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1. INTRODUCTION

Heating of the polar caps of radio pulsars by the
reverse positron current flowing in their inner gaps [1,
2] was first considered in [3]. In models with a vac-
uum gap, the question arises of the reverse positron
current and its influence on heating of the polar caps
of radio pulsars; this was considered, e.g., in [4–
6]. The formation of the reverse current, as well
as its value and its influence on the operation of
the inner gap, were investigated in detail in [8] for
a model with a free outflow of electrons from the
neutron-star surface [7]. It was assumed in [8] that
the electron–positron plasma that is created near the
upper plate of the gap almost immediately leads to
complete screening of the longitudinal electric field
[we will call this the strong shielding (SS) model).
However, it was shown in [9] that, while it may be
difficult to prove that this assertion is incorrect, it is
doubtful at the very least. Further, the expressions
for the reverse current obtained in [9] differ slightly
from those obtained in [8]. It was assumed in [9]
that the longitudinal electric field falls off very rapidly
in the region occupied by electron–positron plasma,
however, this field remains non-zero everywhere (we
will call this the weak shielding (WS) model). It
was shown in [10] that taking into account variations
of the Goldreich–Julian density along the magnetic-
field lines [11], ρGJ = −ΩB̃/(2πc), where Ω is the
rotational angular velocity of the star, in the WS
model [9] leads to a sharp increase in the reverse
positron current. In a number of cases, heating of the
polar caps becomes so strong that this heating rate
exceeds the thermal X-ray luminosity of the neutron
star.

*E-mail: tsygan@astro.ioffe.ru

The presence and configuration of the small-scale
magnetic field is very important for the operation of
the inner gap. This field is required for the generation
of the electron–positron plasma in some old radio
pulsars [12, 13], and arises in a completely natural
way in a number of models for the generation of the
dipolar magnetic field of the neutron star (see, e.g.,
[14–17]). The structure of the small-scale magnetic
field and its influence on the operation of the inner gap
have been considered, for example, in [8, 12, 18–20].

Our current study is a direct continuation of [10,
21]. Our aim was to obtain an expression for the
intensity of the heating of the polar caps of old radio
pulsars by the reverse positron current for the model
[21], which takes into account the influence of small-
scale magnetic field, following the method developed
in [8].

We treated radio pulsars using the model of Gol-
dreich and Julian [11]. We assumed that particles are
accelerated only at the inner gap, which occupies the
entire cross section of the pulsar tube, and restricted
our consideration to the case when the lower plate
of the inner gap is located right at the neutron-star
surface (a “polar cap” model) [3, 22]. We assumed
that the magnetic field at the neutron-star surface is
modest, B ∼ 1011−1013 G, and that the strength of
the small-scale magnetic field is comparable to the
strength of the dipole field. We assumed that the sur-
face is fairly hot at the polar cap, T ∼ (1−3) × 106 K.
It is reasonable to suppose that the inner gap operates
in a free-outflow regime for the electrons coming from
the neutron-star surface [23], where the electrons
flow out more or less uniformly from the entire polar-
cap surface, without the generation of sparks. This
is more characteristic for a vacuum-gap model [4,
22], which requires small-scale magnetic fields that
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are 10–100 times higher than the dipolar fields [5,
19, 24] or a quark star in place of the neutron star
(see, e.g., [25, 26]), or for models for the radiation of
radio transients and very old radio pulsars, which are
essentially already beyond their switching-off lines
(see, e.g., [27, 28]).

We restricted our study to the simplest case when
the electron–positron pairs are created via the ab-
sorption of curvature radiation (CR) emitted by pri-
mary electrons in the presence of a magnetic field
(which we will call the CR case). The case when
the electron–positron pairs are created mainly via
the absorption of non-resonance inverse Compton
radiation (NICR) created when thermal photons are
scattered on primary electrons in the presence of a
magnetic field (the NICR case) was not considered.
We also assumed that the inner gap operates in a
stationary regime; i.e., all quantities are time indepen-
dent in a coordinate frame rotating with the neutron
star, right out to the light cyinder. Moreover, we
neglected all general-relativistic effects apart from
general-relativistic frame dragging, since this effect
makes an appreciable contribution to the electric po-
tential.

2. MAGNETIC FIELD

We used the same model for the non-dipolar mag-
netic field near the neutron-star surface as in [29]
(see also [20, 21, 30, 31]), namely, the magnetic-
field near the polar-cap surface was modeled using
two dipoles. The first of these dipoles (the main and
strongest) m is located at the center of the neutron
star. The angle between the dipole-moment vector
m and the pulsar’s rotation axis Ω is denoted χ.
The second dipole m1 is located near the magnetic
pole of the neutron star (its center is located on the
axis of the main dipole m), a distance Δa from the
surface (inside the star), where a is the radius of the
neutron star (see Fig. 1). The vector m1 is taken to be
perpendicular to m. The angle between m1 and the
(m,Ω) plane is denoted φΩ. When φΩ = 0, the vector
m1 lies in the (m,Ω) plane and is directed toward
the pulsar’s rotation axis (see Fig. 2). We took the
parameter Δ to be everywhere equal to 0.1.

We introduce the spherical coordinate system
(r̃, θ̃, φ̃) with its orgin O at the center of the star,
where r̃ = 0, the Oz axis is directed along m, and
the Ox axis is directed along m1, so that m = mez

and m1 = m1ex. In this coordinate system, in the
approximation of small θ, θ � 1, the magnetic field
near the neutron-star surface has the form [29]:

Br̃ =
B0

η3
, Bθ̃ =

B0

η3

(
θ̃

2
+ μ(η) cos φ̃

)
, (1)
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Fig. 1. Arrangement of the inner gap, the main dipole
m, and the secondary dipole m1 in the two-dipole
model [29].
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Fig. 2. Orientation of the basis vectors ex, ey, ez in the
two-dipole model [29]. The angles χ and φΩ are indi-
cated.

Bφ̃ = −B0

η3
μ(η) sin φ̃,

where μ(η) = ν
(

Δη
η−1+Δ

)3
, ν = B1/B0, η = r̃/a, B0

and B1 are the magnetic-field strengths at the mag-
netic pole of the neutron star (η = 1, θ̃ = 0, φ̃ = 0)
due to the dipoles m and m1.

Further, it is convenient to transform from spher-

ASTRONOMY REPORTS Vol. 60 No. 6 2016



588 BARSUKOV et al.

ical coordinates (r̃, θ̃, φ̃) to coordinates tied to the
magnetic-field lines (η, ξ, φ) [21]. Here, η = r̃/a
is the coordinate along the magnetic-field lines. At
times, it will be more convenient to use the quan-
tity z = η − 1. The coordinates ξ and φ are labeled
according to the magnetic-field lines. When 1 �
η � ηLC , when the magnetic field can be taken to be
essentially dipolar,

sin θ̃ = sin (θs(η)) ξ, φ̃ = φ. (2)

Further, we assume that, at any height, the cross sec-
tion of the pulsar tube is a circle with radius aθs(η),
the line with ξ = 0 passes through the center of this
circle, and the line with ξ = 1 corresponds to the
boundary of the pulsar tube. The radius of the pulsar
tube θs(η) was taken to be given by

B(η, ξ = 0, φ = 0)θ2
s(η) = B0θ

2
0, (3)

where θ0 =
√

Ωa/c.

3. CHARGE DENSITY

In place of the number density n, we introduce the
dimensionless quantity A:

A =
2πce

ΩB
n. (4)

The reason for this is that, nearly everywhere in the
pulsar tube, the particles move along the magnetic-
field lines with speeds close to the speed of light:

v ≈ ±c 
B/B. Then, if a given type of particle doesn’t
have a source, it follows from the equations

∇ ·
j = 0, ∇ · 
B = 0, 
j = ρ
v, (5)

that ( 
B,∇)A = 0; i.e., A is constant along the
magnetic-field lines, and is therefore independent of
z: A = A(ξ, φ).

We assumed that only primary electrons flowing
from the cathode (the neutron-star surface) Aprim and
positrons in the reverse current Arev are present inside
the pulsar diode (0 < z < zc):

ρ =
ΩB

2πc

(
−Aprim + Arev

)
with 0 < z < zc. (6)

Here, we have neglected the presence of tertiary elec-
trons that are created and reversed near the cath-
ode [32].

We also assumed that there is no significant birth
or reversal of particles in the region of the pulsar diode,
so that Aprim and Arev are independent of z when
0 < z < zc. This assumption was used, in particular,
in [8, 9, 33].

Primary electrons Aprim, upward moving sec-
ondary electrons Ã− and positrons Ã+, and down-
ward moving positrons of the reverse current Ãrev

are present above the upper plate of the pulsar diode,
z > zc:

ρ =
ΩB

2πc

(
−Aprim − Ã−(z) (7)

+Ã+(z) + Ãrev(z)
)

.

By definition, the number of primary electrons in this
region is constant, Aprim = const(z). Neglecting the
difference of the speed of the secondary particles from
the speed of light, we can express the conservation of
charge in the form

∂Ã+

∂z
=

∂Ã−
∂z

− ∂Ãrev

∂z
, (8)

which, using the condition Ã−|z=zc = 0, Ã+|z=zc =
0, Ãrev|z=zc = Arev, enables us to write Ã−(z) −
Ã+(z) = Arev − Ãrev(z), so that

ρ =
ΩB

2πc

(
−Aprim − Arev + 2Ãrev(z)

)
. (9)

4. MODEL OF A THIN TUBE

Let us suppose that θs � Δ. The Poisson equa-
tion (in a coordinate frame rotating with the neutron
star) [79, 34, 35],

ΔΦ = −4π(ρ − ρGJ), (10)

can then be written in the form [35]

∂2Φ
∂z2

+
1

θ2
s(η)

Δ⊥Φ (11)

= −4π
ΩB(η)
2πc

a2(A + f(η)),

where A is the dimensionless total charge density,
f(η) = − 2πc

ΩB(η)ρGJ is (within its sign) the dimen-
sionless Goldreich–Julian density, and

Δ⊥Φ =
1
ξ

∂

∂ξ

(
ξ
∂Φ
∂ξ

)
+

1
ξ2

∂2Φ
∂φ2

. (12)

We obtain using (3)

θ2
s(η)

∂2Φ
∂z2

+ Δ⊥Φ = 2Φ0(A + f(η)), (13)

where Φ0 = ΩF lux
πc = const(z).

We specified the boundary conditions as fol-
lows [8]:

Φ|z=0 = 0, Φ|ξ=1 = 0, (14)

Φ|ξ=0 —finite,

∂Φ
∂z

∣∣∣∣
z=0

= 0, (15)
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∂Φ
∂z

∣∣∣∣
z=zc

= ε(ξ, φ). (16)

The conditions (14) express the continuity of the po-
tential Φ. The condition (15) corresponds to a regime
with free outflow from the neutron-star surface, and
the condition (16) specifies the value of the longitudi-
nal electric field at the upper plate.

In most cases, the specification of a particular
value of ε(ξ, φ) is determined by the definition of the
height of the upper plate zc. The height zc is usually
chosen so that ε(ξ, φ) = 0. However, in our case, this
choice is not very convenient, since the reversal of the
electron–positron pairs near the point z = zc strongly
distorts the electric field ∂Φ

∂z and, especially, ∂2Φ
∂z2 . As

a result, these quantities cannot be determined using
the solution inside the gap. Therefore, we preferred
to define the height of the upper plate as the greatest
height at which the birth and reversal of positrons
does not yet appreciably influence the potential Φ.
Essentially, we are using the definition of the height
of the upper plate of the gap zc as the height of the
“pair formation front”, given in [9, 32].

As was shown in [8–10], in the CR case, both
heights nearly coincide, and ε(ξ, φ) can be taken to be
much less than the characteristic longitudinal elec-
tric field ∂Φ

∂z inside the pulsar diode, which, generally
speaking, makes it possible to take this quantity to
be equal to zero. Note, however, that, in the NICR
case, the quantity ε(ξ, φ) we have introduced will be
comparable to the field inside the pulsar diode [33].

Further, when considering the potential inside the
gap, we assumed that f(η) and ε are independent of
the azimuthal angle φ. Accordingly, the potential Φ is
also independent of φ. We present the function ε(ξ) in
the form of the series

ε(ξ) =
∞∑
i=1

εi
2

kiJ1 (ki)
J0 (kiξ) , (17)

where ki are the roots of the equation J0(k) = 0.

We used the expression for the magnetic field
(1) when computing the function f(η). Moreover,
we neglected the ξ- and φ-dependent “Arons term”
θs(η)ξ cos φ sin χ, and took f(η) to be [21, 36]

f(η) =
1√

1 + μ2(η)

((
1 − κ

η3

)
cos χ (18)

− μ(η)
(

1 +
1
2

κ

η3

)
sinχ cos φΩ

)
,

where the coefficient κ ≈ 0.15 describes the effect of
the frame dragging.

4.1. Small Heights
Let us consider the special case zc � Δ. The

quantities f(η) and θs(η) then vary only weakly inside
the pulsar diode, and we can write

f(η) ≈ f(1) +
∂f

∂η
(1)z, θs(η) ≈ θs(1). (19)

Equation (13) then acquires the form

θ2
s(1)

∂2Φ
∂z2

+
1
ξ

∂

∂ξ

(
ξ
∂Φ
∂ξ

)
(20)

= −2Φ0

(
A + f(1) +

∂f

∂η
(1)z

)
.

The solution of this equation with the boundary con-
ditions (14)–(16) has the form

Φ =
1
2
Φ0

∂f

∂η
(1)

(
z

(
1 − ξ2

)
(21)

− 8θs(1)
∞∑
i=1

Fi
J0 (kiξ)
k4

i J1 (ki)

)
,

A = −f(1) − 2
∂f

∂η
(1)θs(1) (22)

×
∞∑
i=1

(
th

(
γ̃izc

2

)
+

ε̃i

sh (γ̃izc)

)
J0 (kiξ)
k2

i J1 (ki)
,

where

Fi =

(
1 − e−γ̃iz

)
(1 + e−γ̃izc)

(23)

×
(

1 + e−γ̃i(zc−z)

(
1 − ε̃i

(
1 − e−γ̃iz

)
(1 − e−γ̃izc)

))
,

ε̃i =
εik

2
i

2Φ0
∂f
∂η (1)

, γ̃i =
ki

θs(1)
. (24)

Hence, we obtain

Φ|z=zc
=

1
2
Φ0

∂f

∂η
(1)

(
zc

(
1 − ξ2

)
(25)

− 8θs(1)
∞∑
i=1

th
(

γ̃izc

2

)
(2 − ε̃i)

J0 (kiξ)
k4

i J1 (ki)

)
,

θ2
s(1)

∂2Φ
∂z2

∣∣∣∣
z=zc

= −4Φ0
∂f

∂η
(1)θs(1) (26)

×
∞∑
i=1

(
th

(
γ̃izc

2

)
− ε̃icth (γ̃izc)

)
J0 (kiξ)
k2

i J1 (ki)
.

Note that, in the special case ε = 0, the following
condition is automatically satisfied:

θ2
s(1)

∂2Φ
∂z2

∣∣∣∣
z=zc

= 2Φ0(A + f(1)). (27)
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4.2. Large Heights

Now let us consider the case zc � θs. Then, apart
from regions near the upper and lower plates, the
potential Φ is approximately [9, 21]

Φ =
1
2
Φ0 (A + f(η))

(
1 − ξ2

)
. (28)

When A ≈ −f(1), this expression satisfies the
boundary conditions for the potential (14), but not
those for its derivative (15), (16). Therefore, we
add two terms that do not significantly change the
potential, but strongly influence the derivatives near
the gap plates:

Φ =
1
2
Φ0 (A + f(η))

(
1 − ξ2

)
(29)

+
∞∑
i=1

2Φ0

k2
i

(
Cie

−γi(zc−z) + Die
−γ̃iz

)

× 2
kiJ1 (ki)

J0 (kiξ) ,

where γi = ki/θs(ηc) and γ̃i = ki/θs(1).

Since we assume here zc/θs � 1, it makes sense
to include the terms with Ci only near the upper plate,
z ≈ zc, and to include the terms with Di only near
the lower plate, z ≈ 0. Then, taking into account the
boundary conditions (14)–(16), we obtain

Φ =
1
2
Φ0 (f(η) − f(1))

(
1 − ξ2

)
(30)

− 4Φ0

(
∂f

∂η
(1)θs(1)

∞∑
i=1

(
1 − e−γ̃iz

) J0 (kiξ)
k4

i J1 (ki)

)

− 4Φ0

(
∂f

∂η
(ηc)θs(ηc)

∞∑
i=1

e−γi(zc−z)

× (1 − ε̂i)
J0 (kiξ)
k4

i J1 (ki)

)
,

A = −f(1) − 2
∂f

∂η
(1)θs(1)

∞∑
i=1

J0 (kiξ)
k2

i J1 (ki)
, (31)

where ε̂i = (εik
2
i )/(2Φ0

∂f
∂η (ηc)). This immediately

yields

Φ|z=zc
=

1
2
Φ0 (f(ηc) − f(1))

(
1 − ξ2

)
(32)

− 4Φ0

(
∂f

∂η
(1)θs(1)

∞∑
i=1

J0 (kiξ)
k4

i J1 (ki)

+
∂f

∂η
(ηc)θs(ηc)

∞∑
i=1

(1 − ε̂i)
J0 (kiξ)
k4

i J1 (ki)

)
,

θ2
s(ηc)

∂2Φ
∂z2

∣∣∣∣
z=zc

= Φ0

(
1
2
θ2
s(ηc)

∂2f

∂η2
(ηc) (33)

− 4
∂f

∂η
(ηc)θs(ηc)

∞∑
i=1

(1 − ε̂i)
J0 (kiξ)
k2

i J1 (ki)

)
.

If we can neglect terms with ε̂i and
∂f
∂η (ηc) � θs(ηc)∂2f

∂η2 (ηc), these expressions can be
written in the form

Φ|z=zc
=

1
2
Φ0 (f(ηc) − f(1))

(
1 − ξ2

)
(34)

− 4Φ0

(
∂f

∂η
(1)θs(1) +

∂f

∂η
(ηc)θs(ηc)

) ∞∑
i=1

J0 (kiξ)
k4

i J1 (ki)
,

θ2
s(ηc)

∂2Φ
∂z2

∣∣∣∣
z=zc

(35)

= −4Φ0
∂f

∂η
(ηc)θs(ηc)

∞∑
i=1

J0 (kiξ)
k2

i J1 (ki)
.

When θs � zc � Δ, expressions (25) and (26) are
transformed into (32) and (33), making it possible to
combine them:

Φ|z=zc
=

1
2
Φ0 (f(ηc) − f(1))

(
1 − ξ2

)
(36)

− 4Φ0

(
∂f

∂η
(1)θs(1)

∞∑
i=1

th
(γizc

2

) J0 (kiξ)
k4

i J1 (ki)

)

− 4Φ0

(
∂f

∂η
(ηc)θs(ηc)

∞∑
i=1

th
(γizc

2

)

× (1 − ε̂i)
J0 (kiξ)
k4

i J1 (ki)

)
,

θ2
s(ηc)

∂2Φ
∂z2

∣∣∣∣
z=zc

=
1
2
Φ0θ

2
s(ηc)

∂2f

∂η2
(ηc) (37)

− 4Φ0
∂f

∂η
(ηc)θs(ηc)

×
∞∑
i=1

(
th

(γizc

2

)
− ε̂icth (γizc)

) J0 (kiξ)
k2

i J1 (ki)
.

When ε ≡ 0 and ∂f
∂η (ηc) � θs(ηc)∂2f

∂η2 (ηc), expres-
sions (36) and (37) simplify:

Φ|z=zc
=

1
2
Φ0 (f(ηc) − f(1))

(
1 − ξ2

)
(38)

− 4Φ0

(
∂f

∂η
(1)θs(1) +

∂f

∂η
(ηc)θs(ηc)

)

×
∞∑
i=1

th
(γizc

2

) J0 (kiξ)
k4

i J1 (ki)
,
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θ2
s(ηc)

∂2Φ
∂z2

∣∣∣∣
z=zc

= −4Φ0
∂f

∂η
(ηc)θs(ηc) (39)

×
∞∑
i=1

th
(γizc

2

) J0 (kiξ)
k2

i J1 (ki)
.

5. COMPUTATION OF THE REVERSE
CURRENT

We computed the reverse current in precisely the
same way as in [8]. As in [8], we took into account the
fact that the electron–positron plasma nearly com-
pletely screens the longitudinal electric field above
the upper plate of the gap, E|| = (
E, 
B)/B [8, 9].
Therefore, beginning from some height z0

r > zc, we
can assume that ∂Φ

∂z is small, and the term θ2
s(η)∂2Φ

∂z2

is much smaller than the remaining terms in (13).
Accordingly, we assumed that, when z ≥ z0

r , Eq. (13)
can be written:

Δ⊥Φ = −2Φ0 (A + f(η)) . (40)

In the CR case, the height z0
r is usually very close to

the height of the upper plate zc (z0
r − zc � θs) [8, 9].

On the contrary, in the NICR case, it is quite possible
that z0

r − zc ∼ zc [33].

Let us consider some point z = zr ≥ z0
r (we will

discuss the choice of zr below) and suppose that only
upward moving primary electrons, secondary elec-
trons and positrons, and downward moving positrons
in the reverse current are present when zc ≤ z ≤
zr . We also assume here that, when z0

r ≤ z ≤ zr ,
Eq. (40) is satisfied due to the reversal of the sec-
ondary positrons (or, if you like, their reversal brings
about the screening of the longitudinal electric field
E||). Using (6) and (9), we can then write the two
equations [8, 29]:

θ2
s(ηc)

∂2Φ
∂z2

∣∣∣∣
z=zc

+ Δ⊥Φ|z=zc
(41)

= −2Φ0

(
−Aprim + Arev + f(ηc)

)
,

Δ⊥Φ|z=zr
= −2Φ0

(
−Aprim (42)

− Arev + 2Ãrev(zr) + f(ηr)
)
.

Subtracting one from the other yields

Arev = Ãrev(zr) +
1
2

(f(ηr) − f(ηc)) (43)

− 1
4Φ0

θ2
s(ηc)

∂2Φ
∂z2

∣∣∣∣
z=zc

− 1
4Φ0

(
Δ⊥Φ|z=zc

− Δ⊥Φ|z=zr

)
.

As is shown in [8, 9] (see also [10]), in the CR case,
we can assume that

θ2
s(ηc)

∂2Φ
∂z2

∣∣∣∣
z=zc

� Δ⊥Φ|z=zc
− Δ⊥Φ|z=zr

. (44)

Note that the condition (44) essentially means that
the potential drop between z = zr and z = zc is much
less than the potential drop in the region zc − θs <
z < zc. Therefore, taking (44) to be valid [8], we can
write

Arev = Ãrev(zr) +
1
2

(f(ηr) − f(ηc)) (45)

− 1
4Φ0

θ2
s(ηc)

∂2Φ
∂z2

∣∣∣∣
z=zc

,

where θ2
s(ηc) ∂2Φ

∂z2

∣∣∣
z=zc

is computed using (39).

5.1. Model with Strong Screening

It was shown in [8] that there is a point at z > zc,
z = zSS

r , where

∂Φ
∂z

∣∣∣∣
z=zSS

r

= 0,
∂2Φ
∂z2

∣∣∣∣
z=zSS

r

= 0. (46)

It was assumed in [8] that the longitudinal field is
screened by the reversal of the positrons in the region
zc < z < zSS

r . Above the point zSS
r , there is no rever-

sal of the positrons [8],

Ãrev(zSS
r ) = 0. (47)

It was shown in [8] that zSS
r − zc � θs (the CR case

was considered in [8]). This means that the term
1
2

(
f(ηSS

r ) − f(ηc)
)

can be neglected in (45). Con-
sequently, the reverse positron current becomes

ASS
rev = − 1

4Φ0
θ2
s(ηc)

∂2Φ
∂z2

∣∣∣∣
z=zc

. (48)

Substituting (39) into this expression, we find that
the reverse positron current is very small, ASS

rev ∼
∂f
∂η (ηc)θs(ηc) ∼ 10−4−10−2:

ASS
rev =

∂f

∂η
(ηc)θs(ηc)

∞∑
i=1

th
(γizc

2

) J0 (kiξ)
k2

i J1 (ki)
. (49)

In the limiting cases zc � θs(ηc) and zc � θs(ηc),
Eq. (49) takes the form [9]:

ASS
rev ≈ 4

15
∂f

∂η
(ηc)θs(ηc)

(
1 − ξ2.19

)0.705
(50)

when zc � θs(ηc),

ASS
rev ≈ 1

4
∂f

∂η
(1)zc when zc � θs(ηc). (51)
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In the case of a purely dipolar magnetic field ν = 0,
these expressions acquire the form [9, 12, 29]

ASS
rev ≈ 4

5
κ

η
7/2
c

θ0 cos χ
(
1 − ξ2.19

)0.705
(52)

when zc � θs(ηc),

ASS
rev ≈ 3

4
κzc cos χ when zc � θs(ηc). (53)

Note also that, when ξ = 0, ASS
rev can be approximated

by the following expression, with accuracy to within
5%:

ASS
rev ≈ ∂f

∂η
(ηc)θs(ηc)F

(
zc

θs(ηc)

)
, (54)

where F (x) = 4x
16+15x

(
1 + 1.19 x

1+x2

)
, and F (x) ≈

x
4 when x � 1 and F (x) ≈ 4

15 when x � 1.

5.2. Model with Weak Screening

It was shown in [9] that the conditions (46) cannot
all be satisfied simultaneously at the same point. In
this connection, it was proposed in [9] to use a single
condition in place of the two conditions (46):

Φ → Φ∞ when η → +∞. (55)

It was also assumed that there were no additional
sources of charge anywhere and that the longitudi-
nal electric field was everywhere screened due to the
reversal of the positrons. Consequently, generally
speaking, all heights from the upper plate to the light
cylinder contribute to the reverse current [37, 38].

We interpret the condition (55) as follows. Above
the upper plate of the gap at heights η0

r < η ≤ ηWS
r ,

the longitudinal electric field is small, and the screen-
ing condition (40) is satisfied with good accuracy.
This screening is due to the reversal of the positrons.
Let us suppose that Ãrev(ηWS

r ) = 0; i.e., there is no
reversal of the positrons at η > ηWS

r , and no reverse
positron current due to the light cylinder [1, 39]. Set-
ting ηr = ηWS

r in (45), we then obtain

AWS
rev =

1
2

(
f(ηWS

r ) − f(ηc)
)

(56)

− 1
4Φ0

θ2
s(ηc)

∂2Φ
∂z2

∣∣∣∣
z=zc

.

We will now say a few words about the choice
of the height ηWS

r . First of all, it is reasonable to
choose ηWS

r to be somewhat lower than the height
ηrad ∼ 101−102, where the plasma oscillations are
intense enough to influence the motions of particles
[40–43]. In the case of field lines that are unfavorable
according to the criterion of Arons, the height ηWS

r

should not exceed the height ηmax, where the function
f(η) reaches its maximum value, and above which it
is necessary to constantly add an additional positive
charge, rather than adding a negative charge (due to
the reversal of the positrons). In the case of a purely
dipolar magnetic field (ν = 0), we have

ηmax ≈
(
− 6κ

θ0ξ

cotχ
cos φ

)2/7

∼ 2−3. (57)

Based on the above arguments, it seems reasonable
to us to take ηWS

r ∼ min(ηmax, ηrad) ∼ 3−50. At
such heights, we can assume that the magnetic field
differs only weakly from a dipolar field, and that we
can neglect the “Arons term” θs(η)ξ cos φ sin χ when
computing f(η). Consequently, we can set in (56)

f(ηWS
r ) ≈ (1 − κ) cos χ. (58)

We thus immediately obtain

AWS
rev =

1
2

((1 − κ) cos χ − f(ηc)) + ASS
rev . (59)

Since the first term is usually much greater than the
second, we can write

AWS
rev ≈ 1

2
((1 − κ) cos χ − f(ηc)) . (60)

6. HEATING OF THE POLAR CAP

We estimated the heating of the polar cap of the
pulsar using the formula

Ltot =

1∫
0

c

e
ρrev|z=0 e Φ|z=zc

θ2
s(1)a

22πξdξ. (61)

Substituting ρrev|z=0 = ΩB(1)
2πc Arev and taking into

account that Flux = πθ2
s(1)a

2B(1) and Φ0 = ΩF lux
πc ,

we find

Ltot = cΦ2
0

1∫
0

Arev
Φ
Φ0

∣∣∣∣
z=zc

ξdξ. (62)

We obtain in the SS model using (49) and (38)

LSS
tot = cΦ2

02
∂f

∂η
(ηc)θs(ηc) (63)

×
(

(f(ηc) − f(1)) F0

(
zc

θs(ηc)

)

−
(

∂f

∂η
(1)θs(1) +

∂f

∂η
(ηc)θs(ηc)

)

× F1

(
zc

θs(ηc)

))
.
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We obtain in the WS model using (59) and (38)

LWS
tot = LSS

tot +
1
16

cΦ2
0

(
f(ηWS

r ) − f(ηc)
)

(64)

×
(

(f(ηc) − f(1)) − 32
(

∂f

∂η
(1)θs(1)

+
∂f

∂η
(ηc)θs(ηc)

)
F0

(
zc

θs(ηc)

))
,

where the functions F0(u) and F1(u) are given by

F0(u) =
∞∑
i=1

1
k5

i

th
(

kiu

2

)
, (65)

F1(u) =
∞∑
i=1

1
k6

i

th2

(
kiu

2

)
. (66)

Plots of the functions F0(u) and F1(u) are shown
in Fig. 3. When u � 1, it is obvious that F0(u) ≈
Kf

u
2 and F1(u) ≈ Kf

(
u
2

)2, where Kf =
∞∑
i=1

1
k4

i
=

1
32 . Accordingly, when u � 1, F0(u) ≈

∞∑
i=1

1
k5

i
≈

1.27× 10−2 and F1(u) ≈
∞∑
i=1

1
k6

i
= 1

192 . In the interval

10−2 ≤ u ≤ 102, these functions can be approxi-
mated by the following expressions with accuracy to
within 1.5%:

F0(u) ≈ F app
0 (u) (67)

= a0u
1 + b0u + c0u

2

1 + d0u + e0u2 + h0u3
,

F1(u) ≈ F app
1 (u) =

a1u

1 + b1u

1 + c1u + d1u
2

1 + e1u + h1u2
. (68)

The values of the coefficients in these expressions are
given in the table. The right-hand panels of Fig. 3
show the relative errors obtained with this approx-

Values of the coefficients in (67) and (68)

Coeff-
icient

Value Coeff-
icient

Value

a0 1.566 × 10−2 a1 7.772 × 10−3

b0 5.556 × 10−1 b1 1.195

c0 4.692 × 10−1 c1 −3.496× 10−1

d0 6.271 × 10−1 d1 2.067 × 10−1

e0 7.920 × 10−1 e1 −4.147× 10−1

h0 5.759 × 10−1 h1 2.588 × 10−1

ASTRONOMY REPORTS Vol. 60 No. 6 2016



594 BARSUKOV et al.
 

–2.0

0

lo
g

 

A

 

re
v

 

log(

 

z

 

r

 

/

 

z

 

c

 

)

–2.2
0.5 2.01.0 1.5

–1.8

–1.4

–1.0

–0.8

–1.6

–1.2

 

v

 

 = 0.3, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.5, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.7, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.3, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

v

 

 = 0.5, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

v

 

 = 0.7, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

28.0

0

lo
g

(

 

L

 

to
t

 

/e
rg

 s

 

–
1

 

)

log(

 

z

 

r

 

/

 

z

 

c

 

)
0.5 2.01.0 1.5

28.5

 

v

 

 = 0.3, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.5, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.7, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.3, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

v

 

 = 0.5, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

v

 

 = 0.7, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

29.5

29.0

8.0

 

×

 

10

 

5

 

0

 

T

 

ef
f

 

, 
K

log(

 

z

 

r

 

/

 

z

 

c

 

)

6.0

 

×

 

10

 

5

 

0.5 2.01.0 1.5

1.0

 

×

 

10

 

6

 

1.2

 

×

 

10

 

6

 

v

 

 = 0.3, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.5, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.7, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.3, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

v

 

 = 0.5, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

v

 

 = 0.7, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

–3.6

0

lo
g

(

 

L

 

to
t

 

/

 

E

 

)

log(

 

z

 

r

 

/

 

z

 

c

 

)
0.5 2.01.0 1.5

–3.0

 

v

 

 = 0.3, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.5, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.7, 

 

φ

 

Ω

 

 = 0

 

v

 

 = 0.3, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

v

 

 = 0.5, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

v

 

 = 0.7, 

 

φ

 

Ω

 

 = 

 

π

 

/2

 

–2.0

–2.6

–3.8

–3.4
–3.2

–2.8

–2.4
–2.2

–1.8

1.4

 

×

 

10

 

6

 

1.6

 

×

 

10

 

6

 

1.8

 

×

 

10

 

6

 

2.0

 

×

 

10

 

6

 

2.2

 

×

 

10

 

6

Fig. 4. Upper: dependences of the polar-cap luminosity log(Ltot/erg/s) (left) and the efficiency log(Ltot/Ė) (right), where Ė
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corresponding values of the reverse positron current log Arev (left) and the characteristic surface temperature T , K (right).

imation: Err0(u) = (F0(u) − F app
0 (u))/F0(u) and

Err1(u) = (F0(u) − F app
1 (u))/F1(u), respectively.

Figure 4 shows examples of the dependences of
Ltot, Arev, and the characteristic surface temperature
Teff on the height ηr for the case B0 = 2 × 1012 G,
P = 1 s, χ = 10◦. The height of the upper plate
zc was computed analogous to how this was done
in [36]. When finding the height of the upper plate,
only the creation of electron–positron pairs via of
absorption of curvature radiation from primary elec-
trons in the presence of the magnetic field (the CR
case) was taken into account. The function f(η)
was computed using (18), and the temperature T was
estimated from the relation Ltot = σBT 4πθ2

sa
2.

7. CONCLUSION

We have considered the method for computing
the reverse current [8] with the model of the inner
gap proposed in [21]. The resulting expressions for
the reverse current when using the SS model more
or less coincide with those from [8, 9]. However,
expression (53) differs from formula (33) in [9] by a
factor of two. This is probably due to the different
methods used here and in [9] to take into account

the contribution of the term θ2
s(ηc) ∂2Φ

∂η2

∣∣∣
η=ηc

. Expres-

sion (52) is in reasonable agreement with the esti-
mate Arev ∼ κθs presented in [12], but differs appre-

ciably from the expression Arev = κ
2

(
1 − 1

η3
c

)
Aprim

obtained using Eqs. (3) from [29]. Even when ξ = 0,
expression (52) predicts a reverse current that is a
factor of ∼1/θs ∼ 102 lower than the value obtained
in [29]. This difference is due to the fact that the
contribution of the perpendicular part of the Lapla-
cian Δ⊥Φ was not included when finding the re-
verse positron current in [29]. Both expressions were
obtained under the assumption zc � θs. However,
the condition Δ⊥Φ ≈ −4π(ρ − ρGJ) [21]—i.e., es-
sentially the screening condition (40)—is then satis-
fied with very good accuracy slightly below the upper
plate. Accordingly, in full agreement with [8], the
reverse positron current only needs to cancel out the

small term θ2
s(ηc) ∂2Φ

∂η2

∣∣∣
η=ηc

, and not the full quantity

ΔΦ, as was assumed in [29].

The results of the computation of the current in
the WS model are in reasonable agreement with the
computations of [10]. In this case, the reverse current
is determined mainly by the large difference f(ηWS

r )−
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f(ηc); whether or not the terms θ2
s(ηc) ∂2Φ

∂η2

∣∣∣
η=ηc

and,

when zc � 1, as is assumed [10], Δ⊥Φ are taken into
account influences the final result only weakly.

We have considered heating of the caps only for the
CR case, so that the pulsar is taken to lie to the left
of the curvature-radiation line of death. For a dipolar
magnetic field (ν = 0), this line has the form [44]

P = 0.16
(

B0

1012 G

)4/7

cos3/7 χ s. (69)

In the presence of a small-scale field, its position can
be estimated as [44]

P ≈ (0.5−1.0)
(

B0

1012 G

)2/3

s. (70)

Note that, in the CR case, the screening of E|| is
due mainly to particles with relatively small ener-
gies ECR

± ∼ (102−104)mc2, whose number rises very
rapidly near the upper plate of the diode zc (with a
characteristic scale ∼1−10 m � zca) [9, 10]. As a
result, the potential Φ in the region z > zc increases

only by an amount δΦ ∼ ECR
±
e ∼ (102−104)mc2

e �
Φ|z=zc

[9, 10]. In this situation, pairs created by
inverse Compton radiation essentially do not partic-
ipate in the screening of E||. The reason is that these
pairs have energies EIC

± ∼ (102−104)ECR
± (EIC

± ∼
e Φ|z=zc

) [33], and the weak electric field in the region
z > zc, eδΦ ∼ (10−2−10−4)EIC

± � EIC
± , is not able

to effectively slow down, much less reverse, test parti-
cles. Electron–positron pairs created by synchrotron
radiation likewise essentially do not participate in
screening of E||. This is so because the particles move
with nearly zero pitch angles in the region of the in-
ner gap and, when B0 < 4 × 1012 G, the synchrotron
photons in this region are mainly emitted by electron–
positron pairs that are excited to Landau levels. Con-
sequently, these photons arise in appreciable numbers
only when z � zc, and only with modest energies
(comparable to the energies of curvature-radiation
photons). Therefore, pairs created from curvature
photons will appear in appreciable numbers only at
large heights z − zc � 1

3zc, where E|| is already nearly
completely screened.

We also assumed that we can neglect the birth
of particles in the region of the diode 0 < z < zc. If
such particles are created by the NICR mechanism,
a sufficient condition for this to be valid is that the
surface temperature of the star not be too high,

T � 3 × 106

(
Γc

106

)1/2 (
10−2

zNIC
min

)1/2

K, (71)

where zNIC
min = min(zc, θ0) in the case of scattering

on photons from a polar cap and zNIC
min = min(zc, 1)

and Γc = eΦ
mc2

∣∣
z=zc,ξ=0

in the case of photons coming
from the surface of the entire star. Moreover, it was
assumed that the energy density of radio emission
trapped in the diode Urad [45] is not sufficiently high
to appreciably influence the acceleration of particles
in the region 0 < z < zc [45],

Urad � 108

(
10−2

zc

)(
106

Γc

)
erg
cm3

. (72)

Note also that we neglected the effect of thermal radi-
ation pressure on the particles [46] and the possibility
of pair creation in bound states. This last effect could
be very important when B > (4−6) × 1012 G [47].

Our study did not take into account the influence
of outer gaps on heating of the polar caps. In real
pulsars, it is likely that part of the tube is occupied
by outer gaps (which may already be switched off in
old pulsars; see, e.g., [1, 48, 49]). On the one hand,
the presence of outer gaps means that the inner gap
occupies only part of the pulsar tube [1, 39]. For
example, the case when the inner gap occupied only
∼(50−70)% of the transverse cross section of the
pulsar tube, depending on the inclination χ, was con-
sidered in [50]. Accordingly, the contribution of the
inner gap to heating the polar caps could be roughly
a factor of 1.5–2 lower. On the other hand, some
of the reverse positron current could pass through
the outer gaps. Since, generally speaking, the outer
gaps can accelerate electrons moving from behind the
light cylinder to energies ∼100 GeV−1 TeV, even in
the switched-off state, this could lead to additional
heating of the polar caps [1, 39]. Moreover, we have
not considered heating of the polar caps by the cur-
rent of relativistic positrons or protons Aproton coming
from behind the light cylinder along the magnetic-
field lines on which the inner gap is located [51].
Note that the presence of such a current simply leads
to renormalization of the primary electron current,
Aprim → (Aprim − Aproton); accordingly, the associ-
ated additional heating can be computed using (64)
with the substitution f(ηWS

r ) − f(ηc) → 1
2Aproton.

The weakest aspect of our current study is the
assumption that all quantities are independent of
time (in a coordinate frame rotating together with
the neutron star). Although there are quantitative
arguments supporting the stability of the inner gap
([52]; E.M. Kantor, private communication), numer-
ical simulations [53, 54] appear to support the idea
that the gap operates in a non-stationary regime [3].
According to [53], the non-stationarity in the gap is
due to the fact that, even in the case of free outflow,
sparks are continuously ignited and extinguished in

ASTRONOMY REPORTS Vol. 60 No. 6 2016



596 BARSUKOV et al.

the gap. A similar regime was considered in [27, 28].
According to [53], in the non-stationary regime, the
reverse positron current exceeds the value we have
obtained in this study. This is quite natural (V.S. Be-
skin, private communiction), since the appearance
of oscillations is related to a large extent to the fact
that the reverse positron current stops the outflow
of electrons from the neutron-star surface. Conse-
quently, the value Arev should exceed the Goldreich–
Julian density, f(1) ∼ 0.5−1.0 [3], which appreciably
exceeds even the reverse current computed in the
WS model. However, since the particles arrive at
the polar cap mainly in the extinguishing phase of
the sparks [53], when the plasma nearly completely
screens the electric field, the total heating of the caps
is modest in the non-stationary case, comparable to
the heating in the SS model to order of magnitude.

In spite of this support from numerical simula-
tions, we believe that non-stationary models en-
counter one large problem. Very strong oscillations
in the electric field can occur in such models, and
the particle number density also varies very strongly.
According to [53], sparks should continuously be
extinguished and ignited anew. In our view, it is
very difficult for an ordered structure to survive over
prolonged times in such a medium with continu-
ously varying parameters (on time scales ∼c/zc ∼
10−6−10−4s). However, we know from observations
of sub-impulse drift that ordered structures exist in at
least some pulsars [55, 56]; in order to observed a drift
in P4, these structures must not undergo substantial
variations, at least over times ∼P4 ∼ 10−40 s [6, 20].
Therefore, in our view, the very fact that sub-impulse
drift of the period P4 is sometimes observed may
testify to the fact that the electric fields and particle
number densities in pulsar tubes do not undego
very large variations on time scales ∼c/zc, making
stationary models a relatively good approximation.
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