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Abstract—The influence of an axisymmetric magnetic field on the intensity, spectrum, and shape of a pulse
of gamma-ray curvature radiation from the polar regions of a radio pulsar is investigated. The pulsar is
considered in a Goldreich–Julian model with a free-electron emission from the neutron-star surface. The
influence on the curvature radiation of variations of both the curvature of the magnetic field lines and the
electric field due to the nondipolarity of the magnetic field are investigated. The presence of even modest
nondipolarity (less than 10%) can lead to a sharp drop in the intensity of the gamma-ray curvature radiation,
while the intensity of the X-ray curvature radiation (photon energies <100 keV) is affected only weakly.
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1. INTRODUCTION

The influence of nondipolarity of the magnetic field
of a radio pulsar on the pulsar’s X-ray and gamma-
ray radiation is currently being actively studied. In-
terest in this question was called forth especially by
the discovery in 1999 of a long-period radio pulsar [1].
The presence of a strong nondipolar component of
the magnetic field at the surface of the neutron star
was proposed in [2, 3] to explain the existence of this
pulsar.

The X-ray and gamma-ray emission of radio pul-
sars with dipolar magnetic fields has been studied in
detail in a number of works, such as [4, 5] (“polar cap”
model), [6, 7] (“outer gap” model), and [8] (“slot gap”
model).

The first analysis taking into account nondipolar-
ity of the magnetic field appeared in [9]. The effect
of axially symmetric nondipolarity of the field on the
electrodynamics of a pulsar operating in a regime with
a free outflow of electrons from the surface of the
neutron star was examined in [10]. In 1996, Pal’shin
and Tsygan [11] considered the influence of nondipo-
larity of the magnetic field on the generation of elec-
tron–positron pairs and thermal X-ray radiation in
the polar regions, taking into account the general
relativistic effect of frame dragging. An expression
for the electrostatic potential in a rotating reference
frame for the case of an axially symmetric nondipolar
magnetic field including general relativistic effects
was obtained in 2000 [12]. In 2003, Kantor and Tsy-
gan [13] obtained an expression for the electrostatic

potential for an asymmetric magnetic field. The influ-
ence of nondipolarity of the magnetic field on the op-
eration of a radio pulsar is studied in detail in [14, 15].

The current paper is a direct continuation of [11,
13, 16]. We consider here the effect on the character-
istics of the gamma-ray curvature radiation of radio
pulsars due to effects associated with curvature of the
field lines, as well as the influence of nondipolarity of
the magnetic field on the electrostatic potential.

We analyze a radio pulsar in a Goldreich–Julian
model with a free-electron emission from the
neutron-star surface. The pulsar diode is located at
the surface of the neutron star (i.e., we consider a
polar-cap model).

When calculating the nonthermal X-ray and
gamma-ray radiation of the radio pulsar, we included
only the curvature radiation of the ultrarelativistic
primary electrons, and neglected radiation associated
with inverse-Compton scattering of thermal pho-
tons from the neutron-star surface on the primary
electrons and the radiation emitted by secondary
electrons and positrons.

This approximation is quite justified if the surface
of the neutron star is sufficiently cool. In the future,
we plan to include the influence of inverse-Compton
scattering on the gamma-ray radiation of the polar
regions of a radio pulsar with a nondipolar magnetic
field.

Here, we include only the absorption of photons
in the magnetic field, associated with the creation
of electron–positron pairs in an unbound state. We
neglect all general-relativistic effects except frame
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dragging, which makes a significant contribution in
the calculations of the electric field.

2. THE NONDIPOLAR MAGNETIC FIELD

We will describe the nondipolarity of the magnetic
field using the model of [11] (see also [13]). Let the
neutron star have a radius a and a dipolar magnetic
moment −→m (so that the field at its magnetic pole is
B0 = 2m/a3), with an additional dipole with mag-
netic moment m1 being located in the polar region
of the neutron star at a depth of a∆ (∆ < 1) below
the surface. The vector m1 is perpendicular to m,
lies in the (Ω, m) plane, and is directed toward the
rotational axis of the pulsar. The parameter ∆ is taken
to be 0.1, which corresponds to the thickness of the
neutron-star crust and does not lead to rapid decay of
the additional dipole m1. We introduce the spherical
coordinate system (η = r/a, θ, φ) with z||m.

Then, disregarding for simplicity the curvature of
space near the neutron star, we obtain in the small-
angle approximation θ � 1 the following expression
for the total magnetic field B = B0 + B1:

Bη =
B0

η3
, Bθ =

B0

η3

(
θ

2
+ µ cos φ

)
, (1)

Bφ = −B0

η3
µ sin φ,

where µ = ν

(
∆η

η − 1 + ∆

)3

and ν = B1/B0 is the

ratio of the magnetic-field strengths B1 and B0 at the
pole of the neutron star (η = 1, θ = 0).

Let us consider the field lines in the plane of the
vectors m1, m. Their radius of curvature ρc is well de-
scribed (when ν ≤ 0.5, ∆ ≈ 0.1) by the approximate
formula

ρc = 2ηa

{
3
2
θ + µ

[(
3(1 − ∆)
η − 1 + ∆

)
− 1

2

]}−1

. (2)

3. THE ELECTRIC FIELD

We will use the results of Kantor and Tsygan [13],
who constructed an electrodynamical model for a ra-
dio pulsar with a nondipolar magnetic field, taking
into account general-relativistic frame dragging. The
electrostatic potential Φ in the rotating coordinate
system satisfies the Poisson equation [17, 18]:

div
(

1
α
∇Φ

)
= −4π(ρ + ρeff), (3)

where ρeff =
1

4πc
div

{
1
α

(
1 − k

η3

)
[[Ω × r] × B]

}

is the Goldreich–Julian density, ρ is the electrical

charge density associated with the particles flowing
from the surface of the neutron star, α =

√
1 − ε/η,

ε = rg/a, rg = 2GM/c2 is the gravitational radius
of the neutron star, r is the radial coordinate in the
Schwarzschild metric, η = r/a, k = εβ, β = I/I0 is
the moment of inertia of the neutron star in units of
I0 = Ma2, and Ω is the angular-velocity vector for
the neutron star’s rotation.

Here and below, we will neglect for simplicity ef-
fects associated with the curvature of space near
the neutron star, and assume that everywhere α ≡ 1
(terms containing k will be included). In particular,
this means that we disregard the gravitational redshift
of the photons.

Using (1) to find the magnetic field in the small-
angle approximation θ � 1, the expression for ρeff
takes the form [13]

ρeff =
ΩB0

2πc

1
η3

[ (
1 − k

η3

)
cos χ (4)

− µ

(
1 +

1
2

k

η3

)
sin χ

]
,

where χ is the angle between Ω and m.

It is assumed that E|||η=1 = 0 at the surface of
the neutron star (where E|| = (EB)/B is the com-
ponent of the electric field along B), and that Φ = 0
at the walls of the pulsar tube. The presence of the
upper diode plate (anode) at a height zc ≡ ηc − 1 is
assumed; i.e., E|||η=ηc = 0.

The potential that is obtained under these con-
ditions can be found in [13]. For a thin tube with a
large height for the upper diode plate zc � θs (where
θs is the transverse width of the tube in stellar radii),
it takes the form

Φ =
ΩF

2πc
(1 − ξ2)

[(
1 − k

η3

)
f(η) − (1 − k)f(1)

]
,

(5)

where F = π(θsa)2B is the magnetic flux in the tube,

f(η) ≡
{

cos χ

− µ

[(
1 +

1
2

k

η3

)/(
1 − k

η3

)]
sin χ

}/√
1 + µ2

(when k = 0, this quantity coincides with the cosine
of the angle between Ω and the value of the vector B
on the tube axis).

For the case zc � θs, zc � ∆, θs � ∆ and with
the angle between the magnetic field lines and the
neutron-star surface much less than the maximum of
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the two quantities θs/zc and zc/θs, our solution to (3)
takes the form

Φ = 2Φ0K1

∞∑
i=0

1
γ2

i

(
z+

F (z, γi)
γi

)
2

kiJ1(ki)
J0(kiξ),

(6)

ρ =
ΩB

2πc
A(ξ), (7)

where ξ retains the meaning of the coordinate perpen-
dicular to the tube axis (ξ = 0 corresponds to the tube
axis and ξ = 1 to the tube walls),

F (z, γ) = −
(1 − e−γz)

(
1 + e−γ(zc−z)

)
1 + e−γzc

, (8)

A(ξ) = −K0 − K1

∞∑
i=0

1
γi

(1 − e−γizc)
(1 + e−γizc)

(9)

× 2
kiJ1(ki)

J0(kiξ),

Φ0 =
Ωa

c
Bsa, Bs is the magnetic field at the neutron-

star surface at the center of the tube, γi = ki/θs, ki is
the root of the equation J0(k) = 0, and the expres-
sions for the coefficients K0 and K1 have the form

K0 = (1 − k)
1√

1 + ν2
cos χ (10)

−
(

1 +
1
2
k

)
ν√

1 + ν2
sin χ,

K1 =
3ν

(1 + ν2)3/2

1 − ∆
∆

(11)

×
(

(1 − k)ν cos χ +
(

1 +
1
2
k

)
sin χ

)

+
3k√

1 + ν2

(
cos χ +

1
2
ν sin χ

)
.

Expression (6) becomes equal to the potential ob-
tained in [19] as zc → 0 (which is also applicable when
θs ≈ ∆),

Φ = Φ0K1

(
zcz

2

2
− z3

3

)
, (12)

but in contrast to the form for a dipolar field [18],
the factor K1 ∼ 2−3 is present in place of the fac-
tor 3k ∼ 0.5 (when ∆ ∼ 0.1). This shows that, when
zc � θs, in the case of the “favorable” magnetic-field
configuration we have chosen (other conditions being
equal) [13], the potential due to the nondipolarity of
the magnetic field can appreciably exceed the poten-
tial associated with frame dragging.

4. GENERATION
OF GAMMA-RAY EMISSION

Everywhere in this section, we will use the follow-
ing coordinate system. We consider a point x0 on the
central field line of the pulsar tube, and introduce the
unit vector eB tangent to this field line at the point x0.
We also introduce the vectors e1 and e2, such that the
set (eB , e1, e2) forms an orthonormal basis and e1 lies
in the plane of the vectors m and Ω and is directed
toward the rotational axis of the pulsar.

The cross section of the pulsar tube made by
the (e1, e2) plane will be taken to be a circle with
radius aθs(x0) with its center at the point x0, where
a2θ2

s (x0)B(x0) = a2θ2
0B0 (from the condition of flux

conservation for the thin tube); B(x0) is the
magnetic-field strength at the point x0. We introduce
the coordinates ξ and φ for any point x lying in the
(e1, e2) plane as follows:

x = x0 + aθs(x0) (ξ cos φe1 + ξ sinφe2) .

Thus, points with ξ ≤ 1 lie inside the pulsar tube,
while those with ξ > 1 lie outside. The meaning of the
coordinate η = r/a remains the same.

Further, the coordinates (η, ξ, φ) introduced in this
way will be used as the coordinates (η, ξ, φ) from
Section 3, and the line ξ = const, φ = const will be
taken to represent field lines of the magnetic field. We
believe that this approximation is fully applicable in
the case of thin tubes and θ � 1; i.e., in the small-
angle approximation.

The primary electrons flowing from the neutron-
star surface are accelerated along magnetic field lines
by the electric field (6).

We will disregard the drift across the magnetic field
and transitions of electrons to upper Landau levels.
The energy of the electrons at the point x = (η, ξ, φ)
will be taken to be ε ≡ mc2Γ = eΦ + mc2, where
Φ = Φ(η, ξ, φ) is the value of the potential (6) at the
point x, m is the mass of the electron, c is the speed of
light, and e is the magnitude of the electron charge.

As they move along the curved magnetic field
lines, the electrons emit gamma-ray curvature radi-
ation with a power spectrum (in terms of numbers of
particles) [20]

dN(x, γ)
dtdγ

=
√

3
2π

αF

(
c

ρc

)
βΓF

(
γ

γc

)
1
γc

, (13)

F (ξ) =

+∞∫
ξ

K5/3(s)ds,

where
dN

dtdγ
dγ is the number of photons with energy γ

in the interval dγ emitted by an electron at the point x
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Fig. 1. Time-averaged spectrum of the curvature radi-
ation of the pulsar tube for B = 0.05 Bcr, P = 0.2 s,
χ = 10◦, k = 0.15, and ∆ = 0.1; the angle between
the line of sight and the rotational axis of the pulsar
is 10◦. The solid curve corresponds to a dipolar field
(ν = 0), and the dotted, long-dashed, short-dashed, and
dash-dotted curves to nondipolar fields with ν = 0.1,
ν = 0.2, ν = 0.3, and ν = 0.5, respectively. The intensity
of the curvature radiation dN/dt is measured in units
of the flux received from a source located at a distance
of 1 kpc: photons/cm2s keV. The photon energy γ is
measured in units of mc2.

per second, γ =
�ω

mc2
is the photon energy in units

of mc2, ω is the photon’s frequency, γc =
3
2

λc

ρc
βΓ3,

Γ is the Lorentz factor of an electron at the point x,

β =
√

Γ2 − 1
Γ

, λc =
�

mc
is the Compton wavelength

of the electron, αF is the fine-structure constant, and
ρc is the radius of curvature of the magnetic field lines
at the point x [calculated using (2)].

Since Γ � 1 in the region of interest to us, we
will assume in our subsequent calculations that all
photons emitted at the point x have momenta directed
along the magnetic-field vector B(x).

When calculating the intensity of the nonthermal
X-ray and gamma-ray emission of the pulsar tube, we
will include only curvature radiation by the primary
electrons inside the tube.

As the gamma-rays propagate, the angle Ψ be-
tween the momentum of the gamma-rays and the
magnetic-field vector B grows due to the curvature
of the force lines. When γ sinΨ > 2, it becomes
possible for a gamma-ray to be absorbed in the
magnetic field, accompanied by the creation of an
electron–positron pair.
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Fig. 2. Same as Fig. 1 for B = 0.05 Bcr, P = 0.1 s.

We used the following approximate expression for
the coefficient for the absorption of a photon ac-
companied by the creation of an electron–positron
pair when the photon has traveled through a path of
1 cm [21]:

k(x, γ,Ψ) =
3
16

√
3
2
αF

1
λc

(14)

× B

Bcr
sinΨ exp

(
−8

3
Bcr

Bγ sin Ψ

)
,

where Bcr = m2c3/e� = 4.41 × 1013 G, and
B = B(x) is the magnetic-field strength at the
point x. Beginning from some height ηc, the
electron–positron plasma created by the absorption
of the gamma-rays screens the parallel electric field
and creates the upper diode plate (anode); i.e., when
η ≥ ηc, the potential can be considered to be constant
along the field lines: Φ(η, ξ, φ) = Φ(ηc, ξ, φ).

As ηc, we take the height η at which the growth
coefficient Q is equal to 0.1 on the field line (ξ = 0.5,
φ = 0). Similar values for Q(ηc) were adopted
in [4, 11]. Note that a very different choice of Q (for ex-
ample, Q ≈ 0.01) leaves ηc virtually unchanged (for ξ
not very close to 0 and 1). This is associated with the
rapid growth in Q near ηc during the generation of
electron–positron pairs by the curvature radiation.

The optical depth τ associated with the absorption
of photons in the magnetic field (with the creation of
electron–positron pairs) is taken to be

τ(γ, y, x) =

λx∫
λy

k (z(λ), γ,Ψ (y, z(λ))) dlz, (15)
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Fig. 3. Same as Fig. 1 for B = 0.02 Bcr, P = 0.1 s.

where the integration is carried out over the photon
path z(λ) (taken to be a straight line) from the point y
to the point x (z(λy) = y, z(λx) = x), Ψ(y, z) is the
angle between the momentum of a photon emit-
ted at the point y and B(z) at the point (y, z),

dlz =
∣∣∣∣dzdλ

∣∣∣∣ dλ, and λ is a parameter measuring dis-

tance along the curve. For photons with γ ≤ 2, we
assume τ ≡ 0.

The intensity of the generation of electron–
positron pairs is calculated as follows. We first con-
struct the curve y(λ), such that photons emitted from
points y(λ) pass through the point x, then calculate
the integral

q+(x) =
∫

dly

+∞∫
2

dγK (x, y(λ)) ne (y(λ)) (16)

× k (x, γ,Ψ (y(λ), x))
dN

dt
(y(λ), γ)

× exp (−τ (γ, y(λ), x)) ,

where q+ is the number of positrons created at x
per unit volume per second, the integral

∫
dly is

taken along the entire curve y(λ), dly =
∣∣∣∣dydλ

∣∣∣∣ dλ,

ne(y) = |ρ(y)/e| is the number density of primary
electrons at y [calculated using (7)], and K(x, y) ≈
η2

x/η2
y is a coefficient describing the decrease in the

number density of photons as they propagate from
the point where they were emitted.

We find the multiplication factor Q at x =
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Fig. 4. Same as Fig. 1 for B = 0.05 Bcr, P = 0.2 s, and
an angle between the line of sight and the rotational axis
of the pulsar equal to 7◦.

(ηx, ξ, φ) using the expression

Q(x) =
1

ne(x)c

ηx∫
1

B(x)
B(y)

q+(y)
∣∣∣∣ dy
dηy

∣∣∣∣ dηy, (17)

where y = (ηy, ξ, φ) and the integration is carried out
along a magnetic field line.

The intensity of the radiation in the n direction is
calculated as follows:

dF

dΩdγ
=

∫
dlyK (y(λ))

dN

dtdγ
(y(λ), γ) (18)

× ne (y(λ)) exp (−τ (γ, y(λ), x(y(λ)))) ,

where
dF

dΩdγ
dγ is the number of photons with en-

ergy γ in the interval dγ emitted by the pulsar tube
in the direction n into a solid angle dΩ per second,
the integral

∫
dly is taken along the entire curve y(λ),

such that photons emitted from points y(λ) have mo-
menta that are parallel to n, the integration is stopped
when the curve y(λ) intersects the sphere S with
radius aηs (and with its center at the point η = 0),
and x(y) is the point at which the photons emitted
at y intersect the sphere S. In the cases consid-
ered below, we use the value ηs = 20. The coefficient

K(y) ≈ 4
9
a2η2

y describes the decrease in the number

density of photons as they propagate from the star.

5. RESULTS

Figure 1 shows time-averaged spectra of the
curvature radiation of the pulsar tube (for a radio
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Height of upper diode plates zc and the potential Φ at

(η = ηc, ξ = 0) in units of Γ =
eΦ
mc2

ν zc/10−2 Γ/106

B = 0.05 Bcr, P = 0.2 s

0 11.8 28.6

0.1 2.0 2.0

0.2 1.34 1.35

0.3 1.09 1.2

0.5 0.93 1.55

B = 0.05 Bcr, P = 0.1 s

0 5.6 25.6

0.1 1.56 2.0

0.2 1.11 1.5

0.3 0.92 1.45

B = 0.02 Bcr, P = 0.1 s

0 10.0 30.6

0.1 2.34 2.75

0.2 1.62 1.9

0.3 1.32 1.75

pulsar) for the case when B = 0.05Bcr, P = 0.2 s,
χ = 10◦, k = 0.15, ∆ = 0.1, and the angle between
the line of sight and the rotational axis of the pulsar
is 10◦ (i.e., at some time, the line of sight will be
directed parallel to the axis of the main dipole m).
The curves correspond to various values of ν: ν = 0
(dipolar field case) (solid), ν = 0.1 (dotted), ν = 0.2
(long-dashed), ν = 0.3 (short-dashed), and ν = 0.5
(dash-dotted).

Figure 2 shows analogous spectra for the case
B = 0.05Bcr, P = 0.1 s, and Fig. 3 the same for the
case B = 0.02Bcr, P = 0.1 s. In both cases, the angle
between the line of sight and the rotational axis of the
pulsar is 10◦.

The table presents the values of zc and the poten-
tial Φ at the point (η = ηc, ξ = 0) (in units of eΦ/mc2)
used to derive these spectra.

Figure 4 shows curvature-radiation spectra for
the same parameters (a radio pulsar) as in Fig. 1
(B = 0.05Bcr, P = 0.2 s, χ = 10◦, k = 0.15,
∆ = 0.1), but with the angle between the line of
sight and the rotational axis of the pulsar taken to
be 7◦ (this makes it possible to observe the curvature
radiation nearly from the “bottom” of the pulsar tube
when ν = 0.3).

Figures 5–7 present the dependence of the inten-
sity of the curvature radiation on the pulsar phase
for this same case (B = 0.05Bcr, P = 0.2 s, χ = 10◦,
k = 0.15, ∆ = 0.1) and for various values of ν: a dipo-
lar field, ν = 0 (solid), ν = 0.1 (dotted), and ν = 0.3
(dashed). The left-hand and right-hand plots corre-
spond to angles between the line of sight and the ro-
tational axis of the pulsar of 10◦ (the phase-averaged
spectrum shown in Fig. 1) and 7◦ (the phase-
averaged spectrum shown in Fig. 4), respectively.

Figure 8 shows the dependence of the growth co-
efficient Q on height z along a line of force (ξ = 0.5,
φ = 0) for the same case (B = 0.05Bcr, P = 0.2 s,
χ = 10◦, k = 0.15, ∆ = 0.1).

We can see from Figs. 1–3 that, in the cases
considered, there is a sharp drop in the intensity of
the curvature radiation at energies γ > 1, even in the
presence of only weak nondipolarity of the magnetic
field.

The main contribution to this effect is made by
the sharp decrease in the height of the upper diode
plate zc and the associated drop in the electrostatic
potential Φ. At energies γ > 2, a significant, though
not as great, contribution is made by the increase in
the optical depth τ for photons emitted near the sur-
face of the star (z ≤ ∆). The fact that the region with
large force-line curvatures is relatively small (z ≤ ∆)
also plays a role.

It turns out that the intensity of the curvature
radiation at energies γ < 0.1 depends only weakly on
the nondipolarity of the magnetic field, ν. This is due
to the fact that, when γ � γc, the intensity of the
curvature radiation (13) is virtually independent of the
energy of the primary electrons Γ and depends only
weakly on the field-line curvature ρc.

We have used the potential (6) in all our calcu-
lations, as is fully justified in the cases listed above.
In the case of a dipolar field, this potential coincides
with the potential of [18] when zc � 1, which makes
it possible to use it when zc ∼ ∆, θs ∼ ∆ as well.
In the cases considered, in the presence of strong
nondipolarity of the field, the condition zc � θs will
be satisfied so that the potential (6) is close to the
potential (12) nearly along the entire tube, enabling
us to use this potential when θs ∼ ∆ as well.

With regard to the assumptions we have made
about the form of the absorption coefficient, we note
that, for the selected parameters (B < 0.1 Bcr and so
forth) and in intervals where the photons are near
the absorption threshold, γ sin Ψ = 2, the absorp-
tion coefficient k is small, and these intervals make
only a modest contribution to the optical depth τ
(if, of course, the optical depth itself is not negligibly
small). In addition, the use of more precise formulas
for the absorption coefficient (see, for example, [22])
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Fig. 5. Shape of the pulse of curvature radiation over half
the pulsar period (the second half is symmetrical about
the zero phase) for B = 0.05 Bcr, P = 0.2 s, χ = 10◦,
k = 0.15, ∆ = 0.1, and a photon energy of 100 keV.
The angle between the line of sight and the rotational
axis of the pulsar is 10◦ in the left-hand plot and 7◦ in
the right-hand plot. The solid curve corresponds to a
dipolar field (ν = 0), and the dotted and dashed curves to
nondipolar fields with ν = 0.1 and ν = 0.3, respectively.
The intensity of the curvature radiation, dN/dt, is mea-
sured in units of the received flux from a source located at
a distance of one parsec: photons/cm2 s keV.

will likely lead to a decrease in its already small con-
tribution to the optical depth in these intervals. Note
as well that, with the selected parameters, the main
contribution to the intensity of electron–positron pair
creation q+ is made by photons located far from the
threshold γ sin Ψ = 2 (apart from cases when q+ is
very small and does not make a significant contribu-
tion to the growth coefficient Q).

Since we consider here radio pulsars without very
strong magnetic fields (B < 0.1Bcr), we expect that
the contributions of other processes (splitting of pho-
tons, absorption of photons with the formation of
bound electron–positron pairs, and so forth) to the
optical depth τ will be small (see, for example, [23]).

With regard to our disregard of general-relativistic
effects, we acknowledge that, generally speaking, in-
cluding these effects should change somewhat our fi-
nal results. However, the main influence on the inten-
sity and spectrum of the curvature radiation is exerted
by the increase in the curvature of the magnetic field
lines due to the curvature of space (i.e., compared to
their value in a flat space; see, for example, [24]) and
the curvature of the photon trajectories. Due to this
latter effect, the photons will more rapidly achieve the
angle Ψ between their momentum and the magnetic
field, which will lead to a growth in the optical depth τ .

This means that we can formally consider the
spectra presented above to be close to those that will
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be obtained taking into account general-relativistic
effects, but for weaker nondipolarity (possibly some-
what different from that considered by us here).

In connection with this, we expect that taking into
account general-relativistic effects will only lead to a
sharper drop in the intensity of the gamma-ray curva-
ture radiation in the presence of small nondipolarity of
the magnetic field, with the curvature X-ray radiation
being only weakly dependent on the nondipolarity of
the magnetic field, as in the approximation we have
considered here.

6. CONCLUSIONS

We have considered here the influence of asymme-
try of the magnetic field on the X-ray and gamma-
ray curvature radiation of radio pulsars, taking into
account both the decrease in the radius of curvature of
the magnetic field lines ρc and changes in the electric
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Fig. 8. Dependence of the multiplication factor for
electron–positron pairs Q on z for B = 0.05 Bcr,
P = 0.2 s, χ = 10◦, k = 0.15, ∆ = 0.1 on the field line
(ξ = 0.5, φ = 0). The solid curve corresponds to a dipolar
field (ν = 0), and the dotted, long-dashed, and short-
dashed curves to nondipolar fields with ν = 0.1, ν = 0.2,
and ν = 0.3, respectively.

field. As was shown in [13], the presence of a nondipo-
lar component of the magnetic field can (in the case of
a “favorable” configuration according to the criteria
of Arons), other conditions being equal, appreciably
increase the potential difference of the pulsar diode
compared to its dipolar value; in particular, the po-
tential (6) with ν = 0.2−0.4 can be a factor of two to
three higher than its value for ν = 0.

In this “favorable” case, in the presence of not very
strong nondipolarity of the magnetic field (beginning
with ν = 0.05−0.1 and up to ν = 0.5), we observe a
sharp decrease in the height of the upper diode plate zc
compared to its value for a dipolar field.

As a result, a sharp drop in the intensity of
gamma-ray curvature radiation compared to the
case of a purely dipolar magnetic field is observed,
even in the presence of only weak nondipolarity
(ν = 0.05−0.1). At the same time, the intensity of the
X-ray curvature radiation (γ < 0.1) is affected only
slightly.

In spite of the fact that we have investigated only
one (rather approximate) model for including the
effect of nondipolarity of the field on the intensity
of the nonthermal X-ray and gamma-ray radiation
of radio pulsars, our results again demonstrate the
need to take into account even weak (less than 10%)
nondipolarity of the magnetic field in calculations of
the gamma-ray emission of the polar regions of radio
pulsars.
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