
The influence of core superfluidity on the neutron

stars long-term rotation evolution.

D P Barsukov1,2, O A Goglichidze1 and A I Tsygan1

1Ioffe Physical-Technical Institute of the Russian Academy of Sciences, st.
Polytekhnicheskaya, 26, Saint-Petersburg, 194021, Russian Federation.
2Saint-Petersburg State Polytechnical University, st. Polytekhnicheskaya, 29,
Saint-Petersburg, 195251, Russian Federation.

Abstract. We investigate the evolution of neutron star rotation taking into account the
superfluidity of the neutrons in the neutron star core. The neutron star is treated as a two-
component system consisting of a charged component (including the crust and the core protons,
electrons and normal neutrons) and a core superfluid neutron component. The components are
supposed to interact through the mutual friction force. We assume that the charged component
rotates rigidly. The neutron superfluid velocity field is calculated directly from linearized
hydrodynamical equations. It is shown that the superfluid core accelerates the evolution of
inclination angle and makes all pulsars evolve to orthogonal state. But as it is known from
observations the rate of the angle evolution is not very high. Therefore, a small size of superfluid
cores is more likely. These facts may allow to examine superfluid models.

1. Introduction

Neutron stars cores consist mostly of the neutrons with small fractions of protons, electrons and
probably more exotic particles like hyperons. The neutrons in some regions of the star must be
in superfluid state at that time as the protons must be in superconducting state. Superfluidity
may appear in the rotational dynamics in several ways and several time-scales. Present work is
devoted to studying how the superfluidity affects the long-term rotation evolution.

2. Superfluid hydrodynamics

It is well known that for the uncharged superfluids like neutron liquid the velocity field ~v must
satisfy the equation rot~v = 0. However, such superfluids can rotate by forming an array of
vortices. The velocity field near each vortex has the form:

~v =
~

mcpr̃
~eφ, (1)

where mcp is the mass of Cooper pair, r̃ is the distance from the vortex core, ~eφ is the azimuthal
unit vector. Vorticity is located only in the vortex cores, in which superfluidity breaks. However,
one can average ~v over the volume greater than the intervortex space. This procedure allows
to use the hydrodynamical equations instead vortices dynamics consideration even when the
rotating superfluids are studied (see [1] for example).
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In a mixture of superfluids so-called entrainment effect takes place (see [2]). For the neutron-
proton mixture it leads to the following formulas:

~Jn = (ρn − ρnn − ρnp)~vex + ρnn~vn + ρnp~vp, (2)

~Jp = (ρp − ρpp − ρpn)~vex + ρpp~vp + ρpn~vn, (3)

~pn = (ρn − ρnn − ρnp)~vex + (ρnn + ρnp)~vn, (4)

~pp = (ρp − ρpp − ρpn)~vex + (ρpp + ρpn)~vp, (5)

where ~Jα is the mass current of the α constituent (α = p, n), ~pα are the proton and neutron
momentum densities, ~vex is the thermal excitation velocity (it is assumed that the excitation
velocity is the same for both fluids), ραβ is the mass density matrix. It can be shown that
ρnp = ρpn. The superfluid velocities here are determined just like for the ordinary superfluids:

~vn =
~

2mn
∇Sn, ~vp =

~

2mp
∇Sp −

e

mpc
~A, (6)

where Sα are the phases of the complex order parameters, ~A is the electromagnetic vector
potential. So in the superfluid mixtures the mass currents corresponding to each fluid are no
longer parallel to they velocities and don’t equal to corresponding momentum density. Note,
however, that

~Jn + ~Jp = ~pn + ~pp. (7)

3. The Model

We treat a neutron star core as a two-component system. The first component consists of the
superfluid neutrons and moves with smooth averaged velocity ~vs. Protons, electrons, and normal
neutrons are coupled to each other on the small time-scales and form the second component
which we denote as “charged”. All particles forming the charged component are supposed to
move with the same velocity ~vc:

~ve = ~vex = ~Jp/ρp = ~vc. (8)

The star crust rotates with angular velocity ~Ω which is identified with the observed angular
velocity of the pulsar. The external torque ~K acts on the crust. We will consider the torques
depending only on ~Ω and the magnetic field configuration which supposed to be frozen in the
crust. In this case, the torque ~K is a very slowly evolving vector in the frame co-rotating with
the crust.

Except the entrainment effect, superfluid and charged components interact through the so-
called mutual friction, which arises when the charged component particles are scattered by the
neutron vortices. The system of hydrodynamical equations describing the mixture of superfluid
neutrons, superconducting protons and degenerate electrons taking into account the neutron-
proton entrainment, mutual friction and gravitational force was developed by Mendell and
Lindblom (see [3] and [4]). We are based on these equations.

Introducing ~uα = ~vα − [~Ω × ~r] which is a velocity field of the α constituent measured in the
frame co-rotating with the crust, we suppose that

Ωr≫ us ≫ uc, (9)

so we keep only the linear in us terms and neglect all terms containing uc. The second part of
inequality (9) requires a sufficiently effective physical mechanism which damps the differential
motions of the charged component and connect this component to the crust. It can be ensure
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by viscosity or by the magnetic field (the last requires the second type superconductivity for

the protons). Terms containing rot~λn in Mendell-Linblom equations arise from vortices self-
acting. These terms do not participate in transferring the angular momentum from the superfluid
component to the charged one, so in the linear approximation they can be ignored. We also
neglect the gravitational potential perturbation.

Vector ~̇Ω as well as the external torque ~K evolves very slowly in co-rotation frame in
compare with the mutual friction time-scales Thus, the long-term evolution corresponds to
the quasistationary solution. It means that at the large time-scales

∂t~us ≈ [~Ω× ~us]−
(

[~Ω× ~r] · ∇
)

~us, (10)

and equations for ~us take the form:

2Ω
̺2

ρppρs
(δ[~ez × ~us]− β~ez × [~ez × ~us]) +∇µ̃1 = −[~̇Ω× ~r] (11)

div

(

̺2

ρpp
~us

)

= 0, (12)

[

̺2

ρpp
(~us · ~r)

]

r=rcore

= 0, (13)

where δ = (1− β′), β and β′ are the mutual friction coefficients, ̺2 = ρnnρpp − ρ
2
np, rcore is the

radius of sphere in which the superfluidity breaks, ~̇Ω = dt~Ω, µ̃1 = −1

2
[~Ω × ~r]2 + µ̃n +ΦG, µ̃n is

the neutrons chemical potential, ΦG is the non-perturbed gravitational potential. Note that all
mass densities here are not perturbed too.

The solution satisfying equations (11), (12), and (13) has the form

~us =
ρppρs
̺2

[ ~̟ × ~r]−
ρppρs
̺2

Ω̇||

2Ω

δ − βψ

δ2 + β2
~̃r + ~ez

ρpp
̺2

Ω̇||

2Ω

z
∫

0

1

r̃

∂

∂r̃

(

r̃2ρs
δ − βψ

δ2 + β2

)

dz′, (14)

~̟ = −
~̇Ω||

2Ω

β + δψ

δ2 + β2
−

β

δ2 + β2

~̇Ω⊥
Ω

+
δ

δ2 + β2

[

~ez ×
~̇Ω⊥
Ω

]

, (15)

µ̃1 = −yzΩ̇⊥ − Ω̇||

r̃
∫

0

ψ(r̃′)r̃′dr̃′, (16)

ψ(r̃) =





zb
∫

0

ρsδ

δ2 + β2
dz′









zb
∫

0

ρsβ

δ2 + β2
dz′





−1

, zb =
√

r2core − r̃
2. (17)

Here rcore is the radius of the superfluid core. The definitions of used coordinates and vectors
are given in fig. 1.

In general case, the flow has a complex form. It consists of a differential rotation about the
local axis ~̟ and a poloidal flow. The last, however, is a consequence of the dependence of β
and β′ on the r and it vanishes if we make β and β′ to be constant. Neglecting, in addition, the
entrainment effect (ρppρs/̺

2 ≈ 1), we obtain a rigidly rotating superfluid.
Protons of course are not required to be superconducting everywhere inside the superfluid

core. Entrainment vanishes where the superconductivity breaks (see [5]). Obtained solution,
however, remains to be valid there. One just needs to replace

ρppρs
̺2

→ 1 and
ρpp
̺2

→
1

ρs
.

Except this formally replacements the superconductivity breaking apparently leads to decrease
by several orders of magnitude of the mutual friction coefficients.
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4. The equations of motion

Possessing the expression for the superfluid velocity field, one can calculate the angular
momentum transfer rate from superfluid core to the charged component. From the angular
momentum conservation law we have

~̇M = ~K, (18)

where ~M is the full angular momentum of the star which obviously is a sum of angular momenta
of each component, so one can write

~M = ~Mc + ~Ms =

∫

~r × (~pc + ~ps)dV =

∫

~r × ~JcdV +

∫

~r × ~JsdV (19)

Here we have used (7). By the assumption ~Jc ≈ ρc[~Ω × ~r] and ~Js ≈ ρs[~Ω × ~r] +
̺2

ρpp
~us. Using

(10), (14), (15), we obtain:

Ic ~̇Ω = S1Is ~̇Ω− S2Is ~̇Ω|| + S3Is[~ez × ~̇Ω] + ~K, (20)

where

S1 =
8π

3Is

∫

δβ′ − β2

δ2 + β2
ρsr

4dr, S2 =
8π

3Is

∫

δ

δ2 + β2
ρsr

4dr, (21)

S3 =
8π

3Is

∫

β

δ2 + β2
ρsr

4dr, Iα =
8π

3

R
∫

0

ραr
4dr. (22)

If we introduce basis vectors ~εx, ~εy, and ~εz, anchored in the star crust, where ~εz = ~m/m

and vectors ~εx and ~εy are perpendicular to ~εm and to each other, the orientation of ~Ω can be
determined by two angles χ and ϕΩ (see fig. 2). Angle χ is the pulsar inclination angle, and the
variation of ϕΩ relates with star precession. Without making any additional restriction external
torque ~K can be represented as

~K = KΩ~ez +Km~εz +K⊥[~ez × ~εz] (23)

Equation (20) can be solved for ~̇Ω and rewritten as three scalar equations:

Ω̇ =
KΩ +Km cosχ

Is + Ic
, (24)

χ̇ = −
1

Ω

(Ic + S1Is)Km − S3IsK⊥
(Ic + S1Is)2 + S2

3
I2s

sinχ, (25)

ϕ̇Ω = −
1

Ω

(Ic + S1Is)K⊥ + S3IsKm

(Ic + S1Is)2 + S2
3
I2s

. (26)

Up to now the developed formalism does not require any specification of the profiles of the
mutual friction coefficients and the mass densities as well as KΩ, Km and K⊥ can be arbitrary
small in magnitude functions. Next we apply the particular models (simplistic at some points)
in order to demonstrate that the choice of the model may significantly affect the rate of the
rotation evolution.
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~ez = ~Ω/Ω

~ey

~ex

~̇Ω||

~̇Ω⊥

r̃

φ

z

r

Figure 1. Coordinates and vectors
used in section 3.

~εx

~εy

~εz = ~m/m

~Ω~m

χ

ϕΩ

Figure 2. Coordinates and vectors
used in section 4.

5. Inclination angle evolution

We suppose that the most effective mutual friction mechanism is based on the electrons scattering
on the vortices magnetic field proposed by Alpar and Sauls (see [6]).

β =
σ

σ2 + 1
, β′ =

σ2

σ2 + 1
, σ = 1.3 × 10−2

x

1− x
(xρ14)

1/6

(

mp

m∗p

)1/2 (ρnp
ρpp

)2

, (27)

where x = ρc/ρ, ρ14 = ρ/10−14 g cm−3, m∗p is the effective proton mass.
Superfluid mass density matrix ραβ with taking into account temperature effects has been

calculated by Gusakov and Haensel (see [5]). Densities ραβ depend on the parameters τα =
T/Tcα, where T is the core temperature, Tcα are the temperatures of the protons and neutrons
phase transition temperature. We model Tcα profiles by the parabolas (see fig 3):

log10

(

Tcα
Tmax
cα

)

= −4 log210

(

ρ

ρmax
α

)

. (28)

It is not quite realistic of course but the variation of Tmax
cn or Tmax

cp allows us to demonstrate the
sensitivity of the results to the choice of critical temperature profiles. We determine rcore as a
radius of the sphere on which T = Tcn and suppose that T = 5× 107K.

As for the torque ~K, we use the one proposed by Barsukov, Polyakova and Tsygan (see [7] for

the detail) for which KΩ = −K0, Km = K0(1− α(χ,ϕΩ)) cos χ, K⊥ = K0R cosχ, K0 = 2Ω3m2

3c3
,

R = 9c
10Ωrns

, α(χ,ϕΩ) is the function ∼ 1 which describes the structure of the small-scale magnetic
field in vicinities of neutron star magnetic poles.

One can average the equations over the precession period and divide (25) over (26), taking
into account that P = 2π/Ω is the pulsar period:

dχ

dP
≈ −

1

P

Ic(Ic + Is)

I2c + S2
3
I2s

sinχ cosχ

sin2 χ+ ᾱ(χ) cos2 χ

[

1− ᾱ(χ)− S3
Is
Ic

9

20π

(

c

rns

)

P

]

. (29)

The evolution trajectories obtained for different initial χ and P and different Tmax
n are given in

figures 4, 5 and 6.

6. Discussion

The presence of the superfluid core increases the rate of inclination angle evolution and makes
all pulsars evolve to the orthogonal state. This facts together with observations may allow to
examine superfluid models.

We do not take into account any pinning phenomena which may play significant role in
neutron star rotational dynamics. Also we do not take into account the thermal evolution of
the neutron star. We will include these factors in our future developments.
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Tmax

cn

Tmax

cp

T

ρmax

Figure 3. Critical temperature profiles for
protons (solid line) and neutrons (dashed lines)
used in the calculations. ρmax

n = ρmax
p =

8 × 1014g/cm3, Tmax
cp = 5 × 109K, Tmax

cp =

1, 5, 20 × 108K.

Figure 4. The evolution trajectories obtained
for non-dipolarity parameter ν = 0.5 and
Tmax
cn = 1 × 108K (Is/Ic = 0.08) for pulsars

with initial periods equal to 10 msec (dotted
lines) and 100 msec (dashed lines). Stars
demonstrate the observation data for 62 pulsars
from [8].

Figure 5. The same as before but Tmax
n =

5× 108K (Is/Ic ≈ 0.5)
Figure 6. The same as before but Tmax

n =
2× 109K (Is/Ic ≈ 1)
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