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Abstract

The purpose of the present paper is to describe the effects of electron-electron collisions on proton electronic stopping
in plasmas of any degeneracy. Plasma targets are considered fully ionized so electronic stopping is only due to the free
electrons. The stopping due to free electrons is obtained from an exact quantum mechanical evaluation in the random
phase approximation, which takes into account the degeneracy of the target plasma. The result is compared with
common classical and degenerate approximations. Differences are around 30% in some cases which can produce bigger
mistakes in further energy deposition and projectile range studies. We focus our analysis on plasmas in the limit of
weakly coupled plasmas then electron-electron collisions have to be considered. Differences with the same results
without taking into account collisions are more than 50%.
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1. INTRODUCTION

The energy loss of charged particles in a free electron gas is
a topic of relevance to understand the details of beam-target
interaction processes ~Deutsch et al., 1989; Hoffmann et al.,
1990, 1994, 2005; Jacoby et al., 1995!, especially in the
contexts of particle driven fusion, and fast ignition ~Deutsch,
1984, 1990, 1992; Deutsch et al., 1989; Eliezer et al., 1995;
Roth et al., 2001; Deutsch, 2004; Nardi et al., 2006; Neff
et al., 2006!. The energy losses of ions moving in an electron
gas can be studied with dielectric formalism and random
phase approximation ~RPA!. This approximation consists of
considering the effect of the particle as a perturbation, so a
linear description of the properties of the target medium can
be applied.

RPA is usually valid in the weak coupling limit of an
electron gas, i.e., G ,, 1. The coupling parameter, G �
EF 0~pkF~EF � kBT !! ~Arnold & Meyer-ter-Vehn, 1987;
Meyer-ter-Vehn et al., 1990!, measures the ratio between
potential and kinetic energies of the electrons at any degen-
eracy of the plasma, where EF and kF are Fermi energy and
Fermi wave number, respectively, and T is the plasma tem-
perature. In this work, we will study plasmas with G� 1 so
that RPA is not sufficient and the electron collisions of the

target gas have to be taken into account. RPA predicts an
infinite life-time for target plasma electron collisions, whereas
it is well-known that in real materials these excitations are
damped. Mermin ~1970! derived an expression for the dielec-
tric function taking account of the finite life-time of the
collisions.

Mermin ~1970! dielectric function has been successfully
applied to solids, dense degenerate electron gas ~Barriga-
Carrasco & Garcia-Molina, 2004!, classical plasmas, and
nondegenerate electron gas ~Barriga-Carrasco, 2006a; 2006b;
Barriga-Carrasco & Maynard, 2006!. In this paper, we extend
our calculations to consider the effects of electron–electron
collisions in RPA for an electron gas of any degeneracy.

2. DIELECTRIC FORMALISM

Dielectric formalism is based on the dielectric response
function of the target material. The dielectric function «~k,v!
is developed in terms of the wave number k and of the
frequency v provided by a consistent quantum mechanical
analysis. The dielectric response of the electronic medium is
calculated in the RPA. We use atomic units ~au!, e � \ �
me � 1, to simplify formulas.

Dielectric function can be separated into its real and
imaginary parts

«~k,v! � «r ~k,v!� i«i ~k,v!.
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The real part is ~Arista & Brandt, 1984!

«r ~k,v! � 1 �
1

4z 3pkF

@g~u � z!� g~u � z!# , ~1!

where g~x! corresponds to

g~x! ��
0

` ydy

exp~Dy 2 � bm!� 1
ln� 1 � x

1 � x �,

and u �v0kvF and z � k02kF are the common dimensionless
variables ~Lindhard, 1954!. vF � kF � M2EF is the Fermi
velocity in au, D � EFb is the degeneracy parameter, m is
the chemical potential, and b� 10kBT.

In the limit of high degeneracy, D .. 1,

g~x! � x �
1

2
~1 � x 2 ! ln� 1 � x

1 � x �,

which substituted in Eq. ~1! gives Lindhard dielectric func-
tion for a degenerate plasma ~Lindhard, 1954!. In the oppo-
site limit of high temperatures, D ,, 1,

g~x! � 3
2�D 102Q~D 102x!,

where Q~x! is the plasma dispersion function ~Fried &
Conte, 1961!

Q~x! �
1

Mp ��`

` exp~�p2 !

x � p
dp,

recovering the results for classical plasmas ~Peter & Meyer-
Ter-Vehn, 1991!.

On the other hand, the imaginary part of the dielectric
function is

«i ~k,v!�
1

8z 3DkF

ln� 1 � exp@bm� D~u � z!2 #

1 � exp@bm� D~u � z!2 #
� . ~2!

Although this is an exact result for all plasma degeneracy’s,
the interesting limiting value for high degenerate plasmas
for Dr `

«i ~k,v! � �
v0~8z 3EF kF !, ~u6 z!2 � 1

@1 � ~u � z!2 #0~8z 3kF !, ~u � z!2 � 1 � ~u � z!2

0, 1 � ~u � z!2
,

giving rise to the case of degenerate plasma ~Lindhard,
1954!. For nondegenerate plasmas D,, 1 and \r 0, Eq. ~2!
transforms into

«i ~k,v! �
ne

k 3
~2pb!102exp��

v2b

2k 2 �,

this is the classical result ~Peter & Meyer-Ter-Vehn, 1991!.
In the dielectric formalism, the electronic stopping for a

swift point like ion with charge Z, traveling with constant
velocity v through target plasma, defined by its dielectric
function, is very well known

Se~v! �
2Z 2

pv 2 �
0

` dk

k
�

0

kv

dv v Im� �1

«~k,v!
� ~a.u.!. ~3!

For proton velocities v � vth, where vth is the thermal
velocity of the target electrons, the perturbation parameter
j�Z0v is smaller than one, so the electronic stopping can be
determined using RPA.

Figure 1 represents the proton electronic stopping as a
function of its velocity in plasmas of different degeneracy,
normalized to S0 � ~ZkF!

2. Regarding the plasma degener-
acy, the exact stopping is contrasted with both the high
degeneracy and the classical limits. We see that by increas-
ing degeneracy parameter of the target, the exact stopping
approaches to the high degeneracy limit. On the other hand,
decreasing the degeneracy parameter of the target, the exact
result approaches the classical limit. As an example, we
analyze the electronic stopping for plasma with the same
temperature, Te � 10 eV, of Figures 1c and 1d. Figure 1c
corresponds to an electron density of ne � 1022 cm�3 and
Figure 1d to ne � 1024 cm�3. As target electron density
increases, degeneracy parameter also increases and it approx-
imates the high degeneracy limit.

3. ELECTRON-ELECTRON COLLISIONS

Mermin ~1970! derived an expression for the dielectric
function taking account of the finite relaxation time of the
electrons

«M~k,v! � 1 �
~v� in!@«~k,v� in!� 1#

v� in@«~k,v� in!� 1#0@«~k,0!� 1#
, ~4!

where n represents the electron collision frequency. In gen-
eral, it is contributed from electron–electron and electron–
ion collisions. In this paper, we take into account only the
electron–electron collisions, in order to avoid considering a
dependence of the stopping with the charge and mass of the
target ions. It is easy to see that when n r 0, the Mermin
function reproduces the RPA one. Now it is necessary to
calculate the value of this frequency.

The effective collision frequency n of non-relativistic
electrons ~x ,, 1! was analyzed by Lampe ~1968a, 1968b!,
using the formalism of the dynamic screening of the electron–
electron interaction. x � vF0c is the relativistic parameter
of degenerate electrons and TF is the Fermi temperature.
The expression of n for the relativistic degenerate elec-
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trons at T �� Tp was obtained by Flowers and Itoh ~1976!.
Here, Tp is the electron plasma temperature determined
by the electron plasma frequency vp, Tp � \vp0kB; vp �

M4pe2ne 0~me~1 � x 2 !102 !. Urpin and Yakovlev ~1980! ex-
tended the results of Flowers and Itoh ~1976! to higher
temperatures, T � TF. In the approximation of static elec-
tron screening of the Coulomb interaction, Urpin and
Yakovlev ~1980! obtained

n �
3~kBT !2

2\me c2 � ax 3

p3~1 � x 2 !502
J ~ y!, ~5!

where y � M3Tp 0T, and a is the fine-structure constant.
Now it is sufficient to calculate the function J ~ y!, pre-

sented by Urpin and Yakovlev ~1980! as a two-dimensional
~2D! integral which depends parametrically on the relativ-
istic parameter x. Lampe ~1968a, 1968b! analyzed this
function in the static screening approximation at x ,, 1. The
asymptotes of J were obtained by Lampe ~1968a, 1968b!
for x,, 1 at y,, 1 and y.. 1, by Flowers and Itoh ~1976! for
y .. 1 at any x, and by Urpin and Yakovlev ~1980! for
y �� 1 and x .. 1. Timmes ~1992! performed calculations
and presented a fitting formula for J ~ y!, but it was valid
only at x.. 1 and y, 103. The unified expression of J ~ y! at
T � TF is valid equally for relativistic and non-relativistic
electrons as given by Potekhin et al. ~1997!. They calculated

J numerically for a dense grid of x and y in the intervals
0.01 � x � 100 and 0.1 � y � 100. The results are fitted by
the expression ~Potekhin et al., 1999!

J ~ y! � �1 �
6

5x 2
�

2

5x 4�� y 3

3~1 � 0.07414y!3

� ln�2.810

y
�

0.810x 2

y~1 � x 2 !
� 1�

�
p5

6

y 4

6~13.91 � y!4
� , ~6!

which reproduces also all the asymptotic limits mentioned
above. The mean error of the fits is 3.7%, and the maximum
error of 11% takes place at x � 1 and y � 0.1.

Eq. ~5! and Eq. ~6! are derived for degenerate electrons
~T � TF!. In the nondegenerate limit, the effective electron–
electron collision frequency ~the inverse relaxation time!,
according to the theory of Spitzer–Braginskii ~Braginskii,
1957; Spitzer, 1961! and, equals

n~T �� TF ! �
8Mpe4neL

3Mme~kBT !302
, ~7!

where L a ln~T0TF! is the Coulomb logarithm. On the other
hand, the collision frequency given by Eq. ~5! and Eq. ~6!,

Fig. 1. RPA proton electronic stopping as a function of its velocity in plasmas of different degeneracy. ~a! Te � 100 eV and ne �
1023 cm�3 ~D � 0.079!, ~b! Te � 1 eV and ne � 1023 cm�3 ~D � 7.854!, ~c! Te � 10 eV and ne � 1022 cm�3 ~D � 0.169!, and ~d! Te �
10 eV and ne �1024 cm�3 ~D � 3.645!. It is compared to degenerate and classical limits. Stopping forces are normalized to SQ� ~ZkF!

2.
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decreases as T �1ln T instead of the required T �302ln T at
T �� TF.

It turns out, however, that Eqs. ~5! and ~6! allow a simple
generalization for the case of arbitrary degeneracy

nT �
n

M1 � 0.2T0TF

, ~8!

where n is the collision frequency of degenerate electrons
given by Eqs. ~5! and ~6!. The coefficient 0.2 in this formula
ensures a good agreement with the numerical calculations
by Hubbard and Lampe ~1969!, at T �� TF ~note that the
latter calculations are less reliable at T � TF, which shows a
comparison with the results of Potekhin et al., 1999!.

Figure 2a represents the collision frequency for a nonde-
generate gas, nT , as a function of the electron density of the
gas with a temperature of Te �10 eV. Figure 2b represents nT

as a function of the temperature of the gas with an electron
density of ne � 1023 cm�3. The effective energy-averaged
collision frequency nT decreases with T. In fact, it is propor-
tional to ln~T !0T 302 in the high-T limit, just as in the
Spitzer–Braginskii theory.

Now we are going to study the error due to including or
not including target e–e� collisions in the electronic stop-
ping calculation. We introduce the collision frequency nT as
calculated in Eq. ~6! through Mermin dielectric function,
Eq. ~4!. Figure 3 shows proton stopping as a function of its
velocity in the same plasma targets as in Figure 1, each one

Fig. 2. Collision frequency for a nondegenerate gas, nT , as a function of:
~a! the electron density of the gas with Te � 10 eV and ~b! the temperature
of the gas with ne � 1023 cm�3.

Fig. 3. Proton electronic stopping as a function of its velocity in different plasma targets considering and not considering e�-e�

collisions. ~a! Te �100 eV and ne �1023 cm�3, ~b! Te �1 eV and ne �1023 cm�3, ~c! Te �10 eV and ne �1022 cm�3, and ~d! T �10 eV
and ne � 1024 cm�3.
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with different nT values. These graphs are obtained by using
the quantum mechanical dielectric function with the exact
degeneracy. Solid lines correspond to the frequency value
nT � 0, that is to say, not considering collisions. Dashed
lines are the result when we include the collision frequency
obtained from Eq. ~6! in Eq. ~3!.

It seems that the first effect of including collisions is
increasing the stopping maximum and narrowing the graph
at the same time. Also we see that this maximum occurs at
smaller or similar velocities than for the calculations with-
out damping. For velocities greater than the velocity at the
maximum, the stopping diminishes quite a lot. These facts
are more remarkable as the target plasma is more degenerate
and coupled ~a , c , d , b!. Moreover, comparing Fig-
ures 3a and 3b, it is seen that the degeneracy or the coupling
of the plasma are even more important than the value of the
damping frequency. For the most degenerate and coupled
plasma, Figure 3b, differences between taking account and
not taking account of collisions are around 50%.

4. CONCLUSIONS

The main conclusion of this work is that proton electronic
stopping in plasmas in the limit of weakly coupled ~Te �
1–100 eV and ne � 1022–1024 cm�3! can not be calculated
realistically without using the exact quantum mechanical
analysis, which considers the degeneracy of the plasma, and
without contemplating electron-electron collisions.
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