 3.716 3.626 3.563 3.507 3.460 3.428 3.387 3.340 3.313 3.296
51.75 4.186 4.010 3.859 3.731 3.636 3.551 3.479 3.427 3.384 3.351 3.325 3.290 3.257 3.236 3.220
44.50 3.871 3.735 3.619 3.524 3.450 3.386 3.334 3.296 3.263 3.234 3.215 3.190 3.168 3.152 3.141
37.25 3.578 3.477 3.387 3.321 3.267 3.221 3.186 3.159 3.132 3.114 3.100 3.084 3.065 3.054 3.048
30.00 3.290 3.225 3.167 3.117 3.083 3.051 3.029 3.009 2.995 2.982 2.973 2.962 2.951 2.942 2.937
22.75 3.014 2.969 2.940 2.911 2.892 2.873 2.858 2.847 2.839 2.832 2.828 2.820 2.814 2.809 2.808
15.50 2.735 2.715 2.697 2.686 2.677 2.668 2.660 2.657 2.652 2.648 2.645 2.644 2.640 2.638 2.636
8.25 2.418 2.414 2.408 2.405 2.404 2.401 2.397 2.395 2.395 2.396 2.393 2.394 2.392 2.391 2.392
1.00 1.825 1.825 1.825 1.825 1.826 1.826 1.825 1.825 1.825 1.825 1.826 1.826 1.825 1.825 1.825

extends this range down to rs � 10 000. [For rs = 1200, these
approximations are also plotted in Fig. 2(a).]

There are three sorts of errors that need to be addressed. First,
there is a statistical error stemming from the limited number of
steps in the Metropolis algorithm. This error manifests itself as a
dependence of energies on initial conditions, random seeds or the
number m in equation (3). We have analysed these dependences for
a few combinations of rs and T and concluded that the confidence

interval could be estimated at the 90 per cent level as ±0.007 (in
absolute units) for the entire dataset. This is smaller than the dot
sizes in Fig. 1(a). A much more extended computation is needed
for a rigorous statistical evaluation of our data.

Secondly, there is a systematic error associated with the finite
polymer size M. In order to reduce this error, we have performed
PIMC calculations with four values of M: Mmin, 2Mmin, 4Mmin and
Mmax = 8Mmin. For illustration, the respective energies at rs = 1200
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(a)

(b)

Figure 2. (a) Various results at rs = 1200. Four dot–dashed curves are calculations at different M (higher curves correspond to larger M). The solid curve
(nearly merging with the top dot–dashed curve) shows the data extrapolated to 1/M = 0. The short-dashed curve includes a finite N correction, equation (4).
Dotted and long-dashed lines display the same Wigner–Kirkwood approximations as in Fig. 1(b). Bars represent selected data points of Jones & Ceperley
(1996). (b) Extrapolation of calculated energies from finite M to 1/M = 0 at rs = 1200 and the five largest values of �.

are plotted in Fig. 2(a) by dot–dashed curves: Mmax is the top one
and all the others become progressively lower with decreasing M. At
each rs and �, these data have been extrapolated as functions of 1/M
down to 1/M = 0. An example of this procedure is given in Fig. 2(b)
for rs = 1200 and several values of �. The resulting dependence
represents the exact quantum energy of 250 distinguishable particles
under periodic boundary conditions. For rs = 1200, it is plotted in
Fig. 2(a) by the solid line, nearly merging with the top dot–dashed
line. It is these extrapolated data that are presented in Fig. 1(a) and
Table 1.

Bars in Figs 1(a) and 2(a) represent the actual height and position
of triangles from the bottom panel of fig. 3 of Jones & Ceperley
(1996). We see, that at rs = 1200, our results are compatible with
theirs.

Thirdly, there is a systematic error due to the finite number of
particles in our simulation, N = 250. In principle, a conclusive
study of N dependence must include similar calculations at several
different N, which is time-consuming; we defer it to a future work
(see also Holzmann et al. 2016). Based on studies of smaller
systems, Jones & Ceperley (1996) had come up with the following
formula (their equation 2):

EN − E∞
T

= [0.035(18) − 0.0018(1)�]
�

2N
, (4)

where EN and E∞ are per-particle energies in the finite system
and the thermodynamic limit, respectively, and we have taken into
account that their energies were expressed in ionic Rydbergs. This
correction applied to rs = 1200 produces, as the N → ∞ limit,
the short-dashed curve in Fig. 2(a), which barely touches the bars.
Remarkably, the correction does not depend on rs (cf. the right-hand
side of equation 4) and thus it will be of about the same absolute
magnitude at higher rs. However, this can hardly be the case, because
at high rs our numerical data are in much better agreement with the
classic results plus quantum corrections, which implies that, at these
rs, N correction must be negligible. In view of this controversy, we
have chosen not to apply the finite N correction of Jones & Ceperley
(1996) in the present work, pending a detailed future study.

4 D I S C U S S I O N A N D O U T L O O K

Our results can be used to derive the thermodynamic properties
of matter necessary for modelling various physical phenomena in
compact stellar objects.

First of all, the change in ion energy due to quantum effects
studied in the present article produces a change of the ion pressure
and thus a slight modification of the equation of state in white
dwarf cores and neutron star crusts. This effect is expected to be
small, though, because the total pressure is dominated by degenerate
electrons.

The thermal properties of matter are modified in a more meaning-
ful way. Consider, for instance, heat capacity. Over a wide range of
parameters, the heat capacity is dominated by ions. This quantity is
very important for a number of astrophysical applications. For one,
it determines cooling of white dwarfs. Reliable modelling of this
process allows one to interpret the observed white dwarf luminosity
function and extract a fundamental parameter such as the age of
the local Galactic disc (e.g. D’Antona & Mazzitelli 1990). The
heat capacity of a Coulomb liquid is also needed to understand
the observed real-time cooling of neutron star crusts heated during
episodes of accretion in X-ray transients (e.g. Deibel et al. 2017),
although in this case temperatures may be too high for quantum
effects to be noticeable. Another promising research route is the
thermal evolution of accreting white dwarfs in cataclysmic variables
(e.g. Gänsicke 2000).

Let us analyse two representative examples: carbon at ρ ≈
3 × 108 g cm−3 (rs = 3800) and helium at ρ ≈ 6.6 × 105 g cm−3

(rs = 750). The ion specific heat at constant volume is

C

N
= 1

N

(
∂E

∂T

)
V

, (5)

where E is the energy calculated in the previous section. The specific
heat of carbon and helium is plotted in Fig. 3(a) and (b) as a
function of temperature across the melting transition. For the sake
of this illustration, we have assumed that melting takes place at
�m = 175. We are aware of the fact that �m is a weak function
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(a) (b)

Figure 3. (a) Ion specific heat of carbon at ρ ≈ 3 × 108 g cm−3. Shown are PIMC results in the liquid phase (solid curve), specific heat of the classic liquid
(upper solid curve, red in the online version), first quantum correction in the liquid (dots), second quantum correction in the liquid (long dashes), harmonic
lattice results in the crystal phase (dot–dashed curve, blue in the online version) and quantum anharmonic correction in the crystal (short dashes, blue in the
online version). (b) Same as in panel (a), but for helium at ρ ≈ 6.6 × 105 g cm−3.

of rs due to quantum effects, but an accurate determination of this
function requires extra work and is beyond the scope of the present
article. At lower temperatures (T to the left of the discontinuities),
a body-centred cubic crystal phase takes place, the specific heat
of which is known very accurately in the harmonic approximation
(Baiko, Potekhin & Yakovlev 2001). It is shown by the (blue in the
online version) dot–dashed curve. The (blue in the online version)
short-dashed curve includes a quantum anharmonic contribution
calculated in a model-dependent way by Chugunov & Baiko (2005).

In the liquid phase, we plot the various approximations mentioned
in Section 3. The upper solid curve (red in the online version)
shows the specific heat of the classic liquid OCP derived from
fits of Potekhin & Chabrier (2000). Dots include the first quantum
correction to the classic values obtained from the Wigner–Kirkwood
(WK) expansion (Hansen 1973). The long-dashed curve includes
the second WK correction derived by Hansen & Viellefosse (1975).
Our PIMC results are shown by the solid curve. In order to plot it,
we have fitted our energy data at fixed rs by a smooth curve and
differentiated it with respect to T.

It is interesting to observe that the specific heat jump at melting (at
quantum temperatures) appears to be much smaller with quantum
effects included from first principles than with various approxi-
mations available previously. A more complete assessment of this
result will be made when first-principle thermodynamics of the
solid phase becomes available. More importantly, from a practical
point of view, our data indicate that the classic approximation for
the specific heat can seriously overestimate it, while addition of the
first WK correction yields an equally serious underestimation. The
total heat capacity of a star, which determines its cooling rate, is an
integral of the specific heat over the star. The degree to which the
total heat capacity is affected by quantum phenomena thus depends
on the central density, temperature and composition. A preliminary
estimate suggests that in certain situations the actual heat capacity
of a star may be as low as two-thirds of the respective classic value.

Besides carbon and helium, it is just as easy to consider
heavier elements. However, in order to produce quantum effects

of comparable size, one would have to go to much higher densities.
Since rs scales as ρ−1/3Z2

i M
4/3
i , to achieve rs = 3800, one would

require ρ = 5.3 × 109 g cm−3 for 16O and ρ = 9.4 × 1014 g cm−3

for 56Fe (the latter is impossible, because such a ρ exceeds the
nuclear saturation density). In the standard picture, with growth of
the mass density, lighter elements burn into heavier ones in nuclear
reactions. The maximum density for a given light element to exist
at a given temperature is a function of the nuclear reaction rates
in a strongly coupled plasma. It is clear from the present study
that these reactions occur in the regime where quantum effects are
well pronounced. Their rates are thus determined by the underlying
quantum dynamics of ions and are extremely sensitive to small
variations of density and temperature (e.g. Pollock & Militzer 2004).
Accordingly, it seems worthwhile to analyse the rates in detail from
first principles, which would require a minor modification of our
code. Such a study would have implications for a wide range of
astrophysical phenomena, from bursts and flashes in compact stars
to SN Ia.

Another thermal property that is expected to be sensitive to
quantum effects is χT = (dln P/dln T)V, where P is the total pressure.
This parameter is similar to the specific heat, equation (5). In both
cases, one needs to differentiate a quantity dominated by degenerate
electrons (energy in the case of C and pressure in the case of
χT). However, the differentiation is with respect to temperature,
which means that only the thermal components of E and P really
matter. This leads to a domination of ion contributions over those
due to degenerate electrons. Compressibility χT sets the scale of
the Brunt–Väisälä frequency (e.g. Brassard et al. 1991), which,
in turn, determines the main properties of stellar g modes (e.g.
Montgomery & Winget 1999). Quantum effects may change the
profile of the Brunt–Väisälä frequency over a large fraction of
the stellar radius. This may result in an observable change of the
predicted seismological data for white dwarfs.

The present work can be also extended in other directions. An
accurate energy of the solid phase can be calculated, which, among
other things, would allow one to determine the dependence of the
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latent heat of crystallization on rs due to quantum effects. Latent
heat of crystallization is another crucial parameter in the theory of
white dwarf cooling. Its release delays cooling and directly affects
the estimated age of the stellar population. A preliminary analysis
(assuming fixed �m = 175) indicates that the latent heat is a weak
function of rs, decreasing from ≈ 0.77 T in the classic limit to
≈ 0.71 T at rs = 1200. A small correction to this dependence due
to the rs dependence of �m is expected. Similar studies of multi-
ionic mixtures can be performed with minor modifications of the
same code. Finally, weak electron screening of the ion potential can
be included, but this will introduce an extra physical parameter into
the problem.
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