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ABSTRACT
We present an accurate analytic approximation for the energy of a quantum one-component
Coulomb liquid of ions in a uniform electron background that has been recently calculated
from first principles. The approximation enables us to develop in an analytic form a complete
thermodynamic description of quantum ions in a practically important range of mass densities
at temperatures above crystallization. We show that ionic quantum effects in liquid cores
of white dwarfs (WDs) affect heat capacity, cooling, thermal compressibility, pulsation
frequencies, and radii of sufficiently cold WDs, especially with relatively massive helium
and carbon cores.

Key words: dense matter – equation of state – stars: interiors – stars: oscillations – white
dwarfs.

1 IN T RO D U C T I O N

Thanks to Sloan Digital Sky Survey, Gaia, and other projects,
current progress in highly precise observations and theoretical
interpretation of white dwarfs (WDs) is fantastically rapid (e.g.
Bergeron et al. 2019; Genest-Beaulieu & Bergeron 2019; Kepler
et al. 2019; Pelisoli & Vos 2019). For instance, we can mention
studies of cooling WDs (e.g. Blouin et al. 2019; Fernandes et al.
2019; Tremblay et al. 2019) and asteroseismology (e.g. Bischoff-
Kim et al. 2019; Córsico et al. 2019). The rapid observational
progress motivates further theoretical studies of dense matter in
WD interiors.

Recently, Baiko (2019, hereafter Paper I) has calculated from
first principles the energy of a liquid quantum one-component
plasma (OCP) of ions immersed in a uniform charge-compensating
background of electrons. This is a suitable model to describe
dense plasma of ions in degenerate cores of WDs. The author
presented his results in a tabular form and illustrated them by
calculating temperature dependence of the ion specific heat at two
combinations of density and composition (using an interpolation of
the tabulated data). Also, he pointed out a number of applications
of these results for WDs (as well as for the envelopes of neutron
stars).

In Section 2, we present an analytic fit to the results of Paper
I. It allows us to construct thermodynamics of a quantum one-
component ion liquid in a closed form thereby facilitating usage of
the results of Paper I in applications. In Section 3, we employ these
fitting formulae to study quantitatively the ionic quantum effects in
liquid cores of WDs and assess their importance. We conclude in
Section 4.
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2 A NA LY T I C FO R M U L AT I O N

2.1 Ion plasma parameters

Thermodynamic state of the OCP of ions immersed in a rigid
electron background can be characterized by two dimensionless
parameters (e.g. Haensel, Potekhin & Yakovlev 2007),

� = Z2
i e

2

kBT a
, η = Tp

T
√

3
. (1)

Here, Zi is the ion charge number, e is the elementary charge, and
kB is the Boltzmann constant. Furthermore, T is the temperature,
a = (4πni/3)−1/3 is the ion-sphere radius determined by the number
density of ions ni; Tp = (�/kB)

√
4πniZ2

i e
2/Mi is the ion plasma

temperature and Mi is the ion mass.
The first quantity, the Coulomb-coupling parameter �, measures

the ratio of the typical potential and kinetic energies of ions. If
� � 1, the ions are weakly coupled (constitute Boltzmann gas). In
the opposite limit of � � 1, they form a strongly coupled Coulomb
plasma, liquid or solid. If one disregards quantum effects in ion
motion, melting occurs at � = �m ≈ 175 (Potekhin & Chabrier
2000). The melting temperature is

Tm = Z2
i e

2

kBa�m
. (2)

The second parameter η in equation (1) characterizes the strength
of the ion quantum effects. These effects are known to be especially
important for sufficiently light ions at relatively low temperatures
and/or high densities (η � 1). In a quantum system, one has T � Tp.
Another familiar quantum-mechanical parameter is rs = a/a0, where
a0 = �

2/(MiZ
2
i e

2) is the ionic Bohr radius. These quantities are
related as

η = �√
rs

. (3)
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Table 1. Fit coefficients in equation (4).a

A1 A2 B1 B2 B3 B4 Q1 Q2 Q4

−0.9070 0.62954 0.00456 211.6 −0.0001 0.00462 5.994 70.3 22.7

Note. aCoefficients A and B are taken from Potekhin & Chabrier (2000); only coefficients Q have been varied to fit the
data (see text for details).

2.2 Analytic fit

Energy Ei of a quantum Coulomb plasma of ions with uniform
incompressible electron background was calculated in Paper I
(table 1) neglecting ion exchange effects on a dense grid of values
of � (1 ≤ � ≤ 175, 25 grid points) and rs (600 ≤ rs ≤ 120 000, 15
points; 25 × 15 = 375 grid points in total). Here, these results are
approximated by the following analytic expression:

Ei − E0

NikBT
= 3

2
− ζ� + ucl(�) + uq(η). (4)

The functions that enter equation (4) are described below and the
fit parameters are given in Table 1. The relative root-mean-square
error of the fit over all grid points is 0.0014, while the maximum
relative error of 0.0043 takes place at � = 73.5 and rs = 4800. Such
fit accuracy seems acceptable for astrophysical applications. An
explicit formula is much easier to use than tabulated values; it allows
one to differentiate and integrate analytically over temperature and
density for constructing various thermodynamic quantities of the
ion plasma.

The quantity on the left-hand side of equation (4) was calculated
and tabulated in Paper I [where it was denoted as (E − E0)/(NT),
whereas kB was set equal to 1], E0 = ζ�NikBT is the electrostatic
(Madelung) energy of an ideal body-centred cubic (bcc) Coulomb
crystal (ζ ≈ −0.895929255682), and Ni is the number of ions.
Furthermore, ucl(�) represents the fit proposed by Potekhin &
Chabrier (2000) for their ‘ion–ion’ component of the energy of
a classic Coulomb plasma,

ucl(�) = �3/2

[
A1√

A2 + �
+ A3

1 + �

]
+ B1�

2

B2 + �
+ B3�

2

B4 + �2
, (5)

with A3 = −√
3/2 − A1/

√
A2. At � > 1, the fit (4) without the last

term uq reproduces Monte Carlo (MC) results of Dewitt & Slattery
(1999), while at � < 1, it interpolates between these MC results and
a well-known exact analytic expression. In the latter case quantum
corrections become insignificant; accordingly, equation (4) can be
used at arbitrarily small �.

The quantum contribution to the energy is described by the last
term of equation (4),

uq(η) = Q1η
2

Q2 + η
+ Q3η

2

Q4 + η2
. (6)

It turns out to be a function of a single parameter η = Tp/(
√

3T )
given by equation (3). This fact seems non-trivial; it has not
been expected from the beginning but the fit procedure indicates
that it is so (at least within the fit accuracy). In the limit η

→ 0, the quantum term is forced to reduce to the exact first-
order Wigner–Kirkwood correction (e.g. Landau & Lifshitz 1980).
This translates to the condition Q1/Q2 + Q3/Q4 = 1/4 that al-
lows one to calculate Q3 through other coefficients Q given in
Table 1.

In the quantum limit of large η (sufficiently small rs), uq ≈ Q1η

that corresponds to a temperature-independent contribution to

Ei. Such a term strongly resembles the zero-point energy of
a harmonic Coulomb solid that has the same temperature and
density dependence but a different coefficient. In the liquid, the
term in question is (Q1/

√
3)NikBTp ≈ 3.46NikBTp, whereas in the

harmonic Coulomb solid Ezero-point = (3/2)u1NikBTp ≈ 0.767NikBTp,
where we have set u1 ≈ 0.5114 that is the first bcc phonon spectral
moment (e.g. Baiko, Potekhin & Yakovlev 2001). We see that the
coefficient in the liquid is 4.5 times larger than that in the bcc
solid.

Formally, the fit (4) is based on the data at � ≤ �m (T ≥ Tm),
i.e. at temperatures higher than the melting temperature of a classic
Coulomb liquid of ions. However, bearing in mind a sufficiently
smooth dependence of Ei on T and ni we hope that we can extrapolate
the fit to somewhat lower T (larger �) to describe a supercooled
Coulomb liquid or, actually, the ordinary quantum Coulomb liquid
that in reality, due to quantum effects, solidifies at �m slightly above
the classic value of 175.

2.3 Constructing thermodynamics

Using the fit (4) we can construct analytic thermodynamics of
quantum OCP of ions.

Multiplying equation (4) by T and differentiating with respect to
T one obtains ionic isochoric heat capacity,

CV i

kBNi
≡ CV i

kBni
= 3

2
+ ucl(�) + uq(η) − �

ducl

d�
− η

duq

dη
, (7)

where CV i is the heat capacity per unit volume. The Helmholtz free
energy can be obtained by integration,

Fi

NikBT
= Fid

NikBT
+

∫ �

0
d�′ ucl(�′)

�′ +
∫ η

0
dη′ uq(η′)

η′ , (8)

where Fid is the Helmholtz free energy of an ideal Boltzmann gas
of ions. Then the ion pressure can be found as

Pi = −
(
∂Fi

∂V

)
T

= Pid

(
1 + 1

3
ucl + 1

2
uq

)
, (9)

where Pid = nikBT is the ideal gas pressure. Other practically
important (see Section 3.2) quantities are the isochoric temperature
derivative of pressure,

(
∂Pi

∂T

)
V

= nikB

(
1 + 1

3
ucl + 1

2
uq − �

3

ducl

d�
− η

2

duq

dη

)
, (10)

and the isothermal compressibility of ions,

(
∂Pi

∂ni

)
T

= kBT

(
1 + 1

3
ucl + 1

2
uq + �

9

ducl

d�
+ η

4

duq

dη

)
. (11)
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Evaluating integrals and derivatives in equations (7)–(11) one
obtains

Fi

NikBT
= Fid

NikBT
+ A1

√
�(A2 + �)

− A1A2 ln

(√
�

A2
+

√
1 + �

A2

)

+ 2A3

(√
� − arctan

√
�
)

+ B1� − B1B2 ln

(
1 + �

B2

)
+ B3

2
ln

(
1 + �2

B4

)

+ Q1η − Q1Q2 ln

(
1 + η

Q2

)
+ Q3

2
ln

(
1 + η2

Q4

)
.

(12)

[Note a typo in equation (16) of Potekhin & Chabrier (2000) that
should contain �/B2 rather than �/B1 in one of the logarithms.]
Furthermore,

CV i

kBNi
= 3

2
+ �3/2

2

[
A3(� − 1)

(1 + �)2
− A1A2

(A2 + �)3/2

]

+�2

[
B3(�2 − B4)

(B4 + �2)2
− B1B2

(B2 + �)2

]

+ η2

[
Q3(η2 − Q4)

(Q4 + η2)2
− Q1Q2

(Q2 + η)2

]
, (13)

1

kBni

∂Pi

∂T
= 1 + �3/2

6

[
A3(� − 1)

(1 + �)2
− A1A2

(A2 + �)3/2

]

+�2

3

[
B3(�2 − B4)

(B4 + �2)2
− B1B2

(B2 + �)2

]

+ η2

2

[
Q3(η2 − Q4)

(Q4 + η2)2
− Q1Q2

(Q2 + η)2

]
, (14)

1

kBT

∂Pi

∂ni
= 1 + �3/2

18

[
A1(9A2 + 8�)

(A2 + �)3/2
+ A3(9 + 7�)

(1 + �)2

]

+ �2

9

[
B1(5B2 + 4�)

(B2 + �)2
+ B3(5B4 + 3�2)

(B4 + �2)2

]

+ uq(η) − η3

4

[
Q1

(Q2 + η)2
+ 2Q3η

(Q4 + η2)2

]
. (15)

These fairly simple formulae give a complete first principle descrip-
tion of the OCP thermodynamics at temperatures above the melting
temperature neglecting ion statistics effects, which are expected
to be very small under realistic conditions. For applications to real
systems, one has to add thermodynamic quantities of the degenerate
electron gas and contributions stemming from electron screening.
The latter contributions are typically small and will be neglected
here (e.g. Haensel et al. 2007).

3 A STRO PHYSICAL IMPLICATIONS

To illustrate astrophysical significance of new thermodynamics, let
us describe accompanying modifications of physical properties of
WD matter that can result in potentially observable effects. We
will consider liquid cores of WDs where the electrons are strongly
degenerate. The degeneracy makes the electron gas almost rigid
and justifies the validity of the OCP model. By way of illustration,

we consider a liquid of single species of fully ionized atomic
nuclei. Actually, WD matter can contain a mix of different bare
nuclei at high densities and ions in various ionization states at low
densities but our present formalism does not allow us to study either
quantum effects in dense multispecies mixtures or incompletely
ionized plasma.

While analysing WD cores we will assume that they are isother-
mal at a temperature T. This is a good approximation for not too hot
WDs because of high thermal conductivity of degenerate electrons
(e.g. Swarzschild 1958; Shapiro & Teukolsky 1983). When a WD
cools, T slowly decreases. For all realistic values of the internal
temperature, the effective surface temperature Ts of a WD remains
much lower than T because of poor thermal conduction in its non-
degenerate and mildly degenerate outer envelope. The envelope is
typically thin and low massive; its thickness decreases with time.

Warm WDs have liquid cores, the main subject of our study. At a
certain stage the core crystallizes starting from the centre. As the star
cools, the crystallization front propagates to the stellar envelope.

3.1 Heat capacity of liquid WD cores

It is well known that ions in a WD core give the major contribution
to the total heat capacity of the star.

In Fig. 1, we plot ionic heat capacity per one ion as a function
of mass density ρ for a range of internal WD temperatures T
above the melting temperature for four core compositions: 12C,
16O, 20Ne, and 4He [panels (a), (b), (c), and (d), respectively].
Some low-temperature curves for oxygen and neon are termi-
nated at such densities where crystallization begins at a given T
(T = Tm for �m = 175). Solid curves utilize full equation (13),
including quantum effects, while dashed curves represent classic
heat capacity, i.e. the first two lines of equation (13) only. As
expected, quantum effects reduce the heat capacity; they are more
pronounced for lighter elements, at higher densities and/or lower
temperatures.

Fig. 2 presents the total heat capacity C(T) of liquid isothermal
cores of WDs of different masses, core compositions, and internal
temperatures,

C(T ) =
∫

dV C(ρ, T ), (16)

where the integration is over the isothermal core, and C(ρ, T ) is
the heat capacity per unit volume; C(T) is nearly equal to the
total heat capacity of the star (contribution of the outer envelope
is negligible). Even though the ionic contribution is typically
dominant, we have also included the contribution of degenerate
electrons, C = CV i + CV e. Because heat capacities of degenerate
matter at constant volume and pressure are nearly the same (e.g.
Haensel et al. 2007), we can safely add the ion and electron
contributions at constant volume. The ion heat capacity per unit
volume is calculated from equation (13) as CV i = (CV i/Ni)ni. The
electron contribution is calculated with the aid of the standard
Sommerfeld expansion (e.g. Landau & Lifshitz 1980),

CV e = k2
Bπ

2T ne

pFevFe
, (17)

where ne is the electron number density, while pFe and vFe are the
electron Fermi momentum and velocity, respectively. The envelope–
core boundary is set at a density where the electron degeneracy
temperature is three times higher than T.

Since our figures are illustrative, our basic WD models are calcu-
lated using only the pressure of strongly degenerate electrons at T =
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5842 D. A. Baiko and D. G. Yakovlev

Figure 1. Ionic heat capacity per one ion (in units of kB) in a WD core composed of 12C (a), 16O (b), 20Ne (c), and 4He (d) as a function of mass density for
several temperatures above crystallization; values of log T (in K) are indicated near the curves. Solid (dashed) curves include (disregard) quantum effects of
ions.

0 (the only exception is Fig. 6). These models accurately reflect the
main problem of WD study: at a given central density all WDs whose
cores contain ions (4He, 12C, 16O, or 20Ne) with the same mass
number to charge number ratio (Ai/Zi = 2) have nearly identical
internal mass density distributions and nearly the same masses M
and radii R. This property complicates strongly the determination of
the internal composition of WDs from observations and motivates
studies of such observational manifestations that are sensitive to the
internal composition.

Integrated heat capacities C(T) are good to this aim. They do
depend on internal composition of WDs and they are important for
WD cooling theory (e.g. Swarzschild 1958; Shapiro & Teukolsky
1983). Because WD cooling is observable it can give valuable
information on the internal composition.

Cooling of a WD with an isothermal core is governed by the
equation

dT

dt
= − L

C(T )
, (18)

where L is the total thermal energy loss rate of the star that is a
sum of the thermal surface luminosity Ls = 4πσR2T 4

s (σ being
the Stefan–Boltzmann constant) and the neutrino luminosity Lν

from the entire WD volume. The isothermal core approximation is
usually valid in not too warm WDs (not in pre-WDs) where neutrino
cooling becomes inefficient and L ≈ Ls.

In Fig. 2(a), we plot the integrated heat capacity of a 1.2 M�
(R ≈ 4180 km) WD with a carbon, oxygen, or neon core (blue,
red, or black curves, respectively) as a function of the core temper-
ature (above melting). Solid (dashed) curves include (exclude) ion
quantum effects. Once again one observes an amplification of the
quantum effects with decreasing temperature and atomic number of
ions. A general decreasing trend of the heat capacity with increase
of the atomic number is simply because C(T) is proportional to the
number of ions, and there is fewer heavier ions in a star of a fixed
mass. Let us recall that our figures are illustrative. Real WDs are
thought to contain ionic mixtures. The lighter the ions, the larger
C(T) and the slower cooling for a fixed M and a fixed WD envelope
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Quantum ion thermodynamics of white dwarfs 5843

Figure 2. (a) Total heat capacity of a 1.2 M� WD with isothermal liquid core of three compositions (marked near the curves) as a function of core temperature.
Solid lines include and dashed lines exclude quantum effects of ions. (b) Total heat capacity of WDs with different core compositions as a function of WD
mass. At each mass, the core temperature is equal to the melting temperature Tm in the WD centre. Solid lines include and dashed lines exclude quantum
effects. Three lower dash–dotted curves show respective values of Tm. (c) Same as in panel (a) but for a 0.25 M� helium WD. (d) Effective heat capacity of a
1.2 M� WD with isothermal carbon core as a function of core temperature with possible effects of crystallization and latent heat release (see text for details).

model (which specifies Ls). This is well known. New result is that
quantum effects in a massive sufficiently cold WD substantially
reduce C(T) and accelerate WD cooling.

In Fig. 2(b), we plot the total heat capacities of carbon, oxygen,
and neon WD cores as functions of stellar mass ranging from 0.6
to 1.35 M�. Again, solid curves include ion quantum effects, while
dashed curves neglect them. For each mass, the temperature is set
equal to the melting temperature in the WD centre that maximizes
the amplitude of the quantum effects attainable for a given mass and
composition. The dot–dashed lines show these melting temperatures
in units of 107 K.

In Fig. 2(c), the same quantities as in panel (a) are plotted for
a 0.25 M� (R ≈ 13 450 km) WD with the helium core. Clearly,
in this case quantum effects can be very strong. In particular, as
the temperature approaches crystallization in the WD centre (Tm =
2.2 × 105 K at ρ = 3.15 × 105 g cm−3), the classic heat capacity
overestimates the actual one by more than 50 per cent. Modifications

of the WD heat capacity displayed in Figs 2(a)–(c) are expected to
accelerate cooling of WDs, especially the ‘most quantum’ WDs
with helium cores.

The above discussion assumed that crystallization of the ion
liquid took place at the classic value �m = 175. However, quantum
effects lead to a slow growth of �m with density (e.g. Jones &
Ceperley 1996). Besides, according to a preliminary report in Paper
I, the latent heat q released at crystallization decreases slowly with
growing density, from 0.77kBT for classic OCP (rs →∞) to 0.71kBT
at rs = 1200 (which is smaller than in the centre of a 1.2 M� carbon
WD). In Fig. 2(d), we aim to assess semi-quantitatively the effects
of quantum modifications of �m and q. To this end, we introduce
an effective heat capacity of an isothermal core with temperature T,
which incorporates the latent heat release,

Ceff (T ) = C(T ) − 4πr2niq
dr

dρ

dρ

dTm
. (19)
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In this case, radial coordinate r and ni, q, and ρ must be taken
at the crystallization front where Tm = T. It is easy to show that
in the isothermal core approximation this effective heat capacity
enters the WD cooling rate (18) automatically accounting for the
latent heat release. This enables one to compare relative importance
of variations of true heat capacity C(T), latent heat, and melting
temperature.

Fig. 2(d) demonstrates the temperature dependence of the ef-
fective heat capacity of a 1.2 M� WD with carbon core, calcu-
lated under different assumptions. All thick lines are computed
including quantum effects in the ion liquid, while thin lines are
calculated without these effects. The solid (blue) lines are obtained
by completely disregarding crystallization (assuming supercooled
liquid at T ≤ Tm). As expected, quantum effects progressively
reduce the heat capacity with lowering T. The short-dashed (red)
lines are calculated using the harmonic-lattice model for the heat
capacity of bcc crystals (Baiko et al. 2001) (at those ρ where Tm

> T for �m = 175) but neglecting the latent heat (q = 0). The
heat capacity of crystalline ions is strongly suppressed by quantum
effects that is known to accelerate cooling of old and cold WDs (e.g.
Shapiro & Teukolsky 1983). Finally, the dot–dashed (grey) lines
show the same as the short-dashed ones but taking into account the
latent heat release. Dark grey lines assume classic crystallization
temperature (�m = 175) and latent heat (q = 0.77 kBTm). The
light grey thick dot–dashed curve corresponds to �m = 185 and
q = 0.71kBT in the entire star. It represents an overestimation of
quantum modifications of the melting parameters because rs =
1200 is never reached in a 1.2 M� carbon WD. Even then, the
quantum modifications of the melting parameters do not appear
significant.

The latent heat release at crystallization is known to delay cooling
of sufficiently old WDs, prior to a cooling acceleration in a quantum
crystal. The effect was predicted by Lamb & van Horn (1975)
and is supported (Tremblay et al. 2019) by the Data Release 2
(DR2) Gaia data on old massive DA WDs. According to Fig. 2(d),
quantum suppression of the heat capacity of WDs with liquid carbon
cores, which accelerates cooling prior to the crystallization, reduces
the effect of the latent heat (which delays cooling). If, however,
the central part of the WD core contains not carbon, but heavier
elements such as 16O and/or 20Ne, quantum suppression of the heat
capacity would be weaker (cf. Fig. 2b). In any case the suppression
seems to be not strong enough to completely eliminate the latent
heat effect.

3.2 Compressibilities and WD seismology

Besides cooling evolution, many WDs demonstrate rich spectra
of pulsations (e.g. Winget & Kepler 2008; Córsico et al. 2019).
Characteristic pulsation periods are about some minutes. They are
generally thought to be non-radial g-modes with multipolarity 	

from 1 to about 5 and with the number of radial pulsation nodes
k from 1 to about 50. These pulsations are generated in WD
envelopes, but they can penetrate deeply into degenerate cores.
Their studies (comparison of observations and theory) provide
useful information about WD parameters (masses, radii, rotation)
and internal composition and allow one to test basic principles of
fundamental physics, such as possible variations of fundamental
physical constants with time.

In order to see the impact of new microphysics on pulsational
properties of WDs it seems natural to analyse its effect on the
Brunt–Väisälä frequency N , the basic quantity for seismological
studies that is a local characteristic of stellar matter expressed

through thermodynamic quantities. According to Brassard et al.
(1991) the Brunt–Väisälä frequency can be cast in the following
form:

N 2 = g2ρ

P

χT

χρ

(∇ad − ∇), (20)

where g is a local gravity at a density ρ, P is the pressure, χT and
χρ are compressibilities of matter, and ∇ad is the adiabatic gradient.
Finally, ∇ is the actual local logarithmic pressure derivative of the
temperature. The quantities χT, χρ , and ∇ad are thermodynamic
and can be expressed as (e.g. Haensel et al. 2007)

χT =
(
∂ ln P

∂ ln T

)
ρ

, (21)

χρ =
(
∂ ln P

∂ ln ρ

)
T

, (22)

∇ad =
(
∂ ln T

∂ ln P

)
S

= χT

χ2
T + χρCV /P

, (23)

where S is the entropy. In a WD core containing OCP of ions we
write P = Pe + Pi and CV = CV e + CV i. In the approximation of
the isothermal core, ∇ ≈ 0. The overwhelming contribution to the
pressure is due to degenerate electrons at T = 0 (e.g. Landau &
Lifshitz 1980). Adding also first-order thermal correction given by
the Sommerfeld expansion we have

Pe = P0

[√
1 + x2

(
2x3

3
− x

)
+ ln

(
x +

√
1 + x2

)

+ 4

9
π2

(
T

T0

)2
x(x2 + 2)√

1 + x2

]
, (24)

where P0 = m4
ec

5/(8π2
�

3) = 1.801 × 1023 dyn cm−2, T0 =
mec2/kB ≈ 5.930 × 109 K, and x = pFe/(mec) is the relativity
parameter of strongly degenerate electrons [me is the electron mass;
pFe = �(3π2ne)1/3].

Now we can easily compute χT, χρ , ∇ad, and N . The electron
and ion pressures are given by equations (24) and (9). The respective
temperature derivative needed for χT is(

∂Pe

∂T

)
V

= 8π2P0T x(2 + x2)

9T 2
0

√
1 + x2

(25)

for electrons and is given explicitly in equation (14) for ions. The
density derivatives needed for χρ are given by

∂Pe

∂ρ
= 8P0x

5

9ρ
√

1 + x2

[
1 + π2(2 + 3x2 + 2x4)

6x5(1 + x2)

(
T

T0

)2
]

(26)

for electrons (because, with high accuracy, ρ = Mini = Mine/Zi),
whereas ∂Pi/∂ρ = (∂Pi/∂ni)/Mi, where ∂Pi/∂ni can be taken from
equation (15). The heat capacities per unit volume CV e and CV i

needed in ∇ad are given by equations (17) and (13), respectively.
The compressibilities χρ and χT are interesting not only for

WD seismology. In particular they determine the adiabatic gradient
∇ad that regulates convective stability of stellar matter. Evidently,
in degenerate WD cores χρ is mainly determined by the bulk
pressure of degenerate electrons; it is affected by the state of
ions but only weakly. On the contrary, χT is mainly determined
by ions. It is plotted in Fig. 3 as a function of mass density for
carbon (a) and helium (b) matter at several temperatures above
melting. Note that the scale of the vertical axis is logarithmic.
Solid lines are calculated using full equation (14), while dashed
lines are respective classic values. Quantum effects are seen to
decrease χT. As in the case of the heat capacity, the strongest
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Figure 3. Logarithm of compressibility χT of isothermal WD matter composed of 12C (a) or 4He (b) as a function of log ρ for several values of temperature.
Solid (dashed) curves include (exclude) quantum effects in the Coulomb liquid of ions.

Figure 4. (a) Logarithm of the squared Brunt–Väisälä frequency in the
carbon core of an isothermal 1.2 M� WD as a function of mass density for six
values of the core temperature, from T = 107 to 108 K. The upper horizontal
scale displays accumulated stellar mass m. (b) The ratio of squared Brunt–
Väisälä frequencies calculated including and neglecting quantum effects of
ions versus ρ at the same temperatures.

decrease occurs in deeper WD layers and at lower tempera-
tures.

Fig. 4(a) shows the density dependence of squared Brunt–
Väisälä frequency in the central part of an isothermal carbon
core of a 1.2 M� WD as a function of density ρ at six selected
temperatures, with log T [K] = 7, 7.2, ...8. The upper horizontal
axis displays values of stellar mass m (in units of M�) accumulated
in spheres restricted by respective ρ. To demonstrate the importance

of quantum effects of ions, Fig. 4(b) shows the ratio of the squared
Brunt–Väisälä frequency with quantum effects to that without
quantum effects as a function of mass density at the same T.
Since gravity cancels out, this becomes a universal function of
density, temperature, and composition and does not depend on a
particular WD model. Ion quantum effects lower N and actual
g-mode frequencies.

In order to gauge the effect of these differences on the pulsational
properties of WDs, we consider the asymptotic period spacing (e.g.
De Gerónimo et al. 2019) between pulsation modes with fixed
multipolarity 	 and azimuthal number m but successive numbers k
and k + 1 of radial nodes in the limit of large k,

��a
l = �0/

√
	(	 + 1), (27)

�0 = 2π2

[∫ R

0
dr

N
r

]−1

. (28)

According to Fig. 4(b), the difference between N and Ncl vanishes
while still at fairly high densities. This allows us to calculate the
quantity

δ

(
1

�0

)
= 1

2π2

∫ R

0
dr

(N − Ncl)

r
, (29)

which is insensitive to thermodynamics in the WD envelope and
outer core. This quantity determines the magnitude of eigenmode
frequency change originating from the quantum phenomena in the
ion liquid near the WD centre. In Fig. 5, δ(�−1

0 ) is plotted as a
function of core temperature (in units of 107 K, above melting) for
carbon WDs of masses 1.1, 1.2, and 1.3 M�. According to numerical
data of De Gerónimo et al. (2019), the range of realistic values of
��a

1 can be roughly estimated as ∼5–50 s. As per equation (27)
with 	 = 1, this translates into �−1

0 ∼ 14–140 mHz that should
be compared with the expected variation displayed in Fig. 5.
Given the remarkable accuracy of seismological measurements,
an experimental verification of spectral variations due to quantum
effects predicted in Fig. 5 seems feasible.
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Figure 5. Variation of �−1
0 that determines frequency difference between

two g-modes with large successive numbers of radial nodes (k, k + 1 � 1)
under the effect of quantum effects of ions as a function of core temperature
for carbon WDs with M =1.1, 1.2, and 1.3 M�. At low T the curves are
broken at onset of crystallization in the WD centre.

Figure 6. Radius increase �R (solid line) due to quantum ion effects for
WDs with 4He cores versus WD mass. In each case the temperature of the
isothermal core corresponds to the crystallization in the WD centre T = Tm.
This temperature is plotted by the dashed line along the right vertical axis.

3.3 Radii of low-mass WDs with He cores

Here we comment on the importance of ion quantum effects for hy-
drostatic models of low-mass WDs. To this aim, we have calculated
a sequence of WD models of different masses M with isothermal
helium cores, from 0.1 to 0.4 M�. In doing so we have taken
into account the ion pressure at a finite core temperature T. This
temperature has been set equal to the crystallization temperature
in the WD centre (the lowest temperature at which the entire core
remains liquid). This temperature increases with the growth of M
and is shown by a dashed curve in Fig. 6 referring to the right
vertical axis. For each M, we have calculated WD models twice:

including quantum term in the ion pressure (9) and assuming purely
classic ions. In both cases, the electron pressure was taken at T =
0 because the thermal correction to it does not affect structural
changes originating from the ion quantum effects.

Fig. 6 presents the difference of WD radii �R, calculated with
and without ion quantum effects versus mass M. The ion pressure is
much smaller than the electron one and the quantum contribution to
the ion pressure is, in turn, smaller than the absolute magnitude of
the ion electrostatic contribution. Nevertheless, the difference due to
quantum effects is seen to be ∼10 km. Somewhat counterintuitively,
it increases with decreasing mass, i.e. �R is larger for more classic
extremely low-mass helium stars! The decrease is associated with
two effects, a decrease of |Pi|/Pe when ρ increases in heavier stars
and a general increase of R with decrease of M.

The effect is small but may be important for AM Canum Ve-
naticorum (AM CVn) variables that constitute a class of binaries
with extremely short orbital periods (down to a few minutes; e.g.
see Deloye et al. 2007; Solheim 2010; Ramsay et al. 2018). Their
evolution is governed by mass transfer from a donor star to an
accreting WD and by orbital momentum loss due to gravitational
wave emission. We are interested in the scenario where the donor is
a low-mass (M � 0.4 M�) He dwarf. It can be very cold (Ts as low
as ∼1000 K; see Deloye et al. 2007). In the process of accretion, it
loses mass and moves to the left in Fig. 6 so that the predicted �R
due to quantum effects increases. Thus accurate incorporation of
these effects may be crucial to correctly model the final outcome of
the evolution, in particular, when or whether there will be a direct
impact and merger.

4 C O N C L U S I O N

In Section 2, we present a simple analytical formula, equation (4),
that accurately approximates calculations of the energy of a quantum
OCP of ions in a uniform electron background. The calculations
were performed in Paper I from first principles in the regime of
a strongly coupled liquid (1 ≤ � ≤ 175) neglecting the effects of
quantum statistics of ions. At � < 1, equation (4) reduces to the
familiar expression for a classic liquid (Potekhin & Chabrier 2000)
combined with the first Wigner–Kirkwood correction. In this way
equation (4) stays valid at small �.

Equation (4) allows one to construct accurate analytic thermo-
dynamics of ionic OCP at � ≤ 175, obtain an analytic expression
for the Helmholtz free energy, equation (12), and calculate temper-
ature and density derivatives that are required for finding various
thermodynamic quantities for astrophysical applications.

In Section 3, we apply the results for constructing major ther-
modynamic quantities in an OCP of ions immersed in a degenerate
gas of electrons (including Sommerfeld temperature corrections
for electron thermodynamic quantities). This is a good model to
describe dense matter (with account of quantum effects in ion mo-
tion) in degenerate cores of WDs and in degenerate outer layers of
neutron stars before crystallization occurs. We apply this formalism
to investigate the ionic quantum effects on the total heat capacity
of WDs, compressibilities χT and χρ , Brunt–Väisälä frequency of
WDs, and radii of low-mass WDs with helium cores. Our main
conclusion is that quantum effects of ions become really important
in central regions of WD cores at low enough temperatures (within
a factor of a few of the crystallization temperature). In general,
the strongest effects occur in WDs with massive helium or carbon
cores. In particular, quantum effects can noticeably decrease the
heat capacity and accelerate cooling of massive WDs with carbon
cores prior to crystallization. The only exception to this general
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Quantum ion thermodynamics of white dwarfs 5847

trend is an increase of the quantum correction to the radius of a
helium WD, �R, with decrease of its mass (Fig. 6).

The theory we present is valid for quantum OCP of ions
neglecting ion exchange effects that are not relevant for applications.
Further work is required to elaborate this theory by studying
quantum anharmonic corrections to the harmonic-lattice model of
a crystallized phase and by developing detailed theory of quantum
ion mixtures.
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