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ABSTRACT
We consider the pulsar long-term rotation dynamics taking into account the non-rigidity of
neutron star rotation. We restrict our attention to the models with two essential assumptions:
(1) crust–core interaction occurs via the viscosity (magnetic coupling is not important); (2)
neutron star shape is symmetrical over the magnetic axis. The neutron star core is described by
linearized quasi-stationary Newtonian hydrodynamical equations in one-fluid and two-fluid
(neutron superfluidity) approximations. It is shown that in this case the pulsar inclination angle
evolves to 0◦ or 90◦ very quickly. Since such fast evolution seems to contradict the observation
data, either neutron stars are triaxial or the magnetic field plays the leading role in crust–core
coupling.
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1 IN T RO D U C T I O N

A rotating magnetized neutron star, if it has perfectly spherical
shape, can be characterized by two vectors: angular velocity vector
� and magnetic moment vector m. During the neutron star life
the magnitudes of these vectors as well as the inclination angle χ

between them evolve. The long-term rotation dynamics significantly
depends on the model of the neutron star magnetosphere. According
to the simplest vacuum model the angular momentum of neutron
star is carried away only by magnetic dipole radiation. In this case,
equation � cos χ = const should be satisfied. It makes all pulsars
evolve to the co-axial state χ = 0 (Beskin 2009).

The presence of plasma surrounding the neutron star affects the
angular momentum loses in two ways. On the one hand, the plasma
can effectively screen magnetic dipole radiation so that it can even
absent at all (Beskin, Istomin & Philippov 2013). On the other hand,
the longitudinal magnetospheric currents give rise to an additional
angular momentum loses mechanism (Jones 1976; Beskin 2009).
This current loses mechanism requires the satisfaction of equation
� sin χ = const. Thus, the inclination angle evolves with the same
rate as in the case of vacuum model but in the opposite direction.
The final state of all pulsars is the orthogonal rotation (χ = 90◦).

If two these mechanisms operate simultaneously, the inclina-
tion angle evolves much more slowly (Barsukov, Goglichidze &
Tsygan 2013a). Moreover, the presence of small-scale magnetic
field at the surface of the neutron star can lead to the appear-
ance of a stable equilibrium inclination angle between 0◦ and 90◦

(see Barsukov, Polyakova & Tsygan 2009 for the detail). The
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magnetohydrodynamic (MHD) simulations of pulsar magneto-
sphere also give the torque causing the quite slow angle evolution
(Philippov, Tchekhovskoy & Li 2014).

The problem becomes even more complicated if one wants to
take into account the internal structure of neutron star. Neutron star
is not perfectly rigid. It contains a liquid core. The non-rigidity of
star rotation results in that the anomalous electromagnetic torque
directed perpendicular to the plane containing � and m starts to
affect the inclination angle evolution (Casini & Montemayor 1998;
Barsukov et al. 2013a). The size of the effect is determined by par-
ticular crust–core interaction mechanism. Thus, long-term rotation
dynamics becomes to be sensitive to the choice of the theory of
neutron star interior as well as the magnetosphere theory.

There are two main mechanisms of crust–core interaction: mag-
netic coupling and viscosity (Easson 1979). The first mechanism
is much more effective and if it takes place, protons, electrons and
normal neutrons of neutron star core can be considered rigidly ro-
tating with the crust. In contrast, the superfluid neutrons which are
believed to be present in neutron star core (Yakovlev, Levenfish &
Shibanov 1999) are decoupled from the rest of the matter and in-
teract with it only by weak mutual friction force (vortex-mediated
interaction) (Hall & Vinen 1956). It this case, the rate of the inclina-
tion angle evolution depends almost on the amount of the superfluid
neutrons (Barsukov et al. 2013a; Barsukov, Goglichidze & Tsygan
2013b).

The configurations with magnetic field confined in neutron star
crust are discussed in the literature too (Pons, Miralles & Gep-
pert 2009; Gourgouliatos et al. 2013). The expulsion of magnetic
field can be caused, for example, by first type superconductivity of
core protons. Despite the fact that the second type proton super-
conductivity is more likely from the point of view of microscopic
calculations (see, however Buckley, Metlitski & Zhitnitsky 2004),
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the situation in the neutron star rotation dynamics is not so clear.
The coexistence of proton magnetic fluxoids with neutron super-
fluidity are inconsistent with observed long periods of neutron star
precession (Link 2006).

In this paper, we investigate the long-term rotation dynamics of
neutron star whose magnetic field does not penetrate the core. This
research can be interesting by itself as a test for such magnetic field
configurations. However, it also can be considered as a step to the
more general model including core magnetic field.

The paper is organized as follows. In Section 2, we formulate
the model and discuss the assumptions we make. Sections 3 and
4 are devoted to the effects of composition gradient and neutron
superfluidity on the neutron star rotational dynamics respectively.
In Section 5, we discuss the electromagnetic torque acting on the
isolated neutron star. In Section 6, we present the pulsar inclination
angle trajectories calculated for different neutron star parameters.
Section 7 is devoted to discussion of the results.

2 MO D EL

2.1 Basic assumptions

We will treat a neutron star as a spherical rigid shell containing a
liquid core in a spherical cavity. The inner radius of the crust we
will denote by rc, the outer by rns. The crust rotates with angular
velocity �. It feels the action of an external (electromagnetic) torque
K which is supposed to be slowly varying in the reference frame
corotating with the crust. The core acts on the crust with torque N .
Thus, the motion of the crust can be described by equation

Icrust�̇ = K + N, (1)

where Icrust is the crust moment of inertia and here and after we will
use the notation �̇ = dt�.

The neutron star core is described by system of hydrodynamical
equations

∂tv + (v · ∇)v + ∇P/ρ + ∇� = f v, (2)

∂tρ + div(ρv) = 0, (3)

�(r) = −G

∫
ρ(r ′)

|r − r ′| d3r ′, (4)

where by the f v we have denoted the viscous force acting on the
unit mass if the liquid.

Through the paper, we will suppose for simplicity that the
core liquid consists only of neutrons, protons and electrons (npe-
matter). The neutron star core is isothermal with very good accuracy
(Gnedin, Yakovlev & Potekhin 2001). Moreover, the matter consti-
tuting the core is strong degenerate. These facts allow us to represent
the pressure gradient as

∇P = ρn∇μn + ρp∇μp + ρe∇μe, (5)

where μn, μp and μe are the neutron, proton and electron chemical
potentials per unit mass, respectively, ρ = ρn + ρp + ρe.

Using the quasi-neutrality condition ρp = (mp/me)ρe, one can
rewrite equation (5) in the following form

∇P = ρ∇μn + yρ∇(μc − μn), (6)

where we have formally introduced the effective chemical potential
of the charged component of core matter

μc = mpμp + meμe

mp + me
. (7)

Also we have denoted by y the relation ρc/ρ where ρc = ρp + ρe

is the charged component mass density.
Let us first consider the simplest case of constant y. The most

convenient frame of reference for the analysis is the one corotating
with the crust. In this frame equations (2) and (3) take the form

∂∗
t u + 2[� × u] + (u · ∇)u + ∇κ = −[�̇ × r] + f v, (8)

∂∗
t ρ + div(ρu) = 0, (9)

where we have introduced vector u = v − [� × r] and function
κ = μn + y(μc − μn) + � − 1

2 [� × r]2. Symbol ∂∗
t denotes the

time derivative in the corotating frame of reference. Note that
d∗

t � = dt� = �̇. From the point of view of an observer in the
corotating frame, the non-uniformity of star rotation looks like the
force spinning up the flow ([�̇ × r] term in the right-hand side of
equation 8).

Let us suppose that u is produced only by �̇. If �̇ = 0, equation
(8) reduces just to hydrostatical equilibrium equation

∇
(

μ(0)
n + y

(
μ(0)

c − μ(0)
n

) + �(0) − 1

2
[� × r]2

)
= 0. (10)

Here and after, index ‘(0)’ denotes the hydrostatical values of vari-
ables. Through the paper, we will suppose that all hydrostatical
variables are the functions only of the distance r from the star cen-
tre. Strictly speaking, it is not a self-consistent assumption because
the centrifugal force (the last term in equation 10) breaks the spher-
ical symmetry. However, it seems to be not very plausible that the
inclusion of the centrifugal force can qualitatively change the re-
sults, at least for the slowly rotating neutron stars for which (as it
will be seen below) the effects of non-rigidity of the core are most
significant.

It will be useful to turn for a while to the dimensionless quan-
tities: r = rcx, ∇ = r−1

c ∇̃, t = τ/�, � = �ez, �̇ = �̇e�̇, u =
(�̇/�)rcq, κ = �2r2

c κ̃, ρ = ρ(b)ρ̃, f v = �̇rc f̃ v. Here, ρ(b) is the
hydrostatical value of the mass density of core liquid at the crust–
core interface. The equations take the form:

∂∗
τ q + 2[ez × q] + ε(q · ∇̃)q + 1

ε
∇̃κ̃ = −[e�̇ × r] + f̃ v, (11)

∂∗
τ ρ̃ + ∇̃ · (ρ̃q) = 0, (12)

where we have introduced a parameter ε = �̇/�2. Note that here
we have ignored the small dependence of � and �̇ on time. The
validity of this assumption will be argued below.

Parameter ε is very small for neutron stars. It means that u is the
small perturbation to the rigid rotation [� × r]. All variables can
be expanded in powers of ε:

ρ̃ = ρ̃(0) + ερ̃(1) + O(ε2), (13)

�̃ = �̃(0) + ε�̃(1) + O(ε2), (14)

μ̃α = μ̃(0)
α + εμ̃(1)

α + O(ε2). (15)

Substituting these expansions into equations (11) and (12), using
equation (10) and neglecting the terms containing ε, one can obtain

∂∗
τ q + 2ez × q + ∇̃κ̃

(1) = −[e�̇ × x] + f̃
(1)
v , (16)
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∂∗
τ ρ̃

(1) + ∇̃ · (ρ̃(0)q
) = 0. (17)

Since we are interested in the velocities much smaller than the speed
of sound the time-derivative term in equation (17) can be neglected:

∇̃ · (ρ̃(0)q
) = 0. (18)

It is important to note that the smallness of temperature term in
equation (5) allows us to exclude from the consideration the equa-
tion (4) relating ρ(1) with �(1) (if one does not want to calculate
ρ(1), μ(1) or �(1)). As a result, velocity perturbation equation (16)
formally coincides with corresponding equation for incompressible
fluid without gravitational force acting on it. However, the com-
pressibility modifies the continuity equation.

After returning to dimensional variables, equations take the form

∂∗
t u + 2� × u + ∇κ

(1) = −[�̇ × r] + f (1)
v , (19)

div
(
ρ(0)u

) = 0. (20)

These equations together with equation (1) and boundary condition

ur=rc = 0 (21)

describe star rotational dynamics. In the absence of magnetic field,
only viscosity can transfer angular momentum from the core into
the crust. The time-scale tv of this transferring is much less than the
typical time interval tx during which the vectors � and �̇ change
significantly. As long as t � tx, these vectors can be considered
constant. On the other hand, after t � tv the solution of equations
(19) and (20) with constant � and �̇ relaxes to stationary flow and
time derivative term ∂∗

t u in equation (19) becomes negligibly small.
Since tx � tv, despite the slow changing of vectors � and �̇, the
flow remains quasi-stationary. Thus, equation (19) can be replaced
by the stationary equation

2� × u + ∇κ
(1) = −[�̇ × r] + f (1)

v . (22)

After t � tv, the flow ‘forgets’ the initial condition and at each time
point it is determined only by instant values of � and �̇ depending
on time only through these two vectors.

The viscosity force can be represented in the form (Landau et al.
1959)

f i
v = 1

ρ

∂

∂rk
πik, (23)

where

πik = η

(
∂vi

∂rk
+ ∂vk

∂ri
− 2

3
δikdivv

)
+ ζ δikdivv (24)

is the viscous stress tensor, η and ζ are the coefficients of shear
and bulk viscosities, respectively. Upper Latin indices denote the
vector component in some arbitrary Cartesian basis, summation
over repeated indices is implied.

Turning to the dimensionless variables and neglecting terms ∼ε,
one obtains

πij (1) ≈ Eη̃(0)

(
∂qi

∂xk
+ ∂qk

∂xi
− 2

3
δik∇̃ · q

)
+ E′ζ̃ (0)δik∇̃ · q,

(25)

f̃ i(1)
v = 1

ρ̃(0)

⎧⎨
⎩E

∂

∂xk

[
η̃(0)

(
∂qi

∂xk
+ ∂qk

∂xi

)]

− ∂

∂xi

[(
2E

3
η̃(0) − E′ζ̃ (0)

)
∇̃ · q

]⎫⎬
⎭ (26)

= 1

ρ̃(0)

⎧⎨
⎩E

[
η̃(0)∇̃2qi

]+ E

(
∂qi

∂xk
+ ∂qk

∂xi

)
∂η̃(0)

∂xk

+
(

2E

3

∂η̃(0)

∂xi
− E′ ∂ζ̃ (0)

∂xi

)
(q · ∇̃) ln ρ̃(0)

−
(

E

3
η̃(0) + E′ζ̃ (0)

)
∂

∂xi

[
(q · ∇̃) ln ρ̃(0)

]
⎫⎬
⎭, (27)

where η = η(b)η̃, ζ = ζ (b)ζ̃ , ν(b) and ζ (b) are the values of viscosity
coefficients at the crust–core interface. We also have introduced two
Ekman numbers

E = η(b)

ρ(b)�r2
c

, E′ = ζ (b)

ρ(b)�r2
c

. (28)

The last term in viscous force expression (27) was obtained with
using equation (18). Two things should be pointed here. First, the
Ekman numbers for the neutron star cores are very small (the nu-
merical values will be discussed in Section 6). Secondly, the second
derivatives of q are contained only in the first term of expression
(27).

Angular momentum can diffuse from the centre of the core into
the crust by the viscous tensions as soon as the differential rotation
develops. The diffusion occurs on a characteristic time-scale of the
order of tv ∼ (E�)−1. However, in the case of small Ekman numbers,
the more effective angular momentum transferring mechanism may
take place, the so-called Ekman pumping. Let us now consider the
ideas underlying the Ekman pumping in the framework of the simple
case of y = const. The possibilities of this mechanism in more
realistic models and its contribution to the neutron star rotational
dynamics will be discussed below.

2.2 Ekman pumping

Since E and E′ � 1, it is reasonable to assume that f (1)
v much less

than the other terms in equation (22). It plays the significant role only
in the thin boundary layer where the flow should adjust to the viscous
boundary condition (21) and spatial derivatives become large. The
common approach to this problem is the following (Greenspan,
1990). Near the boundary, the velocity field q and function κ are
split in two parts:

q = q(in) + q(l), κ
(1) = κ(in) + κ(l), (29)

where (q(in), κ(in)) is the solution of the ideal hydrodynamics equa-
tions and (q(l), κ(l)) is the correction to the (q(in), κ(in)) due to
viscosity. This correction should rapidly disappear depthward the
core.

For q(in), we have

2[ez × q(in)] + ∇̃κ̃(in) = −[e�̇ × x], (30)

∇̃ · (ρ̃(0)q(in)

) = 0, (31)

(
q(in) · er

)
r=rc

= 0, (32)

where er = r/r is the unit normal vector to the internal crust surface.
Here, we are compelled to replace boundary condition (21) by the
impermeability condition restricting only the normal component
of q.

The basic assumption about (l)-functions is that instead of
the usual radial coordinate x they depend on the stretched one
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The rotation dynamics of neutron stars 1321

ξ = E−1/2(1 − x), so,

(er · ∇̃)
(
q(l), κ̃(l)

) = −E−1/2∂ξ

(
q(l), κ̃(l)

)
∼ O(E−1/2). (33)

Note, however, that the tangent derivative of any function is still

∇̃⊥
(
q(l), κ̃(l)

) ∼ O(1). (34)

Substituting equations (30) and (27) into (22), using (34), (33) and
(29) and neglecting all terms containing positive powers of E and
E′, one can obtain

2[ez × q(l)] − erE
−1/2∂ξ κ̃(l) = ∂2

ξ q(l). (35)

The right-hand side of the equation arises from the first term from
viscous force expression (27) (the only term containing second
derivative with respect to ξ ).

Continuity equation can be expressed as

ρ̃(0)(er · ∇̃)(er · q(l)) + (er · q(l))∇̃ · (ρ̃(0)er

)
+ ρ̃(0)er · ∇̃ × [er × q(l)] = 0. (36)

The first term here larger than the second by the factor E−1/2 (see
equality 33) and, thus, the second term can be neglected. It gives the
simple equation relating normal qr(l) and tangent q tg(l) components
of q(l):

E−1/2∂ξ qr(l) = er · ∇̃ × [er × q tg(l)]. (37)

The full velocity field should be equal to zero at the crust–core
interface:(
q(in) + q(l)

)
r=rc

= 0. (38)

According to boundary conditions (32) and (38) qr(l) = 0 at the
crust–core interface. Hence, using equation (37) one can estimate
qr(l) ∼ E1/2qtg(l). The boundary layer correction is almost tangent,
thus, instead of equation (35) one can consider equation

2[ez × q tg(l)] − erE
−1/2∂ξ h(l) = ∂2

ξ q tg(l). (39)

Integration of this equation with boundary condition (38) gives

(iq tg(l) + er × q tg(l))

= −(iq tg(in) + er × q tg(in))r=rc exp
[−(1 ± i)|er · ez|1/2ξ

]
. (40)

Here, symbol ‘±’ denotes the sign of scalar product (er · ez). Sub-
stituting expression (40) into equation (37), integrating over ξ from
0 to ∞ and taking into account boundary condition (38), one can
obtain

qr(in)|r=rc = −qr(l)|r=rc

= −1

2
E1/2er · ∇̃ ×

[
er × q tr(in) ± q tr(in)

|er · ez|1/2

]
r=rc

. (41)

As a result, the presence of the Ekman layer reduces just to the
specific boundary condition (41). Turning back to dimensional vari-
ables, we have

2[� × u] + ∇κ
(1) = −[�̇ × r], (42)

div
(
ρ(0)u

) = 0, (43)

(er · u)r=rc = −1

2
rcE

1/2er · curl

[
er × u ± u
|er · ez|1/2

]
r=rc

. (44)

Note that now we have denoted by u and h(1) the bulk values of
these quantities.

Figure 1. Vectors and coordinates used in Section 2.2.

Let us for clarity consider the axisymmetric star braking. From
the physical point of view, the situation is the following. The crust
is braked by external torque and, thus, it rotates slower than the
core. Directly by the viscous force the crust can retard the rotation
of the fluid only in the thin boundary layer. However, it leads to
decreasing of the Coriolis force in that region and, thus, produces
the flow towards the rotational axes along the boundary layer. To
compensate for the layer mass current, small (∼E1/2) secondary
flow in the bulk of the core should take place. The non-axisymmetric
external torque produces the more complicated flow structure but
qualitatively the physical processes are the same.

Equations (42)–(44) allow us to express u and κ as functions of
� and �̇. In order to do this, it is useful to represent �̇ as a sum
of two vectors �̇|| and �̇⊥, where �̇|| = �(� · �̇)/�2 and �̇⊥ =
�̇ − �̇||. This expansion allows us to introduce the system of three
orthonormal vectors (ex, ey, ez), where ez = �/�, ex = �̇⊥/�̇⊥,
ey = [ez × ex].

Furthermore, we will use the cylindrical (� , φ, z) and spherical
(r, θ , φ) coordinates defined as it is shown in Fig. 1.

The velocity field and potential κ
(1) as functions of � and �̇ have

the following form:

u = [w × r] − �̇||
2�

⎡
⎣e� � + ez

1

ρ(0)

∫ z

0

1

�

∂

∂�

(
� 2ρ(0)

)
dz′

⎤
⎦

− ezE
1/2 �̇⊥

4�

ρ(b)

ρ(0)

(
rc

zb

)3/2 (
3� sin φ + rc

zb

� cos φ

)⎤⎦,

(45)

κ
(1) = −�̇⊥z� sin φ − �̇||

∫ �

0
ψ(� )�d�, (46)

where

w = − �̇||
2�

ψ(� )ez + ez × �̇⊥
�

, (47)

ψ(� ) =
( |er · ez|

E

)1/2 2Jρ

ρ(b)rc
(48)

− 1

ρ(b)rc

1

�

d

d�

(
� 2Jρ − r2

c ρ(b)zb

)

≈
( |er · ez|

E

)1/2 2Jρ

ρ(b)rc
, (49)

Jρ =
∫ zb

0
ρ(0) dz, zb =

√
r2

c − � 2. (50)

These expressions are given up to the terms ∼E1/2.
The velocity field consists of two parts proportional to �̇|| and

�̇⊥. The first is the core response to the star braking, the second
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is caused by the moving of the rotational axis over the star. We
will call for short these parts ‘parallel’ and ‘perpendicular’ flows,
respectively. Each of these flows consists of a small additional to �

fluid rotation and the secondary flow due to Ekman pumping.
The ‘parallel’ flow is axisymmetric. The angular momentum is

carried into the crust by the secondary poloidal flow. The existence
of such a flow requires much larger (∼E−1/2) toroidal current for
the boundary condition (44) to be satisfied. The core rotates differ-
entially with angular velocity(

� − �̇||
�

ψ(� )

)
ez, (51)

but everywhere faster (�̇|| < 0) than the crust. The smaller the
Ekman number E, the weaker the interaction and the greater the lag
between crust and core rotations.

If the external torque is not axisymmetric, the orientation of
angular velocity of the core should slightly depart from ez. It is
described by the ‘perpendicular’ flow. In the quasi-stationary state
the core rotates rigidly with angular velocity

� + ez × �̇⊥
�

. (52)

It is important to note that in contrast to ‘parallel’ flow, here the lag
between crust and core rotation does not depend on E. It is easy to
verify that

u =
[

ez × �̇⊥
�

]
× r, (53)

κ
(1) = −�̇⊥z� sin φ (54)

formally is the exact solution of equations (42) and (43) with
�̇ = �̇⊥. However, it does not satisfy boundary condition (44).
This solution does not have physical meaning because there is no
relaxation mechanism supporting quasi-stationarity. The relaxation
is provided by viscosity whose effect is reduced to the boundary
condition (44) when E � 1. The Ekman layer produces the sec-
ondary flow ∼E1/2 along ez which does not change the core angular
velocity value but forces its direction to follow the moving of �.

Let us point the difference between ‘parallel’ and ‘perpendicular’
flows. In the first case, the angular momentum flux caused by ‘force’
[�̇|| × r], whereas in the second case, it is produced by the boundary
condition. This is why ‘parallel’ flow larger by the factor E−1/2.

The obtained expressions are appropriate in almost the whole
core except the small region near the equator (� → rc) where the
secondary ‘perpendicular’ flow formally diverges. In that region
the Ekman layer approximation is not applicable. As it can be
seen from expression (40), the thickness of the Ekman layer is
of the order of rc(E/|ez · er |)1/2. It becomes to be not thin there.
The boundary becomes almost vertical and more self-consistent
consideration requires the effects of vertical boundary layers to be
taken into account (Greenspan 1990). However, we will not use
the expressions for the secondary flows calculating the angular
momentum transfer into the crust, therefore this divergence does
not affect the result.

2.3 Angular momentum transfer

According to the model the system of equations (1), (19), (20), (21)
allows us to investigate the time evolution of � under the action of
external torque K . In order to close this system of equations one
needs to calculate the interaction torque N . In the quasi-stationary

regime this torque is determined by instant values of � and �̇.
Since we have supposed that there is no sources of u except �̇, the
interaction torque can be represented in the following form:

N = −S1Icoreez(ez · �̇) − S2Icoreez × [ez × �̇]

+ S3Icore[ez × �̇], (55)

where Icore is the core moment of inertia and S1, S2, S3 are some
dimensionless coefficients.

Coefficient S1 can be easily obtained from the angular momentum
conservation law. For the core angular momentum Mcore, it has the
form

dt Mcore = −N. (56)

As well as the local quantities, angular momentum Mcore can be ex-
panded in the powers of ε: Mcore = Icore� + M (1)

core + O(ε2). Taking
the time derivative and changing to the corotating frame of refer-
ence, one can obtain

dt Mcore ≈ Icore�̇ + dt M (1)
core

= Icore�̇ + d∗
t M (1)

core + � × M (1)
core

≈ Icore�̇ + � × M (1)
core. (57)

Here, term d∗
t M (1)

core was neglected according to the quasi-
stationarity approximation. Substituting equations (56) and (57)
into equation (1) and multiplying the result by ez one can obtain

(Icrust + Icore)
(
ez · �̇

) = ez · K . (58)

Substituting interaction torque expression (55) into equation (1)
and again multiplying the result by ez, after comparing the obtained
expression with equation (58) one can see that S1 = 1. It is important
to note that this result is not a feature of Ekman mechanism. It is a
general property of the quasi-stationary flows.

Strong coupling regime corresponds to S2 → −1 and S3 → 0. It is
easy to see that, in this case, equation (1) reduces to the rigid body
rotation equation. The opposite limiting case of weak interaction
takes place when S2 � 1 and S3 � 1. However, it is important to
keep in mind that the quasi-stationary formalism is applicable to the
systems whose age exceeds the crust–core interaction characteristic
time-scale tv which is greater, the weaker is the interaction.

In order to calculate S2 and S3 for the particular case one should
start from local form of conservation laws. Equations (2) and (3) can
be combined in the equation for the momentum density J = ρv:

∂t J + ei∇j�
ij = −ρ∇�, (59)

where �ij = ρvivj + Pδij − π ij. Multiplying equation (59) by
r× and integrating the result over the spherical cavity, one obtains
equation (56) in which

Mcore =
∫

[r × J]dV (60)

and

N = −
∮

r=rc

[r × J](v · dS) +
∮

r=rc

πij [r × ei](ej · dS)

=
∮

r=rc

πij [r × ei](ej · er )dS. (61)

The first integral in expression (61) equals to zero because vr = 0
at the surface.

The main contribution in interaction torque (61) comes from the
derivatives of q(l) with respect to ξ . Other terms are less by the
factor E1/2 and they can be neglected. Taking this into account and
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The rotation dynamics of neutron stars 1323

using expression for viscous tensions tensor (25), one can rewrite
expression (61) in the following form:

N ≈ −E1/2�̇ρ(b)r5
c

∫
4π

∂ξ [er × q(l)] d� (62)

= −E1/2�̇ρ(b)r5
c

∫
4π

([er × q(in)] ∓ q(in))|er · ez|1/2 d�. (63)

where d� is the element of solid angle. The last expression is
obtained with using expression (40). It is obvious that the axisym-
metric ‘parallel’ flow does not contribute in S2 and S3. As for the
‘perpendicular’ current, the secondary flow gives an additional fac-
tor E1/2. Thus, it is enough to substitute only solid rotation velocity
field (53) into interaction torque expression (63). Integration gives

S2 = −8π

5

ρ(b)r5
c

Icore
E1/2, S3 = 40π

21

ρ(b)r5
c

Icore
E1/2. (64)

Coefficients S2 and S3 are of the order of E1/2.

2.4 Equations of motion

Let us introduce a new orthonormal basis (εx, εy, εm) which is fixed
in the crust such that εm is directed along the star magnetic moment
m. The position of angular velocity vector can be described by two
angles: inclination angle χ and ‘azimuthal’ angle ϕ� (see Fig. 2).

The external torque can be represented in the following form:

K = K0

(
k̃�ez + k̃mεm + k̃⊥[ez × εm]

)
, (65)

where k̃�, k̃m, k̃⊥ are some dimensionless functions of χ , ϕ�

(and other possible variables specific for particular magnetosphere
model), K0 is the value of the torque acting on an aligned (χ = 0)
pulsar.

Substituting torque expressions (65) and (55) into equation (1)
and solving it for �̇, one can represent the result as three scalar
equations describing pulsar braking, inclination angle evolution and
torque-driven precession:

�̇ = K0

Itot

(
k̃� + k̃m cos χ

)
(66)

χ̇ = −K0

�

(Icrust − S2Icore)k̃m − S3Icorek̃⊥
(Icrust − S2Icore)2 + S2

3I
2
core

sin χ, (67)

ϕ̇� = −K0

�

(Icrust − S2Icore)k̃⊥ + S3Icorek̃m

(Icrust − S2Icore)2 + S2
3I

2
core

, (68)

where Itot = Icrust + Icore.
The rigid-star approximation corresponds to limiting case Icore

→ 0 of equations (67) and (68):

χ̇ = − K0

Itot�
k̃m sin χ, (69)

Figure 2. Vectors and coordinates used in Section 2.4.

ϕ̇� = − K0

Itot�
k̃⊥. (70)

Equation (66) does not change the form as it was argued in previous
section. Note, however, that it does not mean that the braking should
occur with the same rate. The right-hand side of equation (66)
depends on χ and ϕ� whose evolution is sensitive to the internal
flows.

The presence of liquid core modifies the equations in two ways.
First, the full moment of inertia Itot in the denominator is replaced by
the combinations of (Icrust − S2Icore) and S3Icore which are much less
than Itot. If |S2|, S3 � Icrust/Icore, Itot is replaced just by Icrust. It leads
to acceleration of angles evolution. Second, equation (67) contains
k̃⊥ (multiplied by S3) which does not influence the inclination angle
evolution in the case of rigid star (cf. Casini & Montemayor 1998).
This effect becomes important when

S3k̃⊥ �
(

Icrust

Icore
− S2

)
k̃m. (71)

The precession formally is affected by k̃m through S3 as well. How-
ever, this effect becomes comparable with k̃⊥ if

S3k̃m �
(

Icrust

Icore
− S2

)
k̃⊥. (72)

But since k̃⊥ ∼ 103k̃m, Icrust/Icore � 1 and |S2| ∼ S3 � 1, this con-
dition hardly can be satisfied. The torque-driven precession period
is equal to

Tp ≈ �Icrust

2πK0k̃⊥
. (73)

It is much less than the inclination angle evolution time-scale.

3 T H E E F F E C T S O F C O M P O S I T I O N
G R A D I E N T

In real neutron star the composition of the matter changes with
depth. Therefore, the more realistic model should include equation

2[� × u] + ∇κ
(1) + y(0)∇(μ(1)

c − μ(1)
n ) = −[�̇ × r], (74)

instead equation (42), where function κ is redefined as κ = μn +
� − 1

2 [� × r]2. Here, we also suppose the chemical equilibrium
for unperturbed star (mnμ

(0)
n = mpμ

(0)
p + meμ

(0)
e ) and here and after

we assume that mn = mp + me. If one does not make the last
assumption, an additional force proportional to mn − mp − me

arises in equation (74). However, this force is the consequence
of inconsistence of Newtonian hydrodynamics with reactions with
non-conserved mass. It can be shown that in relativistic equation
such force does not appear.

Now, in addition to κ
(1), there is another unknown function μ(1)

c −
μ(1)

n . Hence, an additional equation is needed to the system to be
closed. Continuity equation (43) can be split into two equations

div
(
ρ(0)

n u
) = �(1)

n , (75)

div
(
ρ(0)

c u
) = −�(1)

n , (76)

where the neutron creation rate �n is proportional to the chemical
potential difference (Haensel, Levenfish & Yakovlev 2000):

�(1)
n = λ(0)

n (μ(1)
c − μ(1)

n ). (77)
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1324 D. P. Barsukov, O. A. Goglichidze and A. I. Tsygan

Combining equations (43) and (76), one can express this difference
as a function of ur:

(μ(1)
c − μ(1)

n ) = −ρ(0)

λ
(0)
n

dy(0)

dr
ur , (78)

and equation (74) takes the form

2[� × u] − y(0)∇
(

ρ(0)

λ
(0)
n

dy(0)

dr
ur

)
+ ∇κ

(1) = −[�̇ × r]. (79)

It is more convenient to introduce a new variable H instead h(1) in
the following way:

H = κ
(1) − y(0) ρ

(0)

λ
(0)
n

dy(0)

dr
ur . (80)

It allows us to rewrite equation (79) in algebraic with respect to u
form:

2[� × u] + g(r)ur er + ∇H = −[�̇ × r], (81)

where we have introduced function

g(r) = ρ(0)

λ
(0)
n

(
dy(0)

dr

)2

. (82)

The neutron component turns to the charged and vice versa
through the direct and modified Urca reactions. For neutron branch
of modified Urca reaction n + n → n + p + e− + ν̄e (Haensel,
Levenfish & Yakovlev 2001)

λn = 1.1 × 10−14Rf

m∗
p

mp

(
m∗

n

mn

)3 (
ne

n0

)1/3

×
(

T

109 K

)6

g2 sm−3 s−1 erg−1. (83)

For proton branch n + p → p + p + e− + ν̄e, λn is of the same
order of magnitude. For direct Urca reaction n → p + e− + ν̄e

(Haensel et al. 2000)

λn = 5.6 × 10−8Rf

m∗
p

mp

m∗
n

mn

(
ne

n0

)1/3

×
(

T

109 K

)4

g2 sm−3 s−1 erg−1 (84)

Here, m∗
n and m∗

p are the effective masses of neutrons and protons,
Rf is the factor describing the reduction of the reactions by proton
superconductivity and neutron superfluidity. Note that our defini-
tion of λn differs from the one given by Haensel et al. by factor
m2

n. It is easy to verify that g(r)/� is very large in all possible
cases. So, as it follows from equation (81), any radial flow should
be strongly damped by chemical composition gradient. It means
that the angular momentum cannot be transferred into the crust by
Ekman mechanism (cf. Abney & Epstein 1996) but only by viscous
tensions. In this case, the boundary layer formalism developed in
Section 2.2 is not applicable and, hence, we should return viscous
force f (1)

v into the equations.
Since ur � uθ , uφ , continuity equation (43) can be replaced by

divu = 0. (85)

Substituting equation (85) into viscous tensions tensor expression
(24), one can exclude the bulk viscosity from the consideration. Let
us also assume that

η = const, ρ = const. (86)

It is, of course, not quite realistic. However, as it will be seen, the
result practically does not change if one relax this assumption.

So, now the rotating neutron star described by ‘Navier–Stokes’
equation

− ν(0)∇2u + 2[� × u] + g(r)ur er + ∇H = −[�̇ × r], (87)

continuity equation (85), equation (1), and boundary condition

ur=rc = 0. (88)

Interaction torque N is calculated with the formula (61).
As before linear approximation allows us to consider the flows

proportional to �̇|| and �̇⊥ separately. The ‘parallel’ flow velocity
field has the form

u|| ≈ −eφ

1

10

�̇||
�

E−1

(
1 − r2

r2
c

)
r sin θ. (89)

This flow is almost azimuthal (poloidal flow is of the order of �/g(r)
and it obviously can be neglected). In contrast to the case of Ekman
pumping, where the azimuthal component of u is proportional to
E−1/2, here it is much larger and has the order of magnitude ∼E−1.

Substitution of expression (89) into (61) gives

N = −ez�̇||ρ(b) 8π

15
r5

c = −ezIcore�̇||. (90)

Here, calculating the moment of inertia, we have used the formula
for the spherical body of constant density

Icore = 8π

15
r5

c ρ(b). (91)

It is consistent with assumption (86). It is exactly what we should
obtain according to the arguments from Section 2.3. These argu-
ments ensure that despite the fact that the relaxation of the constant
viscosity assumption leads to more complicated expression for u,
the torque (90) remains the same.

The velocity field of ‘perpendicular’ flow can be represented in
the following form:

u⊥ ≈ �̇⊥
�

Re
{
U (r)(eφ cos θ − ieθ )eiφ

}
, (92)

U (r) = irc

(
r

rc
− j1(kr)

j1(krc)

)
, (93)

k = 1 + i√
2

E−1/2

rc
, (94)

where

j1(x) = 1

x

(
sin(x)

x
− cos(x)

)
(95)

is a spherical Bessel function.
In almost the entire volume of star core the flow has the form of

a rigid rotation coinciding with (53). Only in a thin layer ∼E1/2rc

adjustment to the crust velocity occurs. Note that whereas the brak-
ing of the star causes the flow which velocity profile is the smooth
function of r, here the boundary layer takes place. The thickness of
this layer is comparable in scale with the Ekman layer.

The origin of this difference was already discussed in Section 2.2.
In the case of ‘parallel’ flow, the ‘force’ [�̇|| × r] causes the an-
gular momentum flux directed away from the rotational axis in the
whole bulk of the core. Since radial flows are damped, the angu-
lar momentum can only diffuse by viscous tensions. This requires
the differential rotation of the core. In the case of ‘perpendicular’
flow, the ‘external force’ [�̇⊥ × r] is balanced by Coriolis force
and the angular momentum flux does not appear in the bulk of the
core. Therefore, in the quasi-stationary regime the rotation is rigid.
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The rotation dynamics of neutron stars 1325

Only near the crust–core interface, where the flow should adjust to
the boundary condition, the differential rotation (and the angular
momentum flux) takes place.

Since the ‘perpendicular’ flow depends on η only in this layer, in
fact, assumption (86) should be satisfied only in this layer (but not
in the whole core) for the solution to be appropriate.

Substituting expression (92) into (61), one can obtain

S2 = − 8πρ(b)r5
c

3
√

2Icore

E1/2, S3 = 8πρ(b)r5
c

3
√

2Icore

E1/2. (96)

Here, we have kept only the terms containing the lowest power of
E. This power equals to 1/2. Despite the fact that for the time-
dependent problem the relaxation through the viscous tensions is
much less effective (characteristic time-scale ∼(�E)−1; Greenspan
1990), for the quasi-stationary problem the crust–core interaction
coefficients are of the same order of magnitude as coefficients (64).

One thing should be pointed here. The centrifugal force which
we have neglected makes the equilibrium composition depend
on �. Due to braking and finite reaction rate, strictly speaking,
even in the hydrostatic approximation there is no chemical equi-
librium (Reisenegger 1995). It gives rise to an additional force
y(1)∇(μ(0)

c − μ(0)
n ) acting in the same direction as the flow damped

force. However, this additional term cannot change the situation be-
cause it is quadratically small ∼ �̇2. So, this effect can be ignored
in our problem.

4 T H E E F F E C T S O F N E U T RO N
SUPERFLUIDITY

It is widely believed that the protons in some region of neutron
star core should be in superconductive state as well as the neutrons
should be in superfluid state (Yakovlev et al. 1999). The proton
superconductivity damps nuclear reactions and changes different
kinetic coefficients.

The effects of neutron superfluidity is more complicated. It causes
the appearance of an additional hydrodynamical degree of freedom
vs which is related with the moving of superfluid neutrons. The
system of two-fluid hydrodynamical equations can be formulated
in the following form (Khalatnikov 2000; Mendell 1991)

∂tvs + (vs · ∇)vs + ∇(μn + �) = f int + f vs, (97)

∂t J + ei∇k�
ik = −ρ∇�, (98)

∂tρ + div J = 0, (99)

�(r) = −G

∫
ρ(r ′)

|r − r ′| d3r ′. (100)

Here, J and �ik are the full mass current density and momentum
flux density tensor, f int is the force per unit mass describing the
interaction of superfluid neutrons with the rest matter of neutron
star core, f vs is the superfluid neutron viscosity force.

Strictly speaking, superfluid flows are always potential. There-
fore, in addition to equation (97), velocity field vs should satisfy
equation curl vs = 0. It means, for example, that the rigid rotation
us = � × r cannot take place for superfluids. However, this kind
of liquids can rotate by forming an array of vortices (Tilley & Tilley
1990). If the scales of considered problem are much larger that the
intervortex space, it is convenient to use the smooth-averaged hy-
drodynamics (Khalatnikov 2000; Baym & Chandler 1983; Mendell

1991) The basic idea is that the discrete array of vortices is replaced
by smooth field ωs = ωsev, where

ωs = 2π�

2mn
nv, (101)

ev is the unit vector pointing the vortices orientation and nv is the
number of vortices per unit area. The velocity field vs is introduced
through the equation

ωs = curl vs. (102)

The superfluid neutrons do not interact with the rest matter di-
rectly but do it with mediation of vortices. This kind of interaction
is called the mutual friction and described by force (Hall & Vinen
1956)

f int = β ′ωs × (vs − vc) + βev × [ωs × (vs − vc)] , (103)

where β and β ′ are the coefficients determined by the particular
mutual friction mechanism. Note that the flows components along
the vortices do not participate in mutual friction interaction.

In the framework of two-fluid approximation

J = ρsvs + ρexvc + ρcvc, (104)

�ij = ρsv
i
sv

j
s + ρexv

i
cv

j
c + ρcv

i
cv

j
c + Pδij − πij , (105)

where ρs and ρex are the mass densities of the superfluid neutrons
and neutron thermal excitations, respectively, ρn = ρs + ρex (Kha-
latnikov 2000), vc is the velocity field of the charged component
(neutron excitation are assumed to move together with the charged
component), π ij as before is the dissipative part of �ij.

Multiplying equation (97) by ρs, subtracting the result from equa-
tion (98) and using (99) and (5), one can obtain

∂tvc + (vc · ∇)vc + ∇(μc + �) + y ′∇(μn − μc)

= − ρs

ρc + ρex
f int + f vc + Qs

ρc + ρex
(vc − vs) , (106)

where y′ = ρex/(ρc + ρex),

f vc = ei

1

ρc + ρex

∂

∂rk
πik − ρs

ρc + ρex
f vs. (107)

and

Qs = ∂tρs + div (ρsvs) . (108)

Reproducing all simplifications from Sections 2.1, 2.2 and 3, one
can obtain the following linear quasi-stationary equations:

2[� × us] + ∇κ
(1)
s = −[�̇ × r] + f (1)

int + f (1)
vs , (109)

2[� × uc] + ∇κ
(1)
c + y ′(0)∇(μ(1)

n − μ(1)
c )

= −[�̇ × r] − ρ(0)
c

ρ
(0)
c + ρ

(0)
ex

f (1)
int + f (1)

vc , (110)

where κ
(1)
s = μ(1)

n + �(1) and κ
(1)
c = μ(1)

c + �(1). Two continuity
equations also can be introduced (cf. Section 3):

div(ρ(0)
s us + ρ(0)

ex uc) = λ(0)
n (μ(1)

c − μ(1)
n ), (111)

div(ρ(0)
c uc) = −λ(0)

n (μ(1)
c − μ(1)

n ). (112)

In this paper, we will consider only the strong superfluidity limit,
when the terms containing ρex and λn are negligibly small. In this
case, we have two fluids each of which is characterized by own
mass density, own velocity field and own ‘chemical potential’. The
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1326 D. P. Barsukov, O. A. Goglichidze and A. I. Tsygan

composition gradient does not prevent radial flows and the Ekman
pumping again becomes possible. Thus, for bulk of the core we can
use ‘inviscid’ equations

2[� × us] + ∇κ
(1)
s = −[�̇ × r] + f (1)

int , (113)

2[� × uc] + ∇κ
(1)
c = −[�̇ × r] − ρ(0)

n

ρ
(0)
c

f (1)
int , (114)

div(ρ(0)
c uc) = 0, (115)

div(ρ(0)
s us) = 0. (116)

Let us first consider the situation when the region of neutron su-
perfluidity extends up to the crust. In this case, we should specify the
boundary conditions at the crust–core interface. Here, we consider
only the weak mutual friction (β, β ′ � 1) which is expected for
neutron star matter. It means that the mutual friction force is much
smaller than the viscous force in the boundary layer, namely f̃v ∼ 1
and f̃mf ∼ max(β, β ′) there (van Eysden & Melatos 2013). This
fact allows us to formulate the boundary conditions for uc and us

separately. The charged component velocity field uc should satisfy
the Ekman boundary condition (44). As for the neutrons, the super-
fluids have no shear viscosity (Khalatnikov 2000), thus, superfluid
component should satisfy ordinary no-penetration condition:(
ρ(0)

s (er · us)
)

r=rc
= 0. (117)

After linearization, the mutual friction force takes the form:

f (1)
int = 2�β ′(0)ez × (us − uc)

+ 2�β (0)ez × [ez × (us − uc)] . (118)

Here, we have taken into account that ωs = 2� + curlun and

ev ≈ ez − ez ×
[

ez × curlus

2�

]
. (119)

The substitution of expresion (118) into equations (113) and (114)
gives

2�[ez × us] + 2�β ′(0)[ez × δu]

+2�β (0)ez × [ez × δu] + ∇κs = −[�̇ × r], (120)

2�[ez × uc] − 2�β ′(0) ρ
(0)
s

ρ
(0)
c

[ez × δu]

−2�β (0) ρ
(0)
s

ρ
(0)
c

ez × [ez × δu] + ∇κc = −[�̇ × r], (121)

where δu = uc − us. These equations together with equations (115)
and (116) allow us to express uc and us as functions of �̇.

Let us first discuss the ‘perpendicular’ flow. It can be verified that

uc⊥ =
[

ez × �̇

�

]
× r

−ez

�̇⊥
4�

E1/2 ρ
(0)
cb

ρ
(0)
c

(
rc

zb

)3/2 (
3� sin φ + rc

zb

� cos φ

)
, (122)

us⊥ =
[

ez × �̇

�

]
× r, (123)

κc⊥ = κs⊥ = −�̇⊥z� sin φ, (124)

satisfy all equations and boundary conditions. So, both components
rigidly rotate with the same angular velocity (52). The secondary
flow is generated only in charged component. It has the structure

similar to the case of ordinary fluid discussed in Section 2.2. The
charged component secondary flow does not influence on the super-
fluid component in the linear approximation because it is directed
along the neutron vortices. The same structure of the secondary flow
gives almost the same crust–core interaction coefficients S2 and S3.
One just needs to replace ρ(b) by ρ(b)

c in coefficients (64):

S2 = −8π

5

ρ(b)
c r5

c

Icore
E1/2, S3 = 40π

21

ρ(b)
c r5

c

Icore
E1/2. (125)

The ‘parallel’ flow is more complicated. For the case �̇ = �̇||,
velocity fields have the forms:

us|| = − (ψs + Kδψ)
�̇||
2�

� eφ − (1 + Aδψ)
�̇||
2�

� e�

+ ez

�̇||
2�ρ

(0)
s

∫ z

0

[
1

�

∂

∂�
� 2
(
ρ(0)

n + ρ(0)
s Aδψ

)]
dz′

+ Hs(�,φ)

ρ
(0)
s

ez, (126)

uc|| = −
(

ψc − K
ρ(0)

s

ρ
(0)
c

δψ

)
�̇||
2�

� eφ

−
(

1 − A
ρ(0)

s

ρ
(0)
c

δψ

)
�̇||
2�

� e�

+ ez

�̇||
2�ρ

(0)
c

∫ z

0

[
1

�

∂

∂�
� 2
(
ρ(0)

c − ρ(0)
s Aδψ

)]
dz′

+ Hc(�,φ)

ρ
(0)
c

ez, (127)

where Hs and Hc are the functions of � and φ determined by
the boundary conditions, functions ψα are introduced through the
equation

κα|| = −�̇||

∫ �

0
ψα(� ′)� ′ d� ′, (128)

and we have denoted the difference ψc − ψn by δψ . The notations
A and K are used for the following combinations:

A =
[
ρ(0)

c

]2
β (0)

[
β (0)ρ(0)

]2 +
[
ρ

(0)
c − β ′(0)ρ(0)

]2 , (129)

K = ρ(0)
c

ρ(0)
− ρ(0)

c

ρ(0)

[
ρ(0)

c

]2 − ρ(0)
c ρ(0)β ′(0)

[
β (0)ρ(0)

]2 +
[
ρ

(0)
c − β ′(0)ρ(0)

]2 . (130)

The application of boundary condition (117) to us|| gives

δψ = −
[∫ zb

0
ρ(0)

n dz′
] [∫ zb

0
Aρ(0)

n dz′
]−1

, Hs = 0. (131)

Finally, using boundary condition (44), one can determine ψc:

ψc(� ) =
(

K
ρ(0)

s

ρ
(0)
c

)
r=rc

δψ(� ) (132)

+
( |er · ez|

E

)1/2 2Jρ

ρ
(0)
sb rc

− 1

ρ
(0)
sb rc

1

�

d

d�

(
� 2Jρ

) − rc

zb

≈
(

K
ρ(0)

s

ρ
(0)
c

)
r=rc

δψ(� ) +
( |er · ez|

E

)1/2 2Jρ

ρ
(0)
sb rc

, (133)

and Hc = 0. Here,

Jρ =
∫ zb

0
(ρ(0)

c + ρ(0)
s ) dz′. (134)
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The rotation dynamics of neutron stars 1327

Figure 3. The structure of neutron star interior.

Both fluids rotate differentially. The charged component rotates
with angular velocity

� − �̇||
2�

(
ψc − K

ρ(0)
n

ρ
(0)
c

δψ

)
(135)

which is slightly larger than �. The superfluid component rotates
with angular velocity

� − �̇||
2�

(ψc − δψ + Kδψ) (136)

which is slightly larger than angular velocity of the charged com-
ponent.

The neutron and charged secondary flows are different as well.
However, the full poloidal mass current

ρ(0)
c uc + ρ(0)

s us = ρ(0) �̇||
2�

e� �

+ ez

�̇||
2�

∫ z

0

1

�

∂

∂�

(
� 2ρ(0)

)
dz′ (137)

coincides with the case of ordinary fluid. It is an expected result
because this current should carry the angular momentum such that
the corresponding coefficient S1 will be equal to unity.

In real neutron star, at least if it is not too old, the region of core
neutron superfluidity does not reach its crust. There is the interlayer
of normal neutrons (see Fig. 3). So, the flow appearing as a reaction
on �̇ has a complex structure in the general case. However, the
long-term dynamics of the star rotation can be understood without
knowing of exact form of the flow.

There are two key points. First, as it was argued in Section 2.3, as
long as the flow in the core is quasi-stationary coefficient S1 should
be equal to unity. Thus, there is no need to know the exact structure
of ‘parallel’ flow if one only wants to calculate N . The second point
is that the ‘perpendicular’ flow has the form of rigid rotation with
angular velocity (52) in almost the entire volume of star core. The
flow significantly differs from rigid body rotation only in the thin
layers where the velocity field adjusts to the boundary condition.

Two boundary layers should take place in general case (see.
Fig. 3). The first is located near the crust–core interface. The second
arises in the region where the neutron superfluidity breaks. Although
we do not know the exact structure of the second boundary layer,
we can be sure that its influence decreases towards the crust with
characteristic scale ∼E1/2rc. It means that the crust–core boundary

layer does not feel the presence of superfluid neutrons in the depth
of the core. So, the results of Section 3 remain valid and the core
reaction is described by coefficients (96) until neutron superfluidity
reach the crust. When this happens, the coefficients reduce to values
(125). It should be noted that, calculating coefficients (125), we do
not take into account any possible vortex–crust interaction which,
in principal, can significantly change the result.

5 E X T E R NA L E L E C T RO M AG N E T I C TO R QU E

The simplest magnetosphere model treats a pulsar as a magnetized
sphere rotating in vacuum. In the case of slow rotation (rns�/c � 1),
the torque equals to (Davis & Goldstein 1970; Melatos 2000)

K = 2�2

3c3
m × [m × �] + ζ

rnsc2
(m · �)[� × m], (138)

where m is the neutron star magnetic moment. The two terms in
equation (138) have different physical origin. The first term is the
radiation reaction torque. It equals (with minus) to the angular
momentum carried away by the electromagnetic wave per unit time.
The second term is the so-called anomalous torque. It is caused
by inertia of the near-zone electromagnetic field. Here, ζ is the
constant ∼1 determined by the exact fields configuration. Note that
the anomalous torque larger than the first term in expression (138)
approximately by factor

c

�rns
= 4.7 × 103

(
P

1s

)( rns

10 km

)−1
. (139)

It means that k̃⊥ � k̃�, k̃m.
Real neutron stars do not rotate in vacuum. They are surrounded

by large magnetosphere. Strictly speaking, the torque acting on a
neutron star can be calculated only by using a self-consistent theory
of the magnetosphere which despite the achieved progress is far
from complete at present (Spitkovsky 2008). For example, Beskin,
Gurevich & Istomin (1983) have shown that in some special case
the magneto-dipolar radiation should absent at all. Beskin et al.
(2013) have argued that the magneto-dipolar radiation can absent in
general case. However, in any case, the corrections to the magnetic
field due to the presence of the magnetosphere is small near the star
(where the most of angular momentum is contained) and the electric
field generated by rotation is of the order of �r

c
B (Beskin 2009).

It allows us to suppose that the anomalous torque is comparable
with the one calculated under the vacuum approximation. Particular
fields configuration describes by constant ζ .

In our calculations, we will use two different torques causing
relatively slow inclination angle evolution. The first one is the model
torque proposed by Barsukov et al. (2009)

K BPT = 2

3

m2�3

c3

⎛
⎝εm (1 − α (χ, ϕ�)) cos χ − ez

+ ζ
c

�rns
[ez × εm] cos χ

⎞
⎠. (140)

The authors have argued that the presence of small-scale magnetic
field at the star surface causes the modulation of magnetospheric
currents and, consequently, the modulation of angular momentum
losses during star precision. These processes are described by de-
pending on angles function α (χ, ϕ�) ∼ 1. In order to investigate
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Figure 4. The cos χ − P trajectories for pulsars with initial period
P0 = 10 ms and different non-dipolarity parameters νnd and initial incli-
nation angles evaluating under the action of BPT-torque. Observational data
shown by dots are taken from Rankin (1993).

the secular rotation evolution, it is possible to use equations (67)
and (68) averaged over Tp. One just needs to replace α (χ, ϕ�) by

ᾱ(χ ) = 1

2π

∫ 2π

0
α(χ, ϕ�) dϕ�, (141)

where ᾱ depends on the non-dipolarity parameter νnd = Bsc/Bdp,
Bsc and Bdp are the strengths of the small-scale and dipolar magnetic
fields at the polar caps. Barsukov et al. have argued that the solution
of equation ᾱ(χeq) = 1 can exist and should be a stable equilibrium
inclination angle.

The direction of the evolution and equilibrium inclination angle
depend on νnd. The inclination angle trajectories of rigid neutron
star under the action of torque (140) for different values of νnd

are given in Fig. 4. The pulsars with pure dipole field evolves to
orthogonal state. The pulsars with νnd = 1 aim to become coaxial.
Non-dipolarity parameter νnd = 0.5 corresponds to equilibrium
angle χ eq ≈ 50◦.

We will also use the torque proposed by Philippov et al. (2014):

K PTL = m2�3

c3

⎛
⎝εmk2 cos χ − ez

(
k0 + k1 sin2 χ + k2 cos2 χ

)

+ζ
c

�rns
[ez × εm] cos χ

⎞
⎠, (142)

where the values of the coefficients are obtained by the fitting of
the results of MHD simulations of pulsar magnetosphere: k0 = 1,
k1 = 1.2, k2 = 1, ζ ≈ 0.1 (Philippov et al. 2014; Philippov, pri-
vate communication). This torque makes all pulsars evolve to the
orthogonal state. Corresponding inclination angle trajectories are
given in Fig. 5.

6 IN C L I NAT I O N A N G L E E VO L U T I O N

The presence of liquid core changes the situation dramatically. The
initial flow having relaxed to quasi-stationary state, the long-term
rotation dynamics can be described by equations (66)–(68). We also
have to wait until the magnetic field will be expulsed from the core
to use the coefficients S2 and S3 obtained in this paper.

The viscosity essentially depends on temperature. Therefore, in
order to close the system of equations the star thermal evolution
should be taken into consideration. The latter practically does not

Figure 5. The cos χ − P trajectories for pulsars with different initial periods
and initial inclination angles evaluating under the action of PTL-torque.
Observational data shown by dots are taken from Rankin (1993).

depend on spin evolution. It is determined mostly by star mass. It
means that the viscosity can be considered as a known function of
star age.

Coefficient S3 describing the influence of anomalous torque on
the inclination angle evolution grows with viscosity during the star
cooling. It also depends on star angular velocity which decreases
during the star braking. Moreover,

k̃⊥ = ζ
c

�rns
cos χ (143)

depends on � and grows during star braking as well. Thus, the
influence of anomalous torque on the inclination angle evolution
increases with neutron star age.

In order to incorporate the thermal evolution into the model, we
used the cooling code developed by Gnedin et al. (2001). We took a
light neutron star with mass ≈ 1 M� with APR I equation of state
(Heiselberg & Hjorth-Jensen 1999; Gusakov et al. 2005) and core
neutron and proton superfluidity models given in Fig. 6 (Gusakov
et al. 2005).

Figure 6. Critical temperatures for core protons (p) and neutrons (n) as
functions of density ρ taken from Gusakov et al. (2005).
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The rotation dynamics of neutron stars 1329

The neutron stars with small masses cool down more slowly than
the heavy ones. Thus, a light star provides the lower bound for S2

and S3 at the given star age.
We calculated S2 and S3 using non-superfluid formulas (96) at all

stages of evolution. To estimate the shear viscosity coefficient, we
used formula (Gusakov, Chugunov & Kantor 2013)

η = 6 × 1018

(
ρ

1015 g cm−3

)2 (
T

109 K

)−2 (
Tcp

2 × 109 K

)1/3

× g

cm s
(144)

which is based on the results obtained by Shternin & Yakovlev
(2008). Note that this formula is valid when T < 0.2Tcp. We took
ρ(b) to be equal to 1.5 × 1014g cm−3. The used proton superfluidity
model gives Tcp ≈ 3 × 109 K for this density.

The calculated trajectories for different initial periods and incli-
nation angles for pulsars with different relations Icrust/Icore under the
action of BPT and PTL torques are given in Figs 7–12.

7 D ISCUSSION

One can see that the inclination angle trajectories in Figs 7–12
dramatically differ from rigid-star trajectories given in Figs 4 and
5. The time-scale of inclination angle evolution decreases by factor
∼Icrust/Itot and can be estimated as

τang.ev. ∼ Icrust�

K0
≈ 1.3 × 108

(
P

1 s

)2
Icrust45

B2
012

yr, (145)

while the braking time-scale does not change:

τbraking ∼ Itot�

K0
≈ 1.3 × 108

(
P

1 s

)2
Itot45

B2
012

yr. (146)

Here, Itot45 and Icrust45 are the total and crust moments of inertia in
the unities of 1045gcm2. It results in that the trajectories become
much steeper in the P− cos χ plane.

The pulsars tend to their equilibrium angles (χ eq ≈ 50◦ in Figs 7
and 8, χ eq = 90◦ in Figs 9 and 10, χ eq = 0◦ in Figs 11 and
12). However, anomalous torque forces all pulsars to evolve to the
orthogonal state. The young neutron stars are hot, Ekman number
is very small and anomalous torque practically does not participate
in the inclination angle evolution. When the age of neutron star
reaches few millions years (or even earlier for more heavier stars)
the temperature of the core drops by several orders of magnitude, S3

becomes large enough and, as one can see, all trajectories sharply
turn upwards at these time-scales.

The pulsars which are born fast rotating slow down up to a few
hundreds of milliseconds until they become orthogonal. However,
if a pulsar was born with initial period >100 ms, it becomes or-
thogonal rotating before its period changes significantly. The evo-
lution trajectories of such pulsars look almost like vertical lines in
the P− cos χ plane. It means that the observed period distribution
should almost coincide with initial period distribution in the area of
large periods. However, the initial period distributions constructed
by different independent methods have a maximum ≈ 0.1−0.3 s.
Pulsars practically are not born with periods >1 s (Popov & Turolla
2012; Igoshev & Popov 2013; Noutsos et al. 2013). Moreover, we
should observe a large amount of old pulsars with inclination angles
close to 90◦. The real inclination angle distribution is more dense
in the small angles area. Thus, the obtained trajectories seems to
contradict the observations.

The first and most obvious explanation of this contradiction is
that the basic assumption of this paper is incorrect. Viscosity cannot

be the main crust–core interaction mechanism. An important role
should play the magnetic field penetrating the core. In this case,
charged component is coupled with crust at much shorter time-
scale (Easson 1979) and acceleration effect is proportional rather to
Itot/(Itot − Isf) than Itot/Icrust (Barsukov et al. 2013b), where Isf is the
moment of inertia of superfluid neutrons which can be quite small
for some superfluid models. Coefficients S2 and S3 are determined
by mutual friction.

There are some possibilities to make the model more appropri-
ate. First, some authors have obtained the electromagnetic torques
without anomalous term (Michel 1991; Istomin 2005). In this case,
the inclination angle evolution accelerates by factor Itot/Icrust as be-
fore. However, if electromagnetic torque allows the existence of
equilibrium inclination angle (like BPT-torque), the model remains
consistent with observational data.

Another assumption that has been made is that the shape of
neutron star is perfectly spherical. In reality, it is not so. First of all,
the star is deformed by rotation. To take this into account, one just
needs to replace Icrust by Icrust + �I, where �I is the small correction
to the crust moment of inertia caused by the deformation. This kind
of deformation practically does not change anything.

The neutron star also should be deformed by own magnetic field.
It can be shown (Barsukov & Tsygan 2010) that this kind of defor-
mation can be taken into account with replacing ζ by

ζeff = ζ − 12l
rns

rg

Icrust

Mnsrns
, (147)

where rg is the neutron star gravitation radius, l is the coefficient
determined through the relation (Haskell et al. 2008)

�I

Icrust
= l

B2
0 r4

ns

GMns
. (148)

The value of this coefficient substantially depends on the EOS and
internal magnetic field configuration. If it is large enough, ζ eff be-
comes negative and at the final stage all pulsars will evolve to coaxial
state instead orthogonal. One can imagine the following scenario.
Young pulsar evolves to orthogonal state under the action of exter-
nal torque and locates in this state until it cools down enough. After
that the pulsar rapidly falls down (in cos χ−age plane) into coaxial
state where it ends its life as a radio pulsar. Therefore, the observed
pulsars with large periods should be on ‘retrograde motion’ stage.
The required wide dispersion of the ‘retrograde motion’ periods
can be related with dispersion of ζ eff and other possible neutron star
parameters.

Finally, crystalline crust, in principle, can maintain an arbitrarily
oriented deformation which causes an additional precession and
for rigid star can prevent the pulsar alignment (Goldreich 1970).
However, the origin of such the deformations is not clear. Moreover,
it seems to be not very plausible that this kind of deformations can
survive on long-term evolution time-scale. In any case, together
with magnetic deformation it makes a neutron star triaxial. The
rotation of such stars requires a separate study.

Recently, Lyne et al. (2013) argued that the observed changes
in radio emission profile of Crab pulsar can be interpreted as a
direct observation of the inclination angle evolution. They found
that the separation between main pulse and interpulse increases with
time-scale ∼104 yr. It is pretty slow evolution for the pulsar with
P = 0.033 ms and B012 = 7.56 (Manchester et al. 2005), especially
in the framework of proposed model. However, this result can be
made consistent with the model if we suppose that the Crab pulsar
evolve under the action of BPT-torque. A pulsar with P0 ≈ 10 ms a
several hundred years after birth should reach its torque equilibrium
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1330 D. P. Barsukov, O. A. Goglichidze and A. I. Tsygan

Figure 7. The evolution trajectories for pulsars with different initial periods and inclination angles in the cos χ−age (top-left panel), P−age (bottom-right
panel) and cos χ−P (top-right panel) planes. Observational data shown by dots are taken from Rankin (1993). Relation Icrust/Icore is put to be equal to 0.1.
Pulsars evolves under the action of BPT-torque. The magnetic field strength at the poles is taken to be equal to 1012 G, νnd = 0.5. The bottom-left panel shows
the evolution of core temperature and

√
E.

Figure 8. The same as in Fig. 7 for Icrust/Icore = 0.01. The knee near cos χ = 0.15 is related with the features of ᾱ model (see Barsukov et al. 2013a for the
detail).
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The rotation dynamics of neutron stars 1331

Figure 9. The same as in Fig. 7 for νnd = 0.

Figure 10. The same as in Fig. 7 for νnd = 0 and Icrust/Icore = 0.01.

angle (see Fig. 8). After it happens the further inclination angle
evolution is determined by changing of �, S2 and S3 with time.
This evolution is quite slow for young pulsars. If it is so for Crab
pulsar, its observable inclination angle lying between 45◦ and 70◦

(see the references in Lyne et al. 2013) requires the non-dipolarity
parameter νnd = 0.2−0.6.

Our model does not take into account any glitch phenom-
ena. These processes are fundamentally not quasi-stationary
and there is not one point of view what physical processes
are responsible for these phenomena. The glitches probably
can be included into the model in some phenomenological
way.
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Figure 11. The same as in Fig. 7 for PTL-torque.

Figure 12. The same as in Fig. 11 for Icrust/Icore = 0.01.
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