
Mon. Not. R. Astron. Soc. 388, 1679–1685 (2008) doi:10.1111/j.1365-2966.2008.13470.x

Generation of magnetosonic waves and formation of structures in galaxies
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ABSTRACT

We study the generation of magnetosonic waves in galactic gaseous discs taking account of
the magnetic field, differential rotation and self-gravity. The special case of perturbations is
considered with the wavevector perpendicular to the magnetic field. The necessary condition
of the amplification of seed perturbations is the presence of differential rotation and non-
vanishing radial component of the magnetic field that can easily be satisfied in galactic
discs. Differential rotation stretches the azimuthal field from the radial one and, therefore, we
consider the generation of waves on the time-dependent background magnetic field. Basically,
an amplification is rather efficient, and seed perturbations become non-linear already after
several rotation periods for a wide range of wavelength. The generated magnetosonic waves can
be either non-oscillatory or oscillatory depending on the parameters of gas. If perturbations are
Jeans stable, then typically non-oscillatory waves are amplified. However, interplay between
self-gravity, magnetic field and rotational shear can change qualitatively the classical Jeans
instability, so that the latter becomes oscillatory and tends to be suppressed in galaxies.
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1 IN T RO D U C T I O N

The interstellar medium (ISM) consists of many different phases
with a wide variety of properties. Partly, these phases can be gener-
ated by different types of instability which occur in ISM conditions
(see discussion in Kim, Ostriker & Stone 2002 for more details).
Instabilities should coherently amass material over length-scales
much longer than the atomic mean-free path, therefore, they can
be considered in a magnetohydrodynamic approximation. In galax-
ies, one can distinguish global and local instabilities. The first ones
are characterized by length-scales comparable to the galactic ra-
dius whereas the second ones occur at a much shorter length-scale.
Most likely, the best known example of global instability is the one
responsible for the formation of spiral arms. Recently, a detailed
study of such instability has been done by Gomez & Cox (2002a,b)
and Gomez & Cox (2004) who performed 3D magnetohydrody-
namic (MHD) simulations using a realistic galactic model which
includes the dynamic effects of disc, disc halo and bulge. The au-
thors impose the seed non-axisymmetric density waves and study
the gas response to such perturbations over the dominant gravita-
tional axisymmetric galactic components. They concluded that the
density waves can reach of a reasonable magnitude after ∼800 Myr.
The authors also analysed the effect of the azimuthal magnetic field
and found that it can lead to variability of the structure above the
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plane with the characteristic time-scale ∼60 Myr. The evolution of
spiral disturbances under the combined influence of gravitational
and magnetorotational instabilities has been considered recently
by Fromang et al. (2004). They argued that the magnetorotational
instability leads to turbulence and lowers the strength of the gravita-
tional stress tensor. This tensor exhibits periodic oscillations which
are not present in hydrodynamic simulations. They attribute such
a behaviour to the presence of a second spiral mode that can be
excited by the high-frequency motions associated with turbulence.

In contrast to global instabilities, the local ones occur on shorter
length-scales and, considering such instabilities, one can assume
that the large-scale structure of a galaxy is fixed. One of the exam-
ples of such local instabilities in galaxies is the Parker instability
(Paker 1966) that generally can be relevant to the formation of
some structures in galaxies (e.g. Mouschovias 1974; Shibata &
Matsumoto 1991). On relatively large scales, the Parker instabil-
ity has to be accompanied by the self-gravity of perturbations (the
Jeans instability) and, perhaps, the combined Parker–Jeans instabil-
ity can lead to the formation of filament-like structures in the ISM.
Note, however, that the study of this type of instability in 3D shows
that, most likely, it produces small-scale structures rather than the
giant molecular clouds (Asseo et al. 1978). Numerical simulations
in 3D also indicate that the Parker instability alone is unable to pro-
duce structures like giant molecular clouds or associations (Basu,
Mouschovias & Paleologou 1997; Kim et al. 1998; Kim, Ryu &
Jones 2001). Note also that a random component of the galactic
magnetic field should suppress the Parker instability significantly
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(Kim & Ryu 2001). Therefore, it cannot be excluded that the role
of the Parker instability is often exaggerated, and other instabili-
ties play an important role in formation of large-scale structures in
galaxies.

One more destabilizing effect can be caused by rotation which
is essentially differential in galaxies. For example, differential ro-
tation can change the properties of the Parker and Parker–Jeans
instabilities. Hanasz & Lesch (1997) and Hanasz (1997) consider
the Parker instability of flux tubes in galactic discs taking account of
cosmic rays and differential rotation. They calculated the dynamo
coefficients associated with this instability and concluded that the
dynamo α-parameter is significantly magnified in the arms and di-
minished in the inter-arm regions due to the influence of cosmic
rays and differential rotation. Apart from that differential rotation
of a magnetized galactic gas should initiate some new instabilities
which can play an important role in the formation of large ISM
clouds. Recently, a study of this sort of effects has been undertaken
by Kim, Ostriker & Stone (2002) and Kim, Ostriker & Stone (2003).
The authors considered stability of the galactic discs taking into ac-
count the magnetorotational effects and adopting simplified initial
magnetic configurations (either toroidal or vertical magnetic fields).
They found that MHD-phenomena such as the magneto-Jeans in-
stability (which is the sort of non-axisymmetric Jeans instability in
differentially rotating disc with embedded azimuthal magnetic field,
see Kim & Ostriker 2001, 2002; Kim et al. 2002) and magnetoro-
tational instability can appreciably contribute to the formation of
large-scale clouds. Kim et al. (2002) argued that the magneto-Jeans
instability is likely to be one of the most powerful cloud-condensing
mechanism which may occur in spiral arms or galactic centres.

The above examples illustrate the importance of MHD insta-
bilities for dynamics of the ISM. In this paper, we consider one
additional MHD instability that can occur in ISM conditions and
lead to the formation of structures in galaxies. We show that the
magnetorotational effects are sensitive to the geometry of the mag-
netic field, and the stability properties of galaxies can be more
complicated compared to those considered by Kim et al. (2002) and
Kim et al. (2003) if the magnetic geometry is more complex. The
effect treated in this paper is relevant to differential rotation and the
presence of a non-vanishing radial component of the magnetic field.
This type of instability has already been considered by Bonanno &
Urpin (2006, 2007a) and Bonanno & Urpin (2007b) for different
conditions. In this paper, we show that the magnetic shear-driven
instability can operate in the galactic environment even in the pro-
cess of generation of the toroidal field from the radial one when the
background magnetic field depends on time. The main goal of our
study is a treatment of the physical effect that can be important in
galaxies rather than calculations of a consistent galactic model. The
study of the new instability presented in this paper can be useful in
the interpretation of numerical calculations of the galactic models
and in understanding the nature of galactic structures.

The paper is organized as follows. In Section 2, we discuss ba-
sic equations governing the shear-driven instability in galaxies. In
Section 3, the results of numerical calculations are presented. A
summary of the results and their possible applications to galaxies is
given in Section 4.

2 BASIC EQUATIONS

We consider MHD processes in a galaxy using a two-fluid approx-
imation and assuming that the ISM consists of thermal gas and
cosmic rays. The latter is treated as gas with a significant pressure
but with negligible density. It is assumed that there is no energy ex-

change between the fluids, and they interact only dynamically via
partial pressures. The evolution of cosmic rays can be described in
the diffusion approximation taking into account only the diffusion
along magnetic field lines because the gas of cosmic rays is strongly
magnetized and diffusion across the field line is usually unimpor-
tant (see e.g. Drury & Völk 1981; Ko 1992; Giacalone & Jokipii
1999). The MHD equations, governing the coupled evolution of the
thermal gas, magnetic and gravitational fields, and cosmic rays read
in this approximation:

v̇ + (v · ∇)v = −∇P

ρ
− ∇ψ + 1

4πρ
(∇ × B) × B, (1)

ρ̇ + ∇ · (ρv) = 0, (2)

Ṗg + v · ∇Pg + γgPg∇ · v = 0, (3)

�ψ = 4πGρ, (4)

Ḃ − ∇ × (v × B) = 0, (5)

∇ · B = 0, (6)

Ṗc + v · ∇Pc + γcPc∇ · v = ∇ · (κ‖∇‖Pc). (7)

We complemented the standard set of MHD equations with the
inclusion of the diffusion-convection equation for cosmic rays (see
e.g. Ryu et al. 2003) and the Poisson equation for the gravitational
potential. Our notation is as follows. ρ and v are the thermal gas
density and velocity, respectively; P = Pg + Pc is the total (gas plus
cosmic rays) pressure; B is the magnetic field, ψ is the gravitational
potential, κ‖ is the diffusion coefficient of cosmic rays along the
magnetic field; ∇‖Pc = B(B · ∇Pc)/B2; γ g and γ c are the adiabatic
indexes of the gas and cosmic rays. The adiabatic index of the cosmic
rays is defined as γ c = 1 + Pc/Ec where Ec is the particle energy
per unit volume. This index can be simply related to the form of the
cosmic ray momentum distribution if the latter is a power law (see
e.g. Ryu et al. 2003). In particular, a momentum distribution ∝ p−q

with the index between 4 and 5 appropriate for galactic cosmic rays
(see e.g. Blandford & Eichler 1987) lead to Pc/Ec = (q − 3)/3 ≈
(1 − 2)/3 and hence, γ c ≈ (4–5)/3. This model is often used with
q = 14/3, then γ c = 14/9. For the sake of simplicity, we consider
in this paper a polytropic gas and assume Pg = c2

gρ where cg is the
sound speed.

We work in cylindrical coordinates (s ϕ, z) with the unit vectors
(es, eϕ , ez). The basic state on which the stability analysis is per-
formed is assumed to be axisymmetric with the angular velocity

 = 
(s) and B �= 0. In the presence of non-vanishing radial field
Bs and differential rotation, the azimuthal field increases with time
by winding up the radial field lines. If the magnetic Reynolds num-
ber is large, then one obtains from equation (5) that the azimuthal
field grows linearly with time in the basic state,

Bϕ(t) = Bϕ(0) + s
′Bst, (8)

where Bϕ(0) is the azimuthal field at t = 0. A growth of Bϕ given
by equation (8) can last only while diffusion of the toroidal field
is negligible. Eventually, in the presence of a finite diffusivity, a
steady state will emerge where winding up is balanced by diffusion
of the azimuthal field. The time-scale to reach this steady state is
approximately equal to the diffusion time-scale, ∼s2/η, where η is
the magnetic diffusivity. Therefore, we restrict our consideration by
t < s2/η when equation (8) is valid.
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In the unperturbed state, the system is assumed to be in hydro-
static equilibrium in the s- and z-directions,

∇P

ρ
= D + 1

4πρ
(∇ × B) × B, D = −∇ψ + 
2s. (9)

Note that, generally, this condition is rather difficult to satisfy, and
hydrostatic equilibrium cannot be reached for an arbitrary magnetic
field.

To demonstrate a possibility of the magnetic shear-driven in-
stability in the galactic environment, we consider a very simplified
model of the baseground magnetic field assuming that Bs ∝ Bϕ(0) ∝
Bϕ(t) ∝ 1/s and Bz = constant. Then, ∇ × B(t) = 0 and the Lorentz
force is vanishing in equation (9). If, additionally, gravity is approx-
imately radial, g (s) = −g(s)es, and the centrifugal force is balanced
by gravity, g(s) = s
2, then the pressure and, hence, density can
be treated as homogeneous in the basic state. As it follows from
equation (8), the radial dependence of the toroidal field remains
unchanged in this model if s
′ = const, or 
 = A ln (s/s1) + 
(s1)
where A is constant and 
(s1) is the value of the angular velocity
at s = s1. This dependence differs from the galactic differential
rotation for which one has 
 ∝ 1/s and q = s
′/
 = − 1. Nev-
ertheless, since we consider only a local instability arising at some
radius s1, we can always choose constant A in such a way that the
angular velocity 
 and rotational shear q are approximately equal
to their galactic values in the neighborhood of a cylindrical radius
s1. Supposing A = −
(s1), we have


(s) = 
(s1) [1 − ln(s/s1)] , q = − [1 − ln(s/s1)]−1 . (10)

If we choose now 
(s1) equal to the galactic angular velocity at
the radius s1, then both the angular velocity and rotational shear
will agree with the galactic values in the neighborhood of s1. The
same concerns also gravity g(s). Integrating Poisson equation (4)
and assuming that ρ is homogeneous, we obtain that g = 2πGρs +
D/s in the equilibrium state where D is constant. Again, this gravity
differs from the galactic gravity. However, since we consider only
local processes in the neighbourhood of some point s1, there is no
need to obtain the expression for g that is valid everywhere in the
galaxy. We can choose the value of constant D in such a way that
hydrostatic equilibrium will be satisfied in the neighbourhood of
s1 with the accuracy in linear terms and gravity will be equal to
its galactic value at s = s1. Therefore, our model qualitatively can
mimic galactic differential rotation and gravity for the consideration
of local instabilities.

As it was mentioned, instabilities can play an important role in
the formation of different galactic structures with various length-
scales. In this paper, we consider linear stability and determine the
condition at which instability occurs, and its growth rate. Within
this approach, all quantities can be represented as the sum of an
unperturbed part that characterizes the basic state and a small per-
turbation. Since we study the instability that could lead to formation
of galactic structures, it has to be assumed that there are no struc-
tures in the basic state, and these structures will be formed as a result
of the development of seed perturbations. The non-linear evolution
is a much more complicated problem and it will be considered
elsewhere.

Consider stability of axisymmetric short wavelength perturba-
tions with the spatial dependence ∝ exp(−ik · r), where k = (ks, 0,
kz is the wavevector, |k · r| 
 1. Since we consider a short wave-
length approximation, all unperturbed quantities including gravity
can be treated as constant. The advantage of this approximation
is that it does not depend on the boundary conditions, and the re-
sults can be applied to any galactic model if the wavelength of

perturbations is shorter than the length-scale of unperturbed quan-
tities. Small perturbations will be indicated by subscript 1, while
unperturbed quantities will have no subscript, except for indicating
vector components. Then, the linearized MHD equations read with
accuracy in terms of the lowest order in |k · r|−1

∂v1

∂t
+ 2� × v1 + eϕs


′v1s = i kP1

ρ
+ ikψ1

− i

4πρ
(k × B1) × B), (11)

∂ρ1

∂t
− iρ(k · v1) = 0, (12)

∂Pg1

∂t
− iγgPg(k · v1) = 0, (13)

k2ψ1 = −4πGρ1, (14)

∂B1

∂t
= eϕs


′B1s − i(B · k)v1 + iB(k · v1), (15)

k · B1 = 0, (16)

(
∂

∂t
+ ωcr

)
Pc1 − iγcPc(k · v1) = 0, (17)

where the inverse time-scales of cosmic rays diffusion are given
by ωcr = κ‖(k · B)2/B2. In these equations, we take into account
the gradient term associated with the disc differential rotation since
the terms proportional to s
′ and 
 in equation (11) are of the
same order of magnitude. A non-uniformity of all other quantities
characterizing the basic state is neglected in a short wavelength
approximation.

In this paper, we treat only a special type of perturbations with
k · B = 0, but the results are qualitatively same for any other
perturbations. This choice of k is made by simplicity reasons
rather than by physical motivation because the basic equations
can be simplified substantially for such perturbations. Nevertheless,
the case k ·B = 0 illustrates well the main qualitative features of the
shear-driven instability in the time-dependent basic state. Moreover,
the standard magnetorotational instability does not operate in this
case because its growth rate is proportional to k · B.

By combining equations (11)–(17), we obtain after some algebra
the following equation for f 1 = (k · v1)

d4f1

dt4
+ k2

[
c2

G + c2
As

k2

k2
z

+ c2
Aϕ(t)

]
d2f1

dt2
+ 6ω3

B


df1

dt

+ 6k2c2
As(s


′)2f1 = −κ2ks
d2v1s

dt2
, (18)

where

c2
G = c2

g + c2
c − 4πGρ/k2, cg =

√
γgPg

ρ
, cc =

√
γcPc

ρ
,

cAs = Bs√
4πρ

, cAϕ(t) = Bϕ(t)√
4πρ

, κ2 = 2
(2
 + s
′) ,

ω3
B
 = k2cAϕ(t)cAss


′.

If ks = 0 and the pressure of cosmic rays and self-gravity are
negligible, then equation (12) of the paper by Bonanno & Urpin
(2007b) can be recovered from equation (18) if one replaces c2

G by
the square of the sound speed c2

s . However, this difference can be
important in the galactic environment because, in the contrast to
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c2
s , the quantity c2

G is negative for Jeans unstable perturbations with
k2 < 4πGρ/(c2

g + c2
c).

In equation (18), the ratio of the term on the right-hand side and
the second term on the left-hand side is of the order of 
2/k2s2

G ∼

2/k2c2

g if perturbations are not marginally stable to the Jeans in-
stability (c2

G ≈ 0). Since 
 ∼ cg/H in the galactic disc where H
is the disc thickness, we obtain that the ratio of these two terms is
∼(kH)−2, and the term on the right-hand side should be neglected
in a short wavelength approximation. Then, we have

d4f1

dt4
+ k2

[
c2

G + c2
As

k2

k2
z

+ c2
Aϕ(t)

]
d2f1

dt2
+ 6ω3

B


df1

dt

+ 6k2c2
As(s


′)2f1 = 0. (19)

Equation (19) with the corresponding initial conditions describes
the behaviour of velocity perturbations during the initial stage of
evolution when differential rotation stretches toroidal field lines
from the poloidal ones, and the toroidal field still has not reached
saturation. If we suppose either 
′ = 0 or Bs = 0, then equation (20)
simplifies to

d4f1

dt4
+ k2

(
c2

G + c2
Aϕ0

) d2f1

dt2
= 0, (20)

where cAϕ0 = Bϕ(0)/
√

4πρ. This equation has two different types
of solutions. If c2

G + c2
Aϕ0 > 0, then equation (20) has an oscillatory

solution that corresponds to cylindrical magnetosonic waves mod-

ified by gravity. The frequency of such waves is k

√
c2

G + c2
Aϕ0. On

the contrary, if c2
G + c2

Aϕ0 < 0, the solution is aperiodic and describes
the Jeans instability modified by the presence of the toroidal field.
In this paper, we consider the behaviour of perturbations under the
combined influence of 
′ and Bs, when perturbations are governed
by equation (19), and will show that solutions can be qualitatively
different.

Having calculated f1, the behaviour of perturbations of the den-
sity, radial and azimuthal magnetic fields can be obtained then from
equations (12) and (15), respectively.

3 N U M E R I C A L R E S U LTS

To follow the behaviour of perturbations, it is convenient to intro-
duce dimensionless quantities

τ = 
t , x = kH , H =
√

c2
g + c2

c



, μ = k2

z

k2
, ε = 4πGρ


2
,

δs = c2
As

c2
g + c2

c

, δϕ = c2
Aϕ0

c2
g + c2

c

, q = s
′



.

Then, introducing f = f 1(t)/f 1(0) where f 1(0) is the initial value of
f 1 = (k · v1), we obtain from equation (19)

d4f

dτ 4
+ x2

[
1 + δs

μ
+

(√
δϕ + q

√
δsτ

)2
− ε

x2

]
d2f

dτ 2

+ 6qx2
√

δs

(√
δϕ + q

√
δsτ

) df

dτ
+ 6q2x2δsf = 0. (21)

The dependence of the solution on the wavelength is characterized
by the parameter x and, on the initial magnetization of gas, by the
parameters δs and δϕ . To solve equation (21), one needs the initial
conditions for three time derivatives of f. In calculations, we try
different initial conditions because their choice is determined by
the origin of perturbations which are uncertain.

Equations (12) and (15) can be written in a dimensionless form
as

d

dτ

(
ρ1

ρ

)
= if ξ, (22)

d

dτ

(
B1s

Bs

)
= if ξ, (23)

d

dτ

(
B1ϕ

Bs

)
= q

(
B1s

Bs

)
+ if ξ

(√
δϕ

δs
+ qτ

)
, (24)

where

ξ = H [k · v1(0)]√
c2

g + c2
c

.

The parameter ξ characterizes the initial compressibility of the
galactic gas. For the sake of simplicity, we assume in calculations
that the initial perturbations of the magnetic field are vanishing,
B1s(0) = B1ϕ(0) = 0, and the initial value of ρ1/ρ is 0.1. Equa-
tions (21)–(24) were solved numerically for a wide range of the
parameters.

To mimic the galactic rotation, we suppose q = −1 in equa-
tion (21). Since the age of the galaxy is approximately 40P where P
is the rotation period, we do not need to study a long-term behaviour
of perturbations but restrict ourselves by t < 40 P that corresponds
to the dimensionless time τ < 250. The long-term behaviour in
a time-dependent basic state has been considered in detail by Bo-
nanno & Urpin (2007b). The compressibility parameter ξ can be
estimated as ∼(kH) v1(0)/cg where kH > 1 in a short wavelength
approximation. Assuming that the initial velocity perturbation is a
small fraction of the sound speed, we can estimate ξ ∼ 0.01–1.

In Fig. 1, we plot the time dependence of the perturbations of
compressibility f, normalized density and the azimuthal magnetic
field for x = 20, μ = 0.5, ε = 0.1 and relatively weak unperturbed
magnetic field with δs = δϕ = 0.001. Such perturbations are almost
not influenced by self-gravity and, hence, are Jeans stable. We as-
sume that df /dτ = 1 and d2f /dt2 = d3f /dt3 = 0 at τ = 0. Note
that in all considered cases, the behaviour of the normalized radial

Figure 1. The time dependence of f (solid line), |ρ1/ρ| (dashed line) and
|Bϕ1/Bs| (dash–dotted line) for δs = δϕ = 0.001, x = 20, μ = 0.5, ξ = 0.01
and ε = 0.1.
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magnetic field B1s/Bs and density ρ1/ρ is practically the same be-
cause they are governed by the same equations (22) and (23). The
minor difference is only because of our choice of initial conditions
for these quantities but this difference cannot be seen in figures.
That is why we plot only ρ1/ρ in figures. The compressibility f
reaches its maximum rather rapidly and becomes a factor of ≈10
greater than its initial value after τ ≈ 20 that corresponds to three
to four rotation periods. Then, it gradually decreases with the char-
acteristic time-scale ∼10–20P. However, despite the decrease in f,
perturbations of the density and magnetic field continue to grow
because they are determined by f integrated over time. The density
perturbations become comparable to ρ already after ≈3–4 revolu-
tions. At the same time, perturbations of the azimuthal field are
greater than the initial field by a factor of ∼10. At the late stage, τ

∼ 200, the amplitude of magnetic perturbations is of the order of
unperturbed quantities, and our linear analysis does not apply. It is
worth noting that the results are not very sensitive to the value x. We
made a run for the same parameters and x = 5, and the difference
with Fig. 1 is less than 10 per cent.

In Fig. 2, we show the same dependences but for the case when
the compressibility parameter is larger, ξ = 0.1. Since equation (21)
does not depend on ξ , the evolution of f does not differ from that
shown in Fig. 1. On the contrary, perturbations of the density and
magnetic field are approximately of the order of magnitude greater.
Therefore, for such value of the compressibility parameter, pertur-
bations can grow significantly during the very early evolutionary
stage and, most likely, reach a non-linear regime after ∼10–20 ro-
tation periods.

To demonstrate the dependence on the shape of perturbations, we
plot in Fig. 3 the evolution of the same quantities as in Figs 1 and 2
but for μ = 0.0005. This μ corresponds to filament-like structures
with a very short radial wavelength and the ratio of radial and
vertical wavelengths ≈0.02. In this calculation, the initial magnetic
pressure is higher, δs = δϕ = 0.1. It turns out that the filament-
like perturbations grow substantially faster. The compressibility f
reaches the value ∼20 after several revolution and can be still rather
large up to the present age. Therefore, the density and magnetic field
perturbations are much larger than in previous runs. Most likely,
such perturbations will become non-linear already at the very early
evolutionary stage.

Figure 2. The same as in Fig. 1 but for ξ = 0.1.

Figure 3. The same dependences as in Fig. 1 but for δs = δϕ = 0.1, x =
20, μ = 0.0005, ξ = 0.01 and ε = 0.1.

Figure 4. The same dependences as in Fig. 1 but for δs = δϕ = 0.0001,
x = 20, μ = 0.0005, ξ = 0.1 and ε = 0.1.

Fig. 4 plots the evolution of the same filament-like perturbations
in the case of a rather weak initial magnetic field, δs = δϕ = 0.0001.
The growth is sufficiently fast in this case as well, despite being
slower than in Fig. 3. This sort of behaviour is plausible because
the last two terms on the left-hand side of equation (21) responsible
for the amplification of perturbations depend on the initial magnetic
field. However, even in a such weak-baseground field filament-like
perturbations become sufficiently large after ∼40P to reach a non-
linear stage.

In all previous calculations, perturbations were Jeans stable. Con-
sider now the influence of the magnetic field and differential rotation
on the behaviour of perturbations which are subject to the Jeans in-
stability as well. We define perturbations as Jeans unstable if the
coefficient before d2f /dt2 in equation (21) is negative at τ = 0,

1 + δs

μ
+ δϕ − ε

x2
< 0, (25)
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or

λ >

√
4π

ρG

(
c2

g + c2
c + cAϕ0 + k2

k2
z

c2
As

)1/2

, (26)

where λ = 2π/k is the wavelength of perturbations. Taking into
account that cg ∼ cc ∼ cm in galaxies, we can estimate the critical
wavelength for the Jeans instability as λcr = cg

√
4π/ρG. If λ

> λcr then perturbations are Jeans unstable. If we suppose ρ ∼
10−24 g cm−3 and cg ∼ 8 × 105 cm s−1, then λcr ∼ 3 kpc that is larger
than the half-thickness of a gaseous disc (∼120 pc). Therefore, the
Jeans instability cannot arise in a gaseous disc if cg = 8 km s−1

and the gas number density is about 1 cm−3. Note, however, that
the value 8 × 105 cm s−1 corresponds to the averaged gas velocity
dispersion of the Milky Way but the sound speed cg can be smaller
than the averaged velocity dispersion. Therefore, estimates of λcr

can be lower in galaxies. Likely, the Jeans instability can occur in
galaxies if the density is higher and the temperature is lower than the
averaged values (see e.g. Kuwabara & Ko 2006). We assume that the
condition of the Jeans instability (25) is satisfied and consider how
the magnetic field and shear influence the behaviour of perturbations
with λ > λcr.

In Fig. 5, we plot the time dependences of perturbations for βs

= βϕ = 0.001 μ = 0.5, and ε = 25.5. Such perturbations are in-
deed Jeans unstable because the coefficient before d2f /dt2 in equa-
tion (21) is negative at τ = 0 and equal to −0.425. The evolution
of perturbations turns out to be qualitatively different in this case:
all quantities exhibit oscillations in the contrast to a monotonous
growth in the absence of the magnetic field and shear. The period
of oscillations is initially comparable to P but becomes shorter with
time. The amplitude of density perturbations grows substantially
slower because of an oscillatory character of evolution. Neverthe-
less, after several rotation periods, it becomes of the order of the
unperturbed density. To the best of our knowledge, the oscillatory
regime of the Jeans instability caused by the magnetic field and
shear has never been considered in literature before. Nevertheless,
this type of instability can be sufficiently common in galaxies since
the magnetic field and shear are among the most important char-
acteristics of the interstellar medium. The oscillatory regime of the
Jeans instability could manifest itself in MHD simulations of the
galactic evolution as well. In particular, oscillations of the gravita-

Figure 5. The time behaviour of Jeans unstable perturbations with δs =
δϕ = 0.001, x = 5, μ = 0.5, ξ = 0.1 and ε = 25.5.

tional stress tensor in simulations by Fromang et al. (2004) can be
caused, at least, partly by the gravitational instability operating in
the oscillatory regime.

4 D ISCUSSION

We have considered the new local instability of galactic gaseous
discs taking account of the magnetic field, differential rotation, and
self-gravity. To illustrate the main qualitative features of the in-
stability, we analyzed a particular case of perturbations with the
wave-vector k perpendicular to the magnetic field B. In this case,
the standard magnetorotational instability does not occur because
its growth rate is proportional to (k · B). The considered instability
is related basically to shear and compressibility of a magnetized
gas and does not exist in the incompressible limit. This is a princi-
ple difference to other well-known instabilities caused by differen-
tial rotation such as the Rayleigh or magnetorotational instabilities
that can occur in the incompressible limit as well. Note that an
attempt to consider instability associated to compressibility of dif-
ferentially rotating magnetized gas has been undertaken by Blaes &
Balbus (1994). These authors, however, analyzed only the unper-
turbed configuration where the magnetic field has a vertical or az-
imuthal component, but such configurations are stable in accordance
to our consideration.

The necessary condition of this instability is the presence of radial
magnetic field and differential rotation. This differs qualitatively
from the necessary condition of the magnetorotational instability
(
′ < 0). Therefore, we believe that the considered instability is
a new one caused by the combined influence of the magnetic field
and shear. The new instability can arise under the conditions when
the magnetorotational instability is suppressed, for example, if the
magnetic field is sufficiently strong. It is known that the magnetoro-
tational instability does not occur if the magnetic field is stronger
than Bcr ∼ (
/k)

√
4πρ (e.g. Balbus & Hawley 1992; Urpin &

Brandenburg 1998), and this is correct for both axisymmertric and
non-axisymmetric perturbations. The instability considered in this
paper can occur even if the field is stronger than Bcr, but it does
not arise in the regions where Bϕ or Bs are vanishing. On the other
hand, the magnetorotational instability occurs even in a relatively
simple magnetic configurations with Bs = 0 where the considered
instability is suppressed.

Typically, the instability is non-oscillatory if perturbations are
Jeans stable and oscillatory in the opposite case. For Jeans unsta-
ble perturbations with λ > λcr, the interplay between the Jeans
instability and magnetorotational effects modify qualitatively the
classical Jeans instability, and this instability becomes oscillatory.
Due to the presence of a radial magnetic field and differential ro-
tation, the Jeans instability can be substantially suppressed. Likely,
the instability associated to non-oscillatory modes should be more
efficient in galaxies because its growth rate is higher. Besides, non-
oscillatory instabilities reach saturation usually at a higher level than
the oscillatory ones. This occurs because some fraction of turbulent
energy is carried out by propagating waves in the case of oscillatory
instabilities.

The criterion for the instability considered can widely be satisfied
in galaxies. All galactic discs have both radial and azimuthal compo-
nents from a spiral or bar perturbation. That is what is observed, and
that is what one gets from running numerical simulations. Numeri-
cal simulations show that adding spiral perturbations to the galactic
model will rapidly generate a radial field even if the magnetic field
is purely toroidal in the initial state (Gomez & Cox 2002a,b). The
time-scale of such generation is ∼100 Myr.
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The growth rate of instability depends on the magnetic field
strength, differential rotation and the type of perturbations. Gen-
erally, the growth rate is sufficient in order the seed perturbations
could reach a non-linear regime. The growth of perturbations is not
exponential because the background state depends on time. As a
result, the growth rate depends on time as well. At the beginning of
evolution, the growth rate is comparable to 
, and this can be faster
than the growth rate of combined thermal and magnetorotational
instabilities considered by Piontek & Ostriker (2004). The growth
time of the considered instability can be even shorter than the growth
time of a spiral structure and, therefore, a formation of spiral arms
in galaxies is likely accompanied by the generation of turbulent
motions and various structures. Relatively large-scale structures
caused by the considered instability can contribute, for example,
to formation of flocculent spiral structures in galaxies. Elmegreen,
Elmegreen & Leitner (2003) suggested that such structures are gen-
erated by sheared gravitational instabilities (see e.g. Thomasson,
Donner & Elmegreen 1991; Vollmer & Beckert 2002). However,
the growth rate of the considered magnetic shear-driven instability
can be larger than the growth rate of spiral-forming instabilities that
depends sensitively on characteristics of the ISM.

Most likely, the considered instability could not manifest itself
in numerical simulations of galactic instabilities done by Kim et al.
(2002) and Kim et al. (2003). The authors assume a very simplified
magnetic geometry of the unperturbed state (either pure toroidal
or vertical magnetic fields that are more suitable for simulations
of accretion discs). In both the cases, the instability considered in
this paper does not occur. The global 3D MHD simulations of the
galactic structure performed by Gomez & Cox (2002a, 2004) also
should not indicate the considered instability during the early stage
because the authors assume that only the azimuthal field component
is non-vanishing in the initial state. Despite the considered insta-
bility cannot arise from the very beginning, it can appear during
the late stage when a notable radial field is generated. It cannot be
excluded, for example, that some loss of regularity in the structure
above the mid-plane reported by Gomez & Cox (2004) is due to the
instability presented in this paper.
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