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ABSTRACT
We construct new models of outer heat blanketing envelopes of neutron stars composed of
binary ion mixtures (H–He, He–C, C–Fe) in and out of diffusive equilibrium. To this aim, we
generalize our previous work on diffusion of ions in isothermal gaseous or Coulomb liquid
plasmas to handle non-isothermal systems. We calculate the relations between the effective
surface temperature Ts and the temperature Tb at the bottom of heat blanketing envelopes (at a
density ρb ∼ 108 − 1010 g cm−3) for diffusively equilibrated and non-equilibrated distributions
of ion species at different masses �M of lighter ions in the envelope. Our principal result is
that the Ts–Tb relations are fairly insensitive to detailed distribution of ion fractions over the
envelope (diffusively equilibrated or not) and depend almost solely on �M. The obtained
relations are approximated by analytic expressions which are convenient for modelling the
evolution of neutron stars.
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1 IN T RO D U C T I O N

It is well-known (see e.g. Yakovlev & Pethick 2004; Potekhin, Pons
& Page 2015, and references therein) that modelling thermal evo-
lution of neutron stars and comparing the results with observations
gives an important method to explore the properties of superdense
matter in neutron star cores. As a rule, such studies require theo-
retical determination of internal temperatures of neutron stars from
their observable surface temperatures Ts. The internal temperatures
are typically much higher than Ts because neutron stars possess thin
surface heat blanketing envelopes (HBEs) with poor thermal con-
duction. They produce good thermal insulation for stellar interiors.

The composition of HBEs is a priory unknown; they may con-
tain heavy (iron-like) elements or some amount of lighter (for in-
stance, accreted) elements. The composition affects the insulation
and introduces significant uncertainties in the studies of internal
structure of neutron stars (e.g. Weisskopf et al. 2011). The situa-
tion looks funny. The properties of the HBEs are determined by the
physics of ordinary plasma, which is much more elaborated than
the largely unknown physics of dense neutron star interiors (e.g.
Haensel, Potekhin & Yakovlev 2007; Lattimer 2014, and references
therein). Nevertheless, the uncertainties in our knowledge of the
chemical composition of the HBEs greatly complicate the investi-
gation of mysterious neutron star interiors. This motivates further
study of the HBEs with different chemical composition.

It is our aim to develop new models of the HBEs. Formally, these
envelopes extend from the bottom of the stellar atmosphere to some
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density ρ = ρb ∼ 108 − 1010 g cm−3, which can be chosen differ-
ently depending on a specific problem (Section 5). The temperature
Tb at the bottom of the HBE (ρ = ρb) depends on Ts, so that the
main problem of practical interest is to obtain the Ts–Tb relation.
This relation can be further used as a boundary condition for calcu-
lating the temperature distribution T (r, t) within the star at ρ > ρb

(e.g. Yakovlev & Pethick 2004; Potekhin et al. 2015, and references
therein).

The HBEs are geometrically thin (their typical depth does not
exceed a few hundreds metres) and contain a very small mass
�10−7 M�. Therefore, a small local part of the HBE can be ap-
proximated by a plane-parallel layer in a locally flat geometry with
a constant surface gravity gs (e.g. Gudmundsson, Pethick & Ep-
stein 1983). One usually assumes hydrostatic equilibrium, quasi-
stationary approximation, and a locally constant thermal flux which
emerges from the stellar interior to the surface. Here, we adopt these
standard assumptions which allow us to perform a relatively easy
one-dimensional calculation of the Ts–Tb relation in a local part
of the surface. Physical conditions can vary over the entire surface
(e.g. due to the presence of a strong magnetic field – see Potekhin
et al. 2015 and references therein); then, the Ts–Tb relation will also
vary.

The Ts−Tb relations have been calculated in many publications.
Let us mention the pioneering work by Gudmundsson et al. (1983)
who considered the HBEs made of iron. Potekhin, Chabrier &
Yakovlev (1997) studied the envelopes which contain either iron
or successive layers of hydrogen, helium, carbon, and iron. In the
latter case the density and temperature ranges for the existence
of any element have been restricted by the conditions of nuclear
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transformations (nuclear reactions and beta captures) and the total
mass �M of light elements (H, He and C) has been treated as a free
parameter. Similar envelopes composed of carbon (of mass �M)
on top of iron have been constructed by Yakovlev et al. (2011).
Potekhin et al. (2003) generalized the results of Potekhin et al.
(1997) to the case of strong magnetic fields. In the presence of
very strong (magnetar’s) fields in hot neutron star envelopes, the
structure of HBEs can be affected by neutrino emission (Potekhin,
Chabrier & Yakovlev 2007; Kaminker et al. 2009). In such a case,
the heat flux through the envelope is not constant. Therefore, the
Ts–Tb relation does not produce a proper boundary condition for
the neutron star cooling problem; it should be replaced by a Fb−Tb

relation, where Fb is the radial heat flux density at ρ = ρb. We will
not consider the latter case in the present paper.

All these studies have assumed the presence of only one ion (nu-
cleus) species at any density and temperature in the HBE. Here, we
neglect the effects of magnetic fields but consider the HBEs contain-
ing mixtures of ion species. The envelopes containing ion mixtures
have been studied earlier (e.g. Hameury, Heyvaerts & Bonazzola
1983; De Blasio 2000; Chang & Bildsten 2003, 2004; Chang, Bild-
sten & Arras 2010). For example, Chang & Bildsten (2003, 2004)
and Chang et al. (2010) have focused on diffusive nuclear burning
of a small amount of lighter elements which diffuse in deeper layers.
The authors have assumed diffusive equilibrium but neglected the
effects of temperature gradients on Coulomb terms (see also Sec-
tions 3 and 6). We will consider the diffusive equilibrium including
temperature gradients. We will study also ion distributions out of
diffusive equilibrium, but we neglect the effects of diffusive nuclear
burning.

Diffusion in ion mixtures is a complicated problem. We focus
on the diffusion in dense stellar plasmas where the ions can be
moderately or strongly coupled by Coulomb forces. Such plasmas
are characteristic for white dwarfs and the envelopes of neutron
stars.

Consider a non-magnetized multicomponent plasma consisting
of several ion species (α = j, j = 1, 2, . . . ) and neutralizing electron
background (α = e). Let Aj and Zj be the mass and charge numbers
of ion species j, and nα be the number density of particles α, with

ne =
∑

j

Zjnj (1)

due to electric neutrality. It is convenient to introduce (cf.
Haensel et al. 2007) the average Coulomb coupling parameter

� = �0Z5/3 Z
1/3

, where the average value of any quantity f is de-
fined as f ≡ ∑

j xjfj , xj = nj/n is a number fraction of ion species
j, n = ∑

jnj is the total number density of the ions, �0 = e2/(akBT), e
is the elementary charge, a = (4πn/3)−1/3 is the ion sphere radius,
kB is the Boltzmann constant and T is the temperature. If � � 1
the ions are strongly coupled (highly non-ideal), whereas at � � 1
they are weakly coupled; � ∼ 1 refers to the intermediate coupling.

We will mostly focus on diffusion-equilibrium HBEs. Unless
stated otherwise, this means the equilibrium with respect to diffu-
sion as well as overall hydrostatic equilibrium, not the total thermo-
dynamic equilibrium (obviously, a non-isothermal system cannot
be in the state of total thermodynamic equilibrium).

In Section 2, we present a general formulation of the diffusion and
thermal diffusion problem. In Sections 3–6, we apply this general
theory to diffusively equilibrated HBEs. We will also study non-
equilibrated envelopes (Section 7) and present analytic fits to our
Tb–Ts calculations in Appendix A.

2 G ENERAL EXPRESSI ONS FOR DI FFUS IVE
FLUXES

The general idea for deriving diffusive fluxes is the same as de-
scribed by Beznogov & Yakovlev (2013, 2014b) for an isothermal
plasma. We start from generalized thermodynamic forces f̃ α act-
ing on particles α and take into account a temperature gradient.
Therefore, f̃ α includes an additional term proportional to ∇T,

f̃ α = f α −
(

∇μα − ∂μα

∂T

∣∣∣∣
P

∇T

)
. (2)

Here, f α is a total force, acting on particles α, μα is their chemical
potential, and ∇ is the gradient operator in the proper reference
frame. For instance, in the spherical coordinates (r, θ , ϕ) for a non-
rotating star with a spherically symmetric mechanical structure we
have (cf. e.g. Haensel et al. 2007)

∇ =

⎛⎜⎜⎝
e−	(r)∂/∂r

r−1 ∂/∂θ

(r sin θ )−1 ∂/∂ϕ

⎞⎟⎟⎠ , (3)

where 	(r) = −(1/2)ln (1 − GMr/c2r) is the metric function,
which determines the space curvature in the radial direction,
Mr = 4π

∫ r

0 ρ(r)r2 dr is the gravitational mass inside a sphere of
circumferential radius r, G is the gravitational constant and c is
the speed of light. In HBEs of neutron stars the hydrostatic bal-
ance is mainly controlled by the electric and gravitational forces.
Therefore,

f α = ZαeE + mα g, (4)

where Zαe and mα are charge and mass of particles α, respectively
(Ze = −1); g is a gravitational acceleration (defined below) and E
is an electric field due to plasma polarization in the gravitational
field.

Deviations from the diffusion equilibrium are characterized by
the quantities dα introduced in the same way as in Beznogov &
Yakovlev (2013, 2014b),

dα = ρα

ρ

∑
β

nβ f̃ β − nα f̃ α, (5)

where ρα = mαnα is a mass density of particles α and ρ is the
total mass density. Clearly,

∑
α dα = 0. Using equations (2) and

(4), the Gibbs–Duhem relation
∑

αnα∇μα = ∇P − S∇T (S being
the entropy density) and the electric neutrality condition (1), we
obtain∑

α

nα f̃ α = ρg − ∇P . (6)

We are interested in the HBEs at hydrostatic equilibrium. Then the
right-hand side of equation (6) is zero, and equation (5) simplifies
to

dα = −nα f̃ α. (7)

Using equations (2) and (4), equation (7) can be rewritten as

dα = −ρα

ρ
∇P − ZαnαeE + nα

(
∇μα − ∂μα

∂T

∣∣∣∣
P

∇T

)
. (8)

Since the electrons are much lighter than the ions, we use the adi-
abatic (or Born–Oppenheimer) approximation, which assumes the
electron quasi-equilibrium with respect to the motion of atomic
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nuclei. In this approximation, de = 0 and me → 0, which leads to
f̃ e = 0 and to

eE = −
(

∇μe − ∂μe

∂T

∣∣∣∣
P

∇T

)
. (9)

This expression can be rewritten in terms of chemical potentials
of ions, using standard thermodynamic relations (e.g. Landau &
Lifshitz 1993).

Chemical potentials are usually known as functions of tempera-
ture and number densities. It is therefore useful to express ∂μ/∂T

at constant P and xj in terms of ∂μ/∂T at constant nj,

∂μ

∂T

∣∣∣∣
P ,{xj }

= ∂μ

∂T

∣∣∣∣
{nj }

− ∂P

∂T

∣∣∣∣
{nj }

×
∑

j

nj

∂μ

∂nj

∣∣∣∣
T ,{nk |k 
=j}

⎛⎝∑
j

nj

∂P

∂nj

∣∣∣∣
T ,{nk |k 
=j}

⎞⎠−1

.

(10)

Phenomenological transport equations for the diffusive fluxes can
be written as

Jα = nmα

ρkBT

∑
β 
=α

mβDαβ dβ − DT
α

∇T

T
, (11)

where Dαβ is a generalized diffusion coefficient for particles α

with respect to particles β, DT
α is a thermal diffusion coefficient of

particles α, and the coefficient before the sum is chosen so as to
match the conventional definition of Dαβ (e.g. Hirschfelder, Curtiss
& Bird 1954; Lifshitz & Pitaevskiı̆ 1981; cf. Beznogov & Yakovlev
2013).

3 THEORY O F H BEs IN DIFFUSIVE
EQUILIBRIUM

Consider an HBE composed of a mixture of two ion species and
neutralizing electron background, the so called binary ionic mix-
ture (BIM). In order to construct the diffusion-equilibrium HBE, we
use several assumptions. First, electrons have little impact on the
transport of ions (see Paquette et al. 1986) so that the ion subsys-
tem can be studied (quasi-)independently. This means that we can
set J e = 0 and, consequently, J1 = −J2. Secondly, the thermal
diffusion term may affect the result. However, it is usually small
compared to ordinary diffusion which allows us to neglect thermal
diffusion (we will briefly discuss this statement in Section 7). With
these assumptions, one can simplify the diffusive flux of ions,

J2 = −J1 = nm1m2

ρkBT
D12d1, (12)

where D12 is the interdiffusion coefficient. According to equation
(12), the diffusion equilibrium J2 = 0 is equivalent to the condition
d1 = 0, or to f̃ 1 = 0 if we take into account (7). Equation f̃ 1 = 0
(along with f̃ 2 = 0 and f̃ e = 0 as discussed in Section 2) can
then be used to calculate the equilibrium configuration. Combining
equations (2), (4) and (10) we obtain the following system of linear
first order differential equations,

∇̃μe = −eE, ∇̃μj = mj g + ZjeE, (13)

where ∇̃ is defined as

∇̃μα ≡
∑

j

∂μα

∂nj

∇nj + ∂P

∂T

∑
j

nj

∂μα

∂nj

(∑
k

nk

∂P

∂nk

)−1

∇T .

(14)

Subscripts j and k run over all ion species, μα and P are assumed
to be known together with their derivatives as functions of {nj}
and T, and the unknowns are ∇nj and eE. Note that by neglecting
the thermal diffusion term in the diffusive flux (12), we have also
excluded the reciprocal Dufour effect in equation (15) [see below].
In this approximation, we do not need an explicit expression for
Dαβ . However, generally, taking into account thermal diffusion, the
Dufour effect or transformations of ions (e.g. because of chemical or
nuclear reactions) one needs both the diffusion and thermal diffusion
coefficients to find the equilibrium configuration.

The closure of the system of equations (13) and (14) is provided
by the heat transport equation (see e.g. Potekhin et al. 2015 and
references therein)

e−�κ ∇ (
T e�

) = −FT, (15)

where FT is a local thermal flux, κ is a thermal conductivity, ∇
is given by equation (3) and �(r) is the metric function, which
determines gravitational redshift (an effective dimensionless gravi-
tational potential).

Since the thickness of the HBE is much smaller than the (cir-
cumferential) neutron star radius R, the envelope can be considered
as effectively flat and the functions � and 	 can be replaced by
constants, 2� ≈ −2	 ≈ ln (1 − 2GM/Rc2). In this approximation
(see Gudmundsson et al. 1983), the hydrostatic equilibrium and heat
diffusion equations can be written as

dP

dz
= gsρ, κ

dT

dz
= FT, (16)

where gs = e	GM/R2 is the surface gravitational acceleration and
z = e	(R − r) is the proper depth.

The system of equations (13) together with the equation of state
(EOS) and the heat transport equation (15) constitute the full set
of equations required for calculating the diffusively equilibrated
configuration of the envelope. The integration is carried out from
the atmosphere (with an effective temperature Ts) to ρ = ρb. This
gives the distribution of all physical quantities (particularly, T, P
and nα) within the HBE; then, we have Tb = T(ρb), and construct
the required Tb–Ts relation.

For the EOS, we use analytical approximations described in
Potekhin & Chabrier (2010).1 The thermal conductivity κ is cal-
culated as the sum of the electron conductivity κe and the photon
conductivity κph = 16σ SBT 3/(3ρKrad), where Krad is the radiative
opacity. For the latter, we use the Rosseland mean opacities pro-
vided either by the Opacity Library (OPAL; Rogers, Swenson &
Iglesias 1996)2 or by the Opacity Project (OP; Mendoza et al. 2007
and references therein).3 We have checked that the differences be-
tween the OPAL and OP opacities are negligible for the conditions
of our interest. We have performed interpolation across the radia-
tive opacity tables and extrapolation outside their ranges in the same
way as in Potekhin et al. (1997). The electron thermal conductiv-
ities κe have been calculated using the approximations described
in Appendix A of Potekhin et al. (2015) (see references therein
for details).4 Typically, photon conduction dominates (κph > κe) in
the outermost non-degenerate neutron star layers, whereas electron

1 The corresponding Fortran code is available at http://www.ioffe.ru/
astro/EIP/
2 Available through the MESA project (Paxton et al. 2015 and references
therein) at http://mesa.sourceforge.net/index.html
3 Available at http://opacities.osc.edu/rmos.shtml
4 The corresponding Fortran code is available at http://www.ioffe.ru/astro/
conduct/
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conduction dominates in deeper, moderately or strongly degenerate
layers (Gudmundsson et al. 1983).

Equations (13) are analogous to the chemical equilibrium equa-
tions of Chang et al. (2010). The difference is in the presence of the
∇T term in equations (2) and (14).

4 OV E R A L L D E S C R I P T I O N O F M O D E L S

We have modelled a number of HBEs composed of 1H–4He, or
4He–12C or 12C–56Fe mixtures. Real envelopes can naturally con-
tain other ions; we have chosen these three BIMs as important
illustrative examples. The calculations have been performed for the
surface gravity gs0 = 2.4271 × 1014 cm s−2, which corresponds to
the ‘canonical’ neutron star model with the mass M = 1.4 M� and
radius R = 10 km. For two realistic EOS models of neutron star
matter, APR (Akmal, Pandharipande & Ravenhall 1998) or BSk21
(Goriely, Chamel & Pearson 2010; Potekhin et al. 2013, and ref-
erences therein), this surface gravity corresponds to neutron stars
with M = 1.73 M� and R = 11.3 km or with M = 2.00 M� and R
= 12.3 km, respectively. In the adopted locally flat approximation,
the structure of the envelope will not depend on M and R separately,
but only on the surface gravity gs. Such models of HBEs are self-
similar. It is sufficient to build a model for one value of gs; it can
be immediately rescaled for another gs (Gudmundsson et al. 1983),
also see Appendix A and equation (17) below.

It is natural that all our calculations of diffusively equilibrated
envelopes demonstrate stratification of elements. One always has H
on top of He in H–He envelopes, He on top of C in He–C envelopes
and C on top of Fe in C–Fe ones. Therefore, any envelope contains
an upper layer which mainly consists of lighter ions, a bottom layer
mostly composed of heavier ions and a transition layer which is
essentially a BIM. The width of the transition layer is variable (as
discussed below).

As far as the ion separation is concerned, the three BIMs of our
study are different. In the H–He and C–Fe envelopes, the ‘molecular
weights’ Zj/Aj of ions j = 1 and 2 are different, and the separa-
tion is mainly gravitational. In the He–C envelopes, the ‘molecular
weights’ are almost equal. Therefore, the separation is produced
by weaker Coulomb forces; the gravitational separation due to the
nuclear mass defects is still much weaker in this case – see Chang
et al. (2010), Beznogov & Yakovlev (2013).

To analyse the results, we need a parameter which would char-
acterize the position of the intermediate layer and the mass �M of
lighter nuclei in the HBE. It is instructive to introduce the effective
transition density ρ∗ and pressure P ∗ as the density and pressure at
such an (artificial) surface that the total mass �M contained in the
outer shell at P < P ∗ would be equal to the actual total mass of the
lighter ion species in the absence of diffusive mixing (as if for exact
two-shell structure). In the approximation that all the pressure is
provided by degenerate electrons, one has (e.g. Gudmundsson et al.
1983; Potekhin et al. 1997; Ofengeim et al. 2015)

�M

M
= 0.838

g2
s14

P ∗

1034 dyn cm−2 = 1.510 × 10−11

g2
s14

×
{

ξ (ρ∗)
√

1 + ξ (ρ∗)2

[
2

3
ξ (ρ∗)2 − 1

]

+ ln
[
ξ (ρ∗) +

√
1 + ξ (ρ∗)2

] }
, (17)

where gs14 is the surface gravity in units of 1014 cm s−2,

ξ (ρ) = 0.010 09 (ρZ/A)1/3 (18)

is the dimensionless electron relativity parameter (where ρ is meant
to be measured in g cm−3), while Z and A are, respectively, the
charge and mass numbers of lighter ions. Thus, we characterize
�M by ρ∗.

The solution of equation (17) with respect to ξ gives us the ef-
fective transition density ρ∗. Starting from an arbitrary fixed value
of x1 = n1/n near the surface, we integrate the system of equations
(13), (14) and (16) inside the HBE and obtain different profiles of
ion densities nj(z) (j = 1, 2), which correspond to different �M and
ρ∗. Note that for small enough ρ∗ the electron degeneracy can be re-
moved. In such cases, equation (17) presents just a formal definition
of ρ∗ through �M; ρ∗ acquires clear meaning of the characteristic
transition density if it belongs to the domain of degenerate electrons.

5 PA R A M E T E R S O F M O D E L S A N D T H E I R
R A N G E S

After fixing the surface gravity gs, our models of HBEs are char-
acterized by a composition (H–He, He–C or C–Fe), an effective
surface temperature Ts, an amount of lighter ions in the envelope
(specified by ρ∗ or �M) and by a density ρb at the envelope bot-
tom. The input parameters are naturally restricted (see e.g. Potekhin
et al. 1997 and references therein). In particular, at high T and/or ρ

hydrogen transforms into helium (due to thermo- or pycno-nuclear
burning and beta captures; very roughly, this happens at T � 4 ×
107 K and/or ρ � 107 g cm−3). Then, helium transforms into car-
bon (at T � 108 K and/or ρ � 109 g cm−3), and carbon transforms
into heavier elements (at T � 109 K and/or ρ � 1010 g cm−3). An-
other restriction is that ρ∗ � ρb; otherwise, the HBE is essentially
one-component (consists of lighter ions). The mass �M cannot be
smaller than the mass of the atmosphere (that is typically ∼10−18

− 10−16 M�).
A choice of ρb deserves special comments. The introduction

of ρb accelerates numerical simulations of thermal evolution of
neutron stars. One can use an obtained Tb–Ts relation to simulate
the temperature distribution within the star (at ρ > ρb) taking T = Tb

as a boundary condition. However, Tb–Ts relations are calculated in
a stationary approximation. Therefore, such a boundary condition is
valid as long as time variations of T within the HBE are slower than
typical time td of thermal diffusion through this envelope. Simple
estimates of td for an iron HBE of a ‘canonical’ neutron star at Ts =
1 MK give td ∼ 1 yr for ρb = 1010 g cm−3. With this ρb one cannot
model variations of Ts ∼ 1 MK shorter than one year. Moving ρb

closer to the surface, ρb → 108 g cm−3, one comes to td ∼ 1 d,
which would allow one to simulate much shorter time variations of
Ts with the cooling code (but the code could become less efficient).
We present the results for different ρb, which should be helpful for
solving different problems of thermal evolution of neutron stars.

We have constructed many models of HBEs with different pa-
rameters. The effective surface temperature has been varied from
Ts ∼ 0.3 to Ts ∼ 3 MK which is a typical range of Ts measured for
cooling isolated neutron stars (see Viganò et al. 2013 and references
therein.5). For the H–He envelopes, we have considered ρb = 108

and 109 g cm−3, and varied ρ∗ up to ∼107 g cm−3. For the He–C and
C–Fe envelopes, we have taken ρb = 108, 109 and 1010 g cm−3. In
case of the He–C envelopes, we have varied ρ∗ up to ∼108 g cm−3,
and for the C–Fe envelopes up to 109 g cm−3. We have mainly lim-
ited our calculations to those cases in which T(ρ) in the envelope

5 A table of observed characteristics of thermally emitting neutron stars is
available at http://www.neutronstarcooling.info/
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Diffusive heat blankets of neutron stars 1573

Figure 1. Number fractions of lighter elements versus ρ (left-hand panel) and T(ρ) dependence (right-hand panel) in He–C and C–Fe HBEs of a ‘canonical’
neutron star (M = 1.4 M�; R = 10 km). Curves are calculated for Ts6 = Ts/106 K = 0.8 and 1.5 at ρ∗ = 106 g cm−3 (He–C; black lines) and 108 g cm−3(C–Fe;
grey lines).

is lower than characteristic temperature of nuclear transformations
(see above).

6 R ESULTS FOR D IFFUSIVELY
E QUILIBRATED ENVELOPES

Fig. 1 illustrates the distribution of ions and the temperature pro-
files T(ρ) in the He–C and C–Fe envelopes with ρb = 1010 g cm−3.
Calculations are performed for two surface temperatures, Ts = 0.8
and 1.5 MK (solid and dashed lines, respectively). The total amount
of lighter ions is fixed to ρ∗ = 106 g cm−3 for the He–C envelope
(black lines), and to 108 g cm−3 for the C–Fe one (grey lines). Ac-
cordingly, the transition layer from lighter ions to heavier ones for
the C–Fe envelope lies deeper. The assumed ρ∗ in the He–C enve-
lope corresponds to the geometrical depth z∗ ≈ 3 m, and the bottom
depth of the envelope is zb ≈ 161 m; for the C–Fe envelope, we
have z∗ ≈ 28 m and zb ≈ 145 m.

The left-hand panel of Fig. 1 demonstrates the density depen-
dence of the number fraction x1 of lighter ions (He for He–C; C for
C–Fe). One can observe different profiles x1(ρ) for the He–C and
C–Fe envelopes. Characteristic relative width δρ/ρ∗ of the transi-
tion layer in the He–C envelope is typically more than ten times
larger than in the C–Fe envelope. This results from much weaker
(Coulomb) separation in the He–C mixture. If the separation of ions
is gravitational (as in C–Fe or H–He BIMs) a transition from lighter
to heavier ions in diffusive equilibrium is rather sharp, but in case
of Coulomb separation (He–C) it is broad (similar conclusion has
been made by Chang et al. 2010). There appears a tail of He ions
at densities much larger than ρ∗; these ions constitute a noticeable
fraction of the total He mass, �M. Of course, similar tail exists
also in the C–Fe mixture, but it is much less pronounced. When
Ts decreases, the envelopes become colder and the transition layers
narrower.

The right-hand panel of Fig. 1 shows the temperature T versus
density in the same envelopes. Because the He–C envelope consists
of lighter ions, it is overall more heat transparent, than the C–Fe
envelope, and has a lower T(ρ) for the same Ts. For the densities

Figure 2. Tb–Ts relations in He–C (black lines) and C–Fe (grey lines)
HBEs of a ‘canonical’ neutron star with ρ∗ = 106 and 108 g cm−3 for He–C
envelopes (solid and dashed curves, respectively) and with ρ∗ = 108 and
109 g cm−3 for C–Fe envelopes (solid and dashed curves, respectively);
ρb = 1010 g cm−3. See text for details.

close to 1010 g cm−3, the thermal conductivity becomes so high that
the temperature T(ρ) tends to saturate reaching the temperature
of nearly isothermal matter behind the HBE (Gudmundsson et al.
1983; Potekhin et al. 1997).

Fig. 2 displays the Tb–Ts relations calculated for the He–C and
C–Fe envelopes with ρb = 1010 g cm−3. In case of the He–C en-
velope, we plot Tb − Ts at ρ∗ = 106 and 108 g cm−3, while for the
C–Fe envelope at ρ∗ = 108 and 109 g cm−3. Because the He–C en-
velope is overall more heat transparent, it has a lower Tb for the
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1574 M. V. Beznogov, A. Y. Potekhin and D. G. Yakovlev

Figure 3. Internal temperature Tb calculated assuming ρ∗ = 106 g cm−3 and ρb = 1010 g cm−3 for a ‘canonical’ neutron star as a function of the surface
temperature Ts for He/C (left-hand panel) and C/Fe (right-hand panel) pure elements and mixtures. Solid curve refers to pure C on both panels. Short-dashed
curve is for pure He on the left-hand panel and to pure Fe on the right-hand one. Long-dashed curve refers to the He–C mixture on the left and to the C–Fe
mixture on the right. See text for details.

Figure 4. Internal temperature Tb versus ρ∗ for a ‘canonical’ neutron star with a H–He HBE extended to ρb = 108 or 109 g cm−3 (left-hand panel) and with a
He–C envelope extended to ρb = 108, 109 or 1010 g cm−3 (right-hand panel). The surface temperature is Ts = 1.47 MK. One can see the transition from the
case of purely heavy ions (low ρ∗) to purely light ions (high ρ∗). See text for details.

same Ts. By increasing ρ∗; we increase the amount of lighter ions
in a given envelope, which also increases the heat transparency (at
sufficiently high ρ) and decreases Tb (at sufficiently high Ts at which
the main temperature gradient reaches the range of ρ ∼ ρ∗).

Fig. 3 shows typical Tb–Ts relations for the He–C (left-hand
panel) and C–Fe (right-hand panel) envelopes. On each panel,
we plot Tb–Ts for an envelope containing pure lighter ions (He
or C), pure heavier ions (C or Fe) and a mix appropriate to
ρ∗ = 106 g cm−3. Envelopes of pure lighter ions are better heat
conductors and have lower Tb(Ts). Envelopes of pure heavier ions

are better heat insulators and have higher Tb(Ts). Envelopes contain-
ing BIMs produce intermediate heat insulation. Increasing ρ∗ varies
their insulation from that for heavier ions to that for lighter ones.

Fig. 4 demonstrates the dependence of Tb on the transition density
ρ∗ for the H–He (left-hand panel) and He–C (right-hand panel)
envelopes. The surface temperature is fixed to Ts = 1.47 MK. The
solid lines are calculated assuming ρb = 108 g cm−3, the short-
dashed lines are for ρb = 109 g cm−3 and the long-dashed line for
the He–C envelope is for ρb = 1010 g cm−3. We do not present
similar line for the H–He envelope because He cannot survive at
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Diffusive heat blankets of neutron stars 1575

Figure 5. Profiles of the helium (decreasing) and carbon (increasing) num-
ber fractions as functions of density ρ for five models of He–C envelopes
of a ‘canonical’ neutron star with Ts = 1.1 MK. Different models 1 – 5 are
shown by different line styles (see text for details). They either include or
exclude the ∇T term in equation (2), as indicated in the legend. An asterisk
on each curve marks the effective transition density ρ∗.

such high densities (Section 5). Any line exhibits a transition from
the regime of low ρ∗, where the amount of lighter ions is small
and the envelope behaves as almost fully composed of heavier ions,
to the regime of high ρ∗, where the amount of heavier ions is
small and the envelope behaves as if it consists of lighter ions. The
ranges of intermediate ρ∗ in which the binary composition is really
significant are seen to be wide.

Notice the anomalous behaviour of the H–He BIM. For this BIM,
contrary to the He–C and C–Fe BIMs, increasing the amount of
lighter (hydrogen) ions leads to the growth of Tb. This effect has
been overlooked in previous studies (see, e.g. Potekhin et al. 1997)
which stated that replacing He with H does not affect Tb. The effect
is mainly because hydrogen has a different mass to charge ratio
than helium and carbon, and also because of low radiative opacities
of helium. A C–Fe mixture has the same transition ‘direction’ as
He–C mixture since the mass to charge ratio of iron is not very
different from that of carbon (unlike hydrogen where the difference
is larger).

Fig. 5 shows the impact of the ∇T term in equation (2), or in
(14), on the properties of He–C envelopes. The figure shows the
helium fraction profile xHe(ρ) calculated in five cases (curves 1 – 5)
for the same surface temperature Ts = 1.1 MK. Cases 1, 3, and
5 are calculated with account of the ∇T term, whereas in cases 2
and 4 this term is neglected (which is equivalent to the approxima-
tion made by Chang et al. 2010; Beznogov & Yakovlev 2013). The
curves 2 and 3 are computed for the same effective transition density
ρ∗ ≈ 1.7 × 104 g cm−3, whereas model 1 has the same trace amount
of carbon with model 2 at the radiative surface, from which we start
the integration [xC(z = 0) = 2 × 10−6]. The latter boundary con-
dition leads to a different accumulated He mass, that is to different
transition density ρ∗ ≈ 3.7 × 103 g cm−3. However, the differences
between the curves 1, 2 and 3 are insignificant for the Tb–Ts relation.
The calculated Tb values differ by �1 per cent, because the corre-
sponding ρ∗ lie outside the ‘sensitivity strip’ (Gudmundsson et al.

Figure 6. Effective density ρ∗
b at the bottom of the HBE composed either

of pure Fe (solid line) or of pure C (dashed line) as a function of Ts for a
‘canonical’ neutron star. See text for details.

1983) which is the ρ − T domain where the conductivity affects the
Tb–Ts relation most significantly. At contrast, both models 4 and
5 have ρ∗ ≈ 9 × 105 g cm−3 inside the sensitivity strip, but in this
case the ∇T term is less significant because of stronger degeneracy.
As a consequence, the curves 4 and 5 are very close to each other,
so that the ∇T term is also unimportant for the Tb–Ts relation (the
difference in Tb is again within 1 per cent).

We note that in the cases 1 – 3 the He abundance is quite low,
xHe � 0.01, at the transition density ρ∗. This reflects the fact that
in these three cases the layer with high He abundance is mostly
nondegenerate, but a considerable fraction of the total He mass is
supplied by a diffusive tail in the deeper degenerate layers of the
envelope.

Our calculations show that the ∇T term significantly affects the
ion fractions if the layer, where the ion Coulomb coupling is moder-
ate (neither weak nor strong), is close to the layer, where a transition
from lighter to heavier ions takes place. Such situations may occur
at sufficiently high Ts in the outer layers (ρ � 107 g cm−3) of the
envelopes composed of sufficiently light elements like hydrogen,
helium or carbon. Even in these cases the Tb–Ts relations, the pres-
sure and total density profiles are affected much weaker by the
∇T term. Moreover, in the limit of strong Coulomb coupling (de-
scribed, e.g. in Beznogov & Yakovlev 2013) the ∇T term vanishes
completely and non-isothermal calculations coincide exactly with
isothermal ones (as long as we do not take into account thermal
diffusion).

Finally, Fig. 6 illustrates another important feature of HBEs
which is not related directly to their multicomponent structure.
Specifically, it concerns the meaning of ρb. If one integrates the
equations of thermal structure for an HBE from the surface to the
bottom (ρ = ρb), one often obtains (e.g. Fig. 2) that the growth
of T(ρ) nearly saturates at some ρ = ρ∗

b < ρb. This saturation is
evidently associated with the growth of the thermal conductivity
within the star. It is especially pronounced in a cold neutron star
manifesting the appearance of the inner isothermal region ρ > ρ∗

b

within the star. In contrast to the density ρb which is ‘artificially
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Figure 7. Helium number fraction versus density in HBEs of a ‘canonical’ neutron star with Ts = 1 MK containing H and He (left-hand panel; �M = 5.09 ×
10−14 M�, log ρ∗ = 5.06) or He and C (right-hand panel; �M = 3.04 × 10−11 M�; log ρ∗ = 7.18). Solid lines refer to the envelopes in diffusive equilibrium,
while short-dashed and long-dashed lines are for the envelopes out of diffusive equilibrium, with narrower and wider transition layers, respectively. See text
for details.

assumed’, ρ∗
b can be viewed as a ‘real physical’ bottom density of

the HBE. Fig. 6 shows this density for a ‘canonical’ neutron star,
whose envelope consists solely either of iron or carbon. In a hot
star (Ts ∼ 3 MK), the physical HBE is thick (close to the assumed
HBE with ρb ∼ 1010 g cm−3). However, when the star cools, ρ∗

b de-
creases, implying that Tb is actually determined by a much thinner
‘physical’ heat insulating layer. For instance, at Ts = 1 MK we have
ρ∗

b � 107 g cm−3 so that Tb becomes insensitive to the physics of
matter at higher densities (to the composition of such a matter and
to whether it is liquid or solid). The colder the star, the thinner the
‘physical’ HBE. On the other hand, let us remind that the HBE can
become thick, with ρ∗

b > 1010 g cm−3, for magnetars, as shown by
Potekhin et al. (2007). In a multilayer HBE, it is also possible to
encounter a ‘false physical bottom’, where T(ρ) saturates at certain
ρ∗

b , but resumes its growth at a larger density when it enters a layer
with a higher Z.

7 N O N - E QU I L I B R I U M H B E S

In addition to diffusively equilibrated HBEs considered above, we
have also studied the HBEs out of diffusive equilibrium. Since ion
diffusion is rather slow (see below) such envelopes can exist for a
long time (being, of course, in the overall hydrostatic equilibrium).
For illustration, we study them in a quasi-statical approximation,
fix the distribution of ions, xj(ρ), disregard the diffusive equilibrium
and calculate the structure of the envelopes by integrating equations
(16). This is much easier than respect the diffusive equilibrium.

Some illustrative results are shown in Fig. 7. On the left-hand
panel, we present three models of H–He envelopes, and on the right-
hand panel three models of He–C envelopes. The figure shows the
profile of the helium number fraction xHe versus ρ for a ‘canonical’
neutron star. The surface temperature is fixed to Ts = 1 MK for all
models. All the three H–He models have the same amount of hy-
drogen (log ρ∗ = 5.06 [ g cm−3]) and all the three He–C models the
same amount of He (log ρ∗ = 7.18). The helium fraction decreases
with ρ on the left-hand panel (because He ions are heavier than

H) and increases with ρ on the right-hand panel (because He ions
are lighter than C ones). The solid line on each panel corresponds
to diffusively equilibrated envelopes (calculated as described in the
previous sections). The dashed lines are for the envelopes taken
to be out of diffusive equilibrium. The short-dashed lines refer to
narrower (than in diffusive equilibrium) transition layers, while the
long-dashed lines refer to wider layers.

It is remarkable that for all the three He–C models we obtain
almost the same Tb = 4.00 × 107 K (which we present for ρb =
1010 g cm−3, as an example). The same is true for H–He models. For
instance, assuming ρb = 109 g cm−3, we have Tb = 4.64 × 107 K
for the equilibrium and narrower transition layers and Tb = 4.54 ×
107 K for the wider transition layer. Therefore, the resulting Tb–Ts

relations seem highly insensitive to the actual state of the envelope,
whether it is equilibrated or not. These Tb–Ts relations are mainly
determined by the mass �M of lighter ions (or, equivalently, by
ρ∗). Of course, this statement is true for the envelopes where the
distribution of ions is not too much wider than the equilibrium one.
This is illustrated by a relatively large deviation from the equilibrium
for the wider H–He distribution; in this case, Tb becomes slightly
different from the equilibrium one. However, large deviations from
equilibrium are expected to relax at short time-scales (days to years,
see below).

The insensitivity of Tb–Ts relations to number fraction distribu-
tions throughout the envelopes also answers the question on thermal
diffusion. Although thermal diffusion can change the ion fractions,
this change would not affect the resulting Tb–Ts relation. However,
if one is interested in the processes which are sensitive to num-
ber fractions (e.g. diffusive nuclear burning) then thermal diffusion
can be important. We have made order of magnitude estimates of
the impact of thermal diffusion on the diffusion velocity. We have
assumed a constant thermal diffusion ratio kT = 0.1. This is a con-
servative upper limit obtained in our calculations with the effective
potential method described by Beznogov & Yakovlev 2014a; real
values are smaller. For H–He mixture (xH = xHe = 0.5) the ther-
mal diffusion correction to the diffusion velocity does not exceed
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3 per cent, while for He–C mixture (xHe = xC = 0.5) it does not
exceed 6 per cent. This correction has its largest value near the sur-
face where the temperature gradient is big (see, e.g. the right-hand
panel of Fig. 1) and decreases with depth.

Using equation (12) and taking typical depth-scales �z of de-
viations from diffusive equilibrium in the transition layer, for the
conditions in Fig. 7, we can estimate characteristic relative veloci-
ties V of two ion species during diffusive equilibration in that layer
and typical equilibration times teq ∼ �z/V. For H–He envelopes
(left-hand panel), we very roughly obtain �z ∼ a few metres, the
equilibration velocity V ∼ 10−4 − 10−3 cm s−1 and the equilibra-
tion time teq ∼ one or a few days. For He–C envelopes (right-hand
panel), we also have �z ∼ a few metres, but the diffusive velocities
V ∼ 10−7 − 10−6 cm s−1 are lower, and teq ∼ a few years. The equili-
bration in the He–C envelopes goes much slower because of weaker
Coulomb separation and deeper transition layer. Our example shows
that the He–C envelopes can be out of diffusive equilibrium for a
long time.

8 C O N C L U S I O N S

We have considered two-component HBEs of neutron stars. These
envelopes can be either in diffusive equilibrium or out of it. Our
main goal has been to relate the effective surface temperature of the
star, Ts, to the temperature Tb at the bottom of the envelope (ρ =
ρb ∼ 108 − 1010 g cm−3) and to investigate the sensitivity of this
relation to the distribution of ion species within the envelope.

We have derived general expressions for the diffusive fluxes in
multicomponent non-isothermal gaseous or liquid Coulomb sys-
tems of ions with arbitrary Coulomb coupling taking into account
temperature gradient. In the limit of weakly coupled plasma, these
expressions reproduce the classical expressions for diffusion in ideal
gas mixtures. Our new expressions are valid not only for Coulomb
systems, but also for any gaseous or liquid system (diffusion is
also available in solids, e.g. Hughto et al. 2011, but it is greatly
suppressed there compared to gases and liquids).

For applications, we have calculated the Tb–Ts relations for two
component envelopes (containing H–He, He–C or C–Fe mixtures).
These envelopes are naturally stratified into three layers. The outer
layer consists predominantly of lighter ions; the inner layer near
the envelope bottom contains mainly heavier ions, and there is a
transition layer of essentially binary mixture in between. The strat-
ification in the H–He and C–Fe envelopes, where two ion species
have different ‘molecular weights’, is mainly gravitational; while
in the He–C envelopes, it is much weaker (Coulombic). Accord-
ingly, the transition layers in the He–C envelopes are much wider
than in other envelopes. The Tb–Ts relations have been determined
for diffusively equilibrated envelopes with different mass �M of
lighter ions (or, equivalently, with different characteristic densities
ρ∗ which specify the position of the transition layer). The results
are approximated by analytic expressions in Appendix A, which can
be used for simulating thermal evolution of isolated and accreting
neutron stars and related phenomena (e.g. Chang & Bildsten 2003,
2004; Yakovlev & Pethick 2004; Chang et al. 2010; Potekhin et al.
2015).

The most striking result of our analysis is that the Tb–Ts relations
are fairly independent of the structure of the transition layer (of its
width, distribution of ions and of whether it is diffusively equili-
brated or not). These relations depend only on �M (or on ρ∗). This
allows us to expect that the fit expressions presented in Appendix
A can be used not only for diffusively equilibrated envelopes but
also for a much wider class of envelope models. In particular, this

remarkable property justifies previous studies (Potekhin et al. 1997;
Yakovlev et al. 2011) of HBEs as a sequence of layers composed
of single ion species (e.g. H, He, C and Fe); slow diffusion of ions
does not introduce noticeable changes in Tb–Ts relations. However,
nuclear transformations, which can noticeably change �M, can af-
fect these relations indirectly (Chang & Bildsten 2004; Chang et al.
2010).

Thus, we have confirmed the previous Tb–Ts relations and ex-
tended their studies. First of all, we have considered H–He and
He–C envelopes and approximated the appropriate Tb–Ts relations
by analytic expressions for different ρ∗ and ρb in Appendix A. We
have also reconsidered C–Fe envelopes, found good agreement with
previous results (Yakovlev et al. 2011), and fitted the Tb–Ts relations
(Appendix A).

It is evident that our two-component envelopes are idealized; real
envelopes may contain much more ion components. However, ion
stratification seems to be rather strong to prevent the appearance of
layers of essentially multicomponent mixtures if the HBEs contain
many ion species. It is likely that real envelopes have onion-like
structure. Let us stress once more a great difference of gravitational
and Coulomb stratifications. The latter one is much slower so that
the ions with the same charge-to-mass ratio (like He and C) are
mixed much easier than other ions, have much thicker transition
layers, and can be out of diffusive equilibrium for a longer time.
They can form much more extended ‘tails’ outside the transition
layer which can affect nuclear burning, thermal conduction and
other processes important for thermal structure and evolution of
neutron stars. Similar stratification features may be important in
white dwarfs.

The expressions for the diffusive fluxes combined with the diffu-
sion coefficients (see e.g. Beznogov & Yakovlev 2014a) allow one
not only to calculate the diffusively equilibrated configurations of
HBEs of neutron stars, but also the equilibration of these configu-
rations with time.
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APPENDIX A : DATA FITTING

We have constructed accurate fits to all computed Tb(Ts, ρ
∗) data.

These fits have the same general form, but the details depend on a
particular mixture. The general form reads

Tb

(
Y , ρ∗) = 107K ×

⎛⎝f4(Y ) + [f1(Y ) − f4(Y )]

×
[

1 +
(

ρ∗

f2(Y )

)f3(Y )
]f5(Y )

⎞⎠, (A1)

where functions f1, . . . , f5 are specific for each mixture and Y =
(Ts/1MK)(gs0/gs)1/4. The latter relation provides scaling of Tb with
gs (Gudmundsson et al. 1983), making the fits valid for any gs; gs0

= 2.4271 × 1014 cm s−2 is the value of gs used in our computations;
Ts is the surface temperature for a star with the surface gravity gs;
Y has meaning of the surface temperature expressed in MK for the
star with the surface gravity gs0.

For the H–He envelopes,

f1(Y ) = p1Y
p2

√
1 + p3Yp4 ,

f4(Y ) = p5Y
p6

√
1 + p7Yp8 ,

f2(Y ) = p9Y
p10(

1 − p11Y + p12Y 2
)2 ,

f3(Y ) = p13Y
−p14 , f5(Y ) = −0.3.

(A2)

The values of the fit parameters are presented in Table A1, and the
fit errors are in Table A4.

For the He–C envelopes,

f1(Y ) = p1Y
p2 log10 Y+p3 , f4(Y ) = p4Y

p5 log10 Y+p6 ,

f2(Y ) = p7Y
p8(log10 Y)2+p9 ,

f3(Y ) = p10

√
Y

Y 2 + p2
11

, f5(Y ) = −0.2.

(A3)

The fit parameters and errors are given in Tables A2 and A4, re-
spectively.

Finally, for the C–Fe envelopes,

f1(Y ) = p1Y
−p2

(
p3Y

2 + p4Y
4 − 1

)
,

f4(Y ) = p5Y
p6

(
1 + p7Y

2 − p8Y
4
)
,

f2(Y ) = p9Y
p11−p10(log10 Y)2

,

f3(Y ) = p12

√
1

Y 2 + p2
13

(
1 − p14Y

2
)
, f5(Y ) = −0.4.

(A4)

The fit parameters are given in Table A3, and the fit errors are listed
in Table A4.

For each mixture, all parameters have been computed via two-
dimensional fitting procedure; all (Y , ρ∗) points have been fitted
simultaneously. The target function to minimize has been the rela-
tive rms error. The range of fitted data is as follows. For all mixtures
Y spans from 0.32 to ≈2.865 in uniform mesh in logarithmic scale,
24 points in total. The range of mesh points of ρ∗ differs from mix-
ture to mixture. For H–He envelopes, ρ∗ spans from ≈19.42 g cm−3

to ≈3.737 × 106 g cm−3 and forms a nonuniform mesh of 41 points.
The non-uniformity cannot be avoided; the internal mesh used in
computations is uniform in logarithmic scale in both Y and ρ int,
but when calculating ρint → �M → ρ∗ the mesh in ρ∗ becomes
nonuniform and Y-dependent. For He–C envelopes, ρ∗ spans from
≈280.5 g cm−3 to 108 g cm−3 (maximum span, see below) and also
forms a nonuniform mesh. As helium cannot exist at densities higher

Table A1. Fit parameters for H–He mixture

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14

log10ρb = 8.0 3.150 1.546 0.3225 1.132 1.621 1.083 7.734 1.894 2.335 × 105 7.071 5.202 10.01 2.007 0.4703

Table A2. Fit parameters for He–C mixture

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11

log10ρb = 8.0 5.161 0.033 19 1.654 3.614 0.029 33 1.652 1.061 × 105 1.646 3.707 4.011 1.153
log10ρb = 9.0 5.296 0.074 02 1.691 3.774 0.082 10 1.712 1.057 × 105 1.915 3.679 3.878 1.110
log10ρb = 10.0 5.386 0.1027 1.719 3.872 0.1344 1.759 1.056 × 105 1.881 3.680 3.857 1.102
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Table A3. Fit parameters for C–Fe mixture

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14

log10ρb = 8.0 0.2420 0.4844 38.35 0.8680 5.184 1.651 −0.043 90 0.001 929 3.462 × 104 2.728 4.120 2.161 2.065 0.008 442
log10ρb = 9.0 0.1929 0.4239 48.72 1.423 5.218 1.652 0.001 037 0.004 236 3.605 × 104 2.119 4.014 1.943 1.788 0.017 58
log10ρb = 10.0 0.1686 0.3967 55.94 1.992 5.208 1.651 0.032 35 0.005 417 3.652 × 104 1.691 3.930 2.021 1.848 0.025 67

Table A4. Fit errors for H–He, He–C and C–Fe mixtures; δrms stands for
rms relative error, while δmax is the maximum relative error. Last column
gives the point where the maximum relative error is achieved.

Mixture log10ρb δrms δmax
(
Y ; ρ∗/ g cm−3

)
H–He 8.0 0.0031 0.015 (2.865, 3.345 × 105)

He–C 8.0 0.0036 0.011 (0.32, 1.245 × 103)
He–C 9.0 0.0036 0.011 (0.32, 1.657 × 103)
He–C 10.0 0.0035 0.010 (0.32, 1.245 × 103)

C–Fe 8.0 0.0051 0.017 (2.865, 1.528 × 104)
C–Fe 9.0 0.0048 0.015 (0.4259, 1.772 × 103)
C–Fe 10.0 0.0047 0.014 (0.3872, 1.637 × 103)

than 109 g cm−3 (Section 5), all data points with ρ∗ > 108 g cm−3

have been excluded from fitting. Thus, for different Y values there
is different number of points in ρ∗. For C–Fe envelopes ρ∗ spans
from ≈1459 g cm−3 to ≈109 g cm−3 and forms nonuniform mesh,
40 points in total in ρ∗ axis.

Note that for all mixtures the computed data form non-rectangular
domains in the (Y , ρ∗)-plane. The domains have a shape of quadri-
lateral with two parallel sides (corresponding to Y axis). The above-
mentioned range of ρ∗ is the maximum span (i.e. it does not corre-
spond to any Y value; for each Y value the actual span is smaller and
depends on Y). For C–Fe mixture, the domain is close to rectangular
one. Nevertheless, this does not limit the usage of the presented fits.
Due to their form (A1), which reproduces a smooth transition from
the temperature determined by f1 to the temperature determined by
f4, they can be safely extrapolated in ρ∗ axis beyond their original
domain. On the other hand, the extrapolation in Y-direction is not
possible (however, if needed, it could be easily constructed based
on the presented fits).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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