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ABSTRACT

The stability of the magnetic field in radiation zones is of crucial importance for mixing and angular momentum
transport in the stellar interior. We consider the stability properties of stars containing a predominant toroidal
field in spherical geometry by means of a linear stability in the Boussinesq approximation taking into account
the effect of thermal conductivity. We calculate the growth rate of instability and analyze in detail the effects of
stable stratification and heat transport. We argue that the stabilizing influence of gravity can never entirely suppress
the instability caused by electric currents in radiation zones. However, the stable stratification can essentially
decrease the growth rate of instability.

Key words: instabilities – magnetohydrodynamics (MHD) – stars: magnetic field – Sun: interior

1. INTRODUCTION

The problem of the existence of a global magnetic field in
the radiation zone of stars is still a topic of debate. Observations
provide only upper limits on the strength of the magnetic field in
the radiation zone of the Sun (see, e.g., Godier & Rozelot 2000;
Antia et al. 2000). For other stars estimates are much less certain
and only theoretical upper limits can be derived. The possible
origin of the field is also unclear. Perhaps, relic magnetic fields
acquired by the star at the early stage of evolution can exist there.
This type of field could have formed, for instance, because of a
very weak differential rotation, which could have stretched the
lines of a weak primordial seed field into a dominant toroidal
field. Therefore, configurations with a predominantly toroidal
field seem to be the most plausible in radiation zones. Generally
the toroidal configurations can be present in different types of
stars. For instance, they are typical for the liquid cores of neutron
stars (Bonanno et al. 2005, 2006) where a large-scale toroidal
magnetic field can be accompanied by small-scale magnetic
structures (Urpin & Gil 2004).

Toroidal magnetic configurations are subject to various insta-
bilities which can shorten drastically the lifetime of the magnetic
field. Many of these instabilities like the magnetic buoyancy
instability (see, e.g., Gilman 1970; Acheson 1978) or the mag-
netorotational instability (Velikhov 1959; Balbus 1995) are well
studied. However, in all probability, the most efficient instabil-
ities are caused by electric currents maintaining the basic mag-
netic configuration, so that the evolution of the magnetic field
is determined mainly by this type of instability (Spruit 1999).
The latter are well studied in the context of laboratory fusion
research (see, e.g., Goedbloed & Poedts 2004) and, for this rea-
son, in astrophysical conditions most of the present studies are
in cylindrical geometry. In this case the stability properties of
a pure toroidal field Bϕ can be characterized by the parameter
α = d ln Bϕ(s)/d ln s, where s is the cylindrical radius. The
field is unstable to axisymmetric perturbations if α > 1 and
to non-axisymmetric perturbations if α > −1/2 (Tayler 1973;
Markey & Tayler 1973; Tayler 1980). Numerical modeling by
Braithwaite (2006) confirmed that the toroidal field with Bϕ ∝ s

or ∝ s2 is unstable to the m = 1 mode as was predicted by Tayler
(1973) for cylindrical configurations. The current-driven insta-
bility might have, however, a number of characteristic features if

both toroidal and axial field components are presented (Bonanno
& Urpin 2008a, 2008b). For instance, non-axisymmetric distur-
bances with large azimuthal wavenumbers m turn out to be
most rapidly growing in such configurations. Unstable dis-
turbances exhibit a resonant character, i.e., the wave vector
k = (m/s)eϕ + kzez (kz is the wavevector in the axial direction)
approximately satisfies the condition of magnetic resonance,
B · k = 0. The length scale of this instability depends on the
ratio of axial and azimuthal field components and it can be very
short. This instability can play an important role, for instance,
in various types of astrophysical jets (Bonanno & Urpin 2011a,
2011b). The nonlinear stage of the Tayler instability was studied
by Bonanno et al. (2012) who argued that symmetry-breaking
can give rise to a saturated state with non-zero helicity even if
the initial state has zero helicity. This conclusion is important
for a possible dynamo action caused by the Tayler instability.

The stability of the spherical magnetic configurations is a
much more complex issue and is qualitatively different from the
cylindrical case. Therefore, some results obtained, for instance,
for a toroidal configuration with Bϕ dependent on the cylindrical
radius alone (see Spruit 1999; Zhang et al. 2003) do not apply to
more realistic magnetic fields. Moreover, cylindrical geometry
does not allow a detailed study of the effects of stratification and
rotation which are of great importance in the radiation zone. It
is widely believed that both these factors provide a stabilizing
influence on the Tayler instability and can even suppress it
entirely. Recently, Bonanno & Urpin (2012) have considered
the stability of the toroidal field in radiation zones taking into
account stratification and thermal conductivity. The authors
argued that the stabilizing influence of gravity and heat transport
can never suppress entirely the current-driven instability but can
only decrease its growth rate. The effect of rotation can also
be important in stellar radiation zones, particularly, in rapidly
rotating stars. The stability of azimuthal fields near the rotation
axis has been studied by Spruit (1999). The author estimated
the growth rate of instability and found that it can be of the
order of ∼ωA(ωA/Ω) in the case of Ω � ωA, where ωA and
Ω are the Alfvén frequency and the angular velocity of a star,
respectively. However, this simple estimate applies only near
the axis and is not valid in the main fraction of the volume
of a radiation zone (see Mathis & Zahn 2005). A qualitatively
different result has been obtained for a rotational suppression
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by Braithwaite (2006). In his numerical modeling, the Tayler
instability was suppressed if Ω is above a certain value of the
order of ωA. Above this value a distinct oscillatory behavior sets
in with marginal stability. The nature of oscillatory modes has
not been analyzed. The stability of the toroidal field in a rotating
radiation zone in the particular case Bϕ ∝ s has been studied by
Zahn et al. (2007). The authors found that a particular type of
oscillatory mode should exist with the frequency ∼ωA(ωA/Ω)
comparable to the growth rate estimated by Spruit (1999). These
modes are stable in the non-dissipative limit but they can be
unstable if, for example, radiative heat transport is taken into
account. Stability of the toroidal field in rotating stars has
been considered also by Kitchatinov (2008) and Kitchatinov &
Rüdiger (2008) who argued that the magnetic instability is
determined by a threshold field strength at which the instability
sets in. Estimating this threshold in the solar radiation zone,
Kitchatinov & Rüdiger (2008) impose the upper limit on the
magnetic field in the radiation zone of the Sun ≈600 G.

In this paper we consider the combined influence of strati-
fication, thermal conductivity, and rotation on the stability of
the toroidal field in a stellar radiation zone. These factors are
always presented in radiation zones and therefore it is of great
importance to consider the stability under their combined influ-
ence. The paper is organized as follows. The basic equations
and mathematical formulation of the problem are presented in
Section 2. The results of the numerical calculations of the growth
rate and frequency of the instability are discussed in Section 3.
Section 4 contains a brief summary of the main results and the
conclusions.

2. BASIC EQUATIONS

Let us consider the stability of an axisymmetric toroidal
magnetic field neglecting viscosity and magnetic diffusivity. We
work in spherical coordinates (r, θ , ϕ) with the unit vectors (er ,
eθ , eϕ). We assume that the radiation zone rotates rigidly with
the angular velocity � and that the toroidal field depends on r
and θ , Bϕ = Bϕ(r, θ ). We consider the stability using the limit
of incompressible fluid. This limit applies if the gas pressure is
greater than the magnetic pressure (see, e.g., Landau & Lifshitz
1959). In this limit, the MHD equations read

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ g +

1

4πρ
(∇ × B) × B, (1)

∂ B
∂t

− ∇ × (v × B) = 0, (2)

∇ · v = 0, ∇ · B = 0, (3)

where g is gravity. The equation of thermal balance reads in the
Boussinesq approximation

∂T

∂t
+ v · (∇T − ∇adT ) = ∇ · (κ∇T ), (4)

where κ is the thermal diffusivity and ∇adT is the adiabatic
temperature gradient.

In the basic (unperturbed) state, the gas is assumed to be in
hydrostatic equilibrium, then

∇p

ρ
= g +

1

4πρ
(∇ × B) × B + es Ω2 r sin θ, (5)

where es is the unit vector in the cylindrical radial direction.
The rotational energy is assumed to be much smaller than

the gravitational one, g � rΩ2. Since the magnetic energy
is subthermal, g is approximately radial in our basic state.

We consider a linear stability. Linearizing Equations (1)–(4),
we take into account that small perturbations of the density
and temperature in the Boussinesq approximation are related
by ρ1/ρ = −β(T1/T ), where β is the thermal expansion coef-
ficient. For small perturbations, we use a local approximation
in the θ -direction and assume that their dependence on θ is
proportional to exp(−ilθ ) = exp(−kθ rθ ), where l � 1 and
kθ = l/r are the longitudinal wavenumber and wavevector,
respectively. Since the basic state is stationary and axisymmet-
ric, the dependence of perturbations on t and ϕ can be taken
in the exponential form as well. Then, perturbations are pro-
portional to exp (σ t − ilθ − imϕ), where m is the azimuthal
wavenumber. The dependence on r should be determined from
Equations (1)–(4). For the sake of simplicity, we assume that
unperturbed ρ and T are approximately homogeneous in the
radiation zone. This assumption does not change the main con-
clusions qualitatively but simplifies substantially calculations.
Eliminating all variables in the linearized Equations (1)–(4) in
favor of the perturbations of the radial velocity v1r and tempera-
ture T1, we obtain with the accuracy in terms of the lowest order
in (kθ r)−1 the set of two coupled equations:

(
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rkϕ
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) ]
v1r = −k2

⊥βgσ1
T1

T
, (6)

κ

r2

∂

∂r

[
r2 ∂

∂r

(
T1

T

)]
− (

σ1 + κk2
⊥
)T1

T
= ω2

BV

βg
v1r , (7)

where the prime denotes a derivative with respect to r and

σ1 = σ − imΩ, ω2
A = k2

ϕB2
ϕ

4πρ
,

ω2
BV = − gβ

T
(∇adT − ∇T )r , D = σ 2

1

σ 2
1 + ω2

A

,

Ωi = 2Ω cos θ, Ωe = 2Ω sin θ, k2
⊥ = k2

θ + k2
ϕ,

kϕ = m

r sin θ
,

1

H
= ∂

∂r
ln(rBϕ). (8)

If Ω = 0, this set of equations transforms into the set derived by
Bonanno & Urpin (2012) for non-rotating radiation zones. The
toroidal field does not enter the equation of thermal balance
(7) because the thermal transport is not influenced by the
field. On the contrary, Bϕ(r, θ ) plays an important role in
Equation (6) since ωA is proportional to it. Therefore, the growth
rate is determined by both the latitudinal and radial profiles of
Bϕ(r, θ ). Note that the toroidal field enters Equation (6) as a
parameter but the latitudinal derivative of Bϕ does not enter.
Often, however, stability criteria for the Tayler instability in the
spherical geometry are formulated in terms of the latitudinal
profile of Bϕ and its θ -derivative (see, e.g., Goossens et al.
1981). Although our approach is suited to perform calculations
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of the growth rate, it can also be used to study the stability
condition. This condition should contain both the toroidal field
and its derivative with respect to a latitude. Indeed, the condition
of stability reads in our approach max Γ(θ ) < 0 (at fixed values
of other parameters). The value of θ∗ where Γ is maximal
is determined by the equation ∂Γ(θ )/∂θ = 0. This condition
depends on the latitudinal profile and, as a result, the criterion
of instability should depend on the θ -derivative of Bϕ although
Equations (6) and (7) for Γ do not depend. The present paper,
however, basically addresses calculations of the growth rate, and
the instability conditions will not be considered.

Some general stability properties can be derived directly from
Equations (6) and (7). Consider perturbations with a very short
radial wavelength for which one can use a local approximation
in the radial direction, such as v1r ∝ exp(−ikrr), where kr is
the radial wavevector. If kr � max(kθ , kϕ), then Equations (6)
and (7) can be reduced with the accuracy in terms of the lowest
order in (krr)−1 to the following set of algebraic equations:

−(σ1+κk2)
T1

T
= ω2

BV

βg
v1r , k2

r

(
σ 2

1 +ω2
A+DΩ2

i

)
v1r = k2

⊥βgσ
T1

T
,

(9)

where k2 = k2
r +k2

⊥. The corresponding dispersion relation reads

σ 5
1 + κk2σ 4

1 +

(
2ω2

A + Ω2
i +

k2
⊥

k2
ω2

BV

)
σ 3

1 + κk2
(
2ω2

A + Ω2
i

)
σ 2

1

+ ω2
A

(
ω2

A +
k2
⊥

k2
ω2

BV

)
σ1 + κk2ω4

A = 0. (10)

The condition that at least one of the roots has a positive real part
(unstable mode) is determined by the Routh criterion (see, e.g.,
Aleksandrov et al. 1963). For a particular case of an equation
of the fifth order, these criteria have been derived by Urpin
& Rüdiger (2005). These criteria yield the only non-trivial
condition of instability ω2

BV < 0, which is not satisfied in the
radiation zone by definition. Therefore, modes with short radial
wavelength are always stable to the current-driven instability.
This conclusion was first obtained by Bonanno & Urpin (2012)
for non-rotating radiative zones and, here, we generalize the
result for the case of rotating stars.

3. NUMERICAL RESULTS

We assume that the inner and outer boundaries of the radiation
zone are located at r = Ri and r = R, respectively. Introducing
the dimensionless radius x = r/R, we obtain for the boundaries
x = xi = Ri/R and x = 1. We choose the internal radius of the
radiation zone, xi, to be small but finite, ranging from xi = 0.1
to xi = 0.4 in all the simulations. We did not find qualitative
difference from xi = 0.1 to xi = 0.4, but the numerical stability
of the system was improved in the latter case. All the figures
presented in the paper are therefore obtained for xi = 0.4.

The toroidal field can be conveniently represented as

Bϕ = B0 ψ(x) sin θ, ψ(x) = (x/xi)
α, (11)

where B0 is the field strength at x = xi at the equator. Since
the dependence of Bϕ on r is uncertain in the radiation zone,
we consider different possibilities, varying α. The models with
α > 0 where the field reaches its maximum at the outer boundary
can mimic, for example, the radiative interior of a star with a
convective envelope. In this case, the bottom of the convection
zone is the location of the toroidal field generated by a dynamo
action which can penetrate into the radiation zone.

Introducing the dimensionless quantities as

Γ = σ1

ωA0
, δ2 = ω2

BV

ω2
A0

, ε = ωT

ωA0
, η = 2Ω

ωA0,
(12)

where ω2
A0 = B2

0/4πρR2 and ωT = κ/R2, we can transform
Equations (6) and (7) to the dimensionless form. They read(
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dx

(
x2 du
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−
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ε
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)
u = δ2v1r , (14)

where

u = βg

ωA0

T1

T
, E = Γ2

Γ2 + ψ2/x2
, N = R

H
= 1

x
+

1

ψ

dψ

dx
,

q2 = l2 +
m2

sin2 θ
. (15)

The parameters δ2 and ε characterize the effect of stratifica-
tion and thermal conductivity, respectively, and η describes a
stabilizing influence of rotation. Equations (13) and (14) with
the corresponding boundary conditions describe the stability
problem as a nonlinear eigenvalue problem. Fortunately, the
qualitative features of the problem are not particularly sensitive
to the choice of boundary conditions. That is why we choose the
simplest conditions and assume that v1r = T1 = 0 at r = Ri and
r = R. Note that the parameter δ is large in radiation zones but,
most likely, ε is relatively small if the magnetic field is not very
weak. In calculations, we suppose δ and ε to be constant through
the radiation zone. As it was already mentioned the coefficients
of Equations (6) and (7) (and the corresponding dimensionless
equations) depend on θ and this property leads to a latitudinal
dependent Γ = Γ(θ ). In the present paper, only the simplest
latitudinal profile Bϕ ∝ sin θ is considered because this depen-
dence is often used in modeling the toroidal field in stars (see,
e.g., Kitchatinov & Rüdiger 2008). For other dependences of
Bϕ on θ , the results can differ quantitatively but the main quali-
tative features are same. Generally, Equations (13) and (14) are
complex. It is more convenient to split all quantities into the real
and imaginary parts and to solve numerically the set of four real
equations that follows from Equations (13) and (14).

The stability properties in the spherical geometry can be
qualitatively different from those in the cylindrical geometry
(Bonanno & Urpin 2012). To illustrate this point, we plot in
a few figures the growth rate and frequency of the instability
as a function of the rotational parameter η for different polar
angles, θ , and for α = 2. In Figure 1, the growth rate is
shown at the equator. It turns out that a combined influence
of stratification and rotation provides some stabilizing effect
on the instability. The growth rate is maximal for a non-
rotating star with neutral stratification (δ2 = 0). At small η
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Figure 1. Growth rate (left panel) and frequency (right panel) of the Tayler’s modes at the equator as functions of the rotational parameter η for α = 2, ε = 0.01
and for δ2 = 0 (solid), 4 (dashed), 8 (dash-dotted), 100 (dash-dot-dotted), and 1000 (dotted). The azimuthal and longitudinal wavenumbers are m = 1 and l = 10,
respectively.

Figure 2. Same as in Figure 1 but for θ = 60◦.

and δ2 � 1, the growth rate is of the order of ωA0, but
it clearly shows some suppression for a faster rotation. The
growth rate exhibits a qualitatively same rotational suppression
for the radiation zone with a higher stratification parameter
δ. Suppression becomes important already at relatively small
values of η ∼ 1–2. However, this suppression cannot stop the
instability but it only reduces the growth rate. The growth rate
decreases with an increase of η approximately as 1/η and it does
not vanish even at very large η. A similar behavior in the case
of ideal plasma was obtained by Spruit (1999) who considered
the instability near the rotation axis in the case of the toroidal
field dependent on the cylindrical radius alone, Bϕ = Bϕ(s).
Stratification leads to an additional decrease of the growth rate.
At η < 1, for example, the growth rate is by a factor of ≈3
smaller for δ2 = 100 compared to δ2 = 0. At very large δ, the

growth rate decreases even more, but it does not reach 0 at any
finite δ. It turns out that, in the case of α = 2, the combined
influence of stratification, rotation, and thermal conductivity can
never stop the Tayler instability in the region near the equator
but can only decrease the growth rate. Note that the Tayler’s
modes are oscillatory in contrast to the non-rotating case. The
frequency is basically comparable to the growth rate and also
decreases for faster rotation.

In Figure 2, the growth rate of instability is presented for the
same model of the magnetic field with α = 2 but for another
polar angle, θ = 60◦. Qualitatively, a behavior of the growth
rate is the same as in the previous case. A combined influence
of stratification and rotation provides a stabilizing effect on the
instability. Like the case θ = 90◦, the growth rate at given δ
is maximal in a non-rotating star and it decreases substantially

4



The Astrophysical Journal, 766:52 (9pp), 2013 March 20 Bonanno & Urpin

Figure 3. Same as in Figures 1 and 2 but for θ = 30◦.

Figure 4. Growth rate (left panel) and frequency (right panel) of the Tayler’s modes at the equator as functions of the rotational parameter η for α = 1, ε = 0.01
and for δ2 = 0 (solid), 4 (dashed), 8 (dash-dotted), 100 (dash-dot-dotted), and 1000 (dotted). The azimuthal and longitudinal wavenumbers are m = 1 and l = 10,
respectively.

for a faster rotation. Suppression of the growth rate becomes
important at relatively small values of η ∼ 1–2 but, however,
this suppression cannot stop the instability and only reduces
the growth rate. Like the previous case, for any given δ, the
growth rate decreases with an increase of η approximately
∝ 1/η. Stratification also leads to a decrease of the growth
rate. For example, at small η, the growth rate is ≈4 smaller
for δ2 = 100 than for δ2 = 0. At very large δ (but small η),
the growth rate decreases even more but it does not vanish at
any large δ (see also Bonanno & Urpin 2012). Unstable modes
are oscillatory in contrast to the non-rotating case and their
frequency is comparable to the growth rate.

In Figure 3. we plot the growth rate and frequency of unstable
modes for θ = 30◦. It seems that the stabilizing influence of
rotation and stratification is stronger in the region close to the
axis. A comparison of Figures 1 and 3 shows that the instability

is most efficient at the equator and very weak close to the axis.
Note that the instability exhibits the same behavior also in the
non-rotating case (Bonanno & Urpin 2012). This result is at
variance with the widely accepted opinion that the toroidal
magnetic field in stars is always unstable around the rotation
axis (see, e.g., Spruit 1999). This opinion is based on a seeming
similarity of the spherical magnetic configuration near the axis
and the axisymmetric cylindrical configuration. However, this
analogy is generally incorrect because, in spherical geometry,
the toroidal field near the axis depends also on the coordinate
along the axis not only on the distance from it. In contrast to
the instability near the equator, the instability at θ = 30◦ can be
characterized by the threshold, ηcr, if the stratification parameter
δ is small. The instability occurs if η < ηcr and it is entirely
suppressed if η > ηcr for small δ. The threshold is not high and
corresponds to ηcr ∼ 1.5 if δ = 0. Therefore, even a relatively

5



The Astrophysical Journal, 766:52 (9pp), 2013 March 20 Bonanno & Urpin

Figure 5. Same as in Figure 4 but for θ = 60◦.

Figure 6. Same as in Figure 4 but for θ = 33◦.

slow rotation with η > 1.5 can stop the instability in some
region around the axis if stratification is close to the neutral one.
Note that the Tayler modes become oscillatory and marginally
stable beyond the threshold: their growth rate is equal to zero
but the frequency is always non-vanishing. The instability has
no threshold if δ is not small. In this case, the growth rate does
not vanish even at very large η but it decreases ∝ 1/η.

The growth rate of the instability at the equator is shown in
Figure 4 for the case α = 1. Qualitatively, the behavior is the
same but the instability turns out to be a bit weaker in this case.
At α = 2, a combined influence of stratification, rotation, and
thermal conductivity can never suppress the Tayler instability
in the region near the equator but can only decrease the growth
rate. At variance with the previous case in the case α = 1
this influence is more pronounced and can even suppress the
instability entirely if η > 2 and δ � 1. At larger δ, the instability
cannot be stopped neither by rotation nor by stratification but its
growth rate decreases substantially. Like the previous case, the

instability is oscillatory with the frequency comparable to the
growth rate. The frequency reaches its maximum, Imσ ∼ ωA0,
at Ω ∼ ωA0 and, then, decreases in more rapidly rotating stars
as 1/η ∝ 1/Ω.

In Figure 5, we plot Γ as a function of η in the case α = 1 and
for θ = 60◦. Again, in contrast to the case α = 2, the instability
can be suppressed completely at η > 2 and a weak stratification,
δ � 1. However, if stratification is stronger, the instability can
occur at large η but with a substantially reduced growth rate.
The unstable modes are always oscillatory and their frequency
is comparable to (or a bit greater than) the growth rate. At small
δ � 1 and η > 2, the modes are marginally stable (ReΓ ≈ 0)
but their frequency is non-vanishing.

Figure 6 shows Γ versus η for α = 1 and θ = 33◦.
The growth rate of instability is substantially smaller than
in the regions close to the equator (Figures 4 and 5). As
already mentioned, this is a rather general behavior in spherical
geometry: the instability becomes weaker near the pole and
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Figure 7. Growth rate (left panel) and frequency (right panel) of the Tayler’s modes at the equator as functions of the rotational parameter η for α = −0.4, ε = 0.01
and for δ2 = 0 (solid), 4 (dashed), 8 (dash-dotted), 100 (dash-dot-dotted), and 1000 (dotted). The azimuthal and longitudinal wavenumbers are m = 1 and l = 10,
respectively.

Figure 8. Same as in Figure 7 but for θ = 80◦.

Figure 9. Radial profile of the real part of the eigenfunctions v1r (solid) and u
(dashed) for α = 2, η = 2, q = 12, δ = 4, ε = 0.02, and θ = 90◦.

usually ceases at the axis. For example, the growth rate is
approximately five times smaller at θ = 33◦ than at θ = 60◦
if η � 1 and δ = 0, and ≈10 times smaller if δ2 =
8. As everywhere in the radiation zone, the instability is

oscillatory with the frequency being of the order of the growth
rate.

In Figures 7 and 8 we plot Γ as a function of η for
α = −0.4 and θ = 90◦ and θ = 80◦, respectively, the angles
below θ = 75◦ being stable. As should now be clear, smaller
values of α imply a weaker instability. We did not find any
instability if α < −0.5 and therefore we did not considered
the behavior of the modes in the neighborhood of this critical
value.

4. CONCLUSION

We have considered the stability of the toroidal magnetic field
in stellar radiation zones taking into account the effects of rota-
tion, stratification, and thermal conductivity. Our consideration
is local in the θ -direction and, as a result, we reduce the stability
analysis to a nonlinear eigenvalue problem for a second-order
differential equation in r. The eigenfunctions, corresponding to
unstable modes, are usually localized in a neighborhood of the
outer (if α > 1) or inner (if α < 1) boundary and are relatively
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localized in the radial direction as it is displayed in Figure 9,
for instance. The reason for this is qualitatively clear: unstable
eigenfunctions should be localized in the region where electric
currents are maximal because the current is the reason of insta-
bility. If α > 1, the current is maximal near the outer boundary
and, on the contrary, it is maximal near the inner boundary if
α < 1.

As it was pointed out by Spruit (1999), the stabilizing
influence of stratification is less pronounced for perturbations
with a short radial scale. Therefore, it seems that instability
should operate most efficiently on very short radial scales.
However, this conclusion is incorrect because the destabilizing
effect of electric currents (that is the reason of the Tayler
instability) also decreases as the radial scale decreases. It is
easy to estimate from the continuity condition, ∇ · v = 0,
that the radial velocity decreases proportionally to the radial
length scale. Therefore, motions tend to be two dimensional
(2D) for perturbations with a small radial length scale. However,
as shown by Kitchatinov & Rüdiger (2008), the Tayler instability
does not occur in 2D and, hence, it cannot arise for perturbations
with very short radial scales although the stabilizing influence of
stratification is minimal for them. However, the stabilizing effect
of stratification decreases faster as the radial scale decreases
and, hence, there should exist some characteristic radial length
scale at which the effects of stratification and electric current
become comparable. This condition determines a relatively
small characteristic width of the eigenfunction.

It was argued by Bonanno & Urpin (2012) that stability prop-
erties of the spherical magnetic configurations are qualitatively
different from properties of the cylindrical configurations. For
instance, our calculations show that the Tayler instability is most
efficient near the equator but the toroidal configurations can be
stable near the rotation axis. This conclusion is at variance with
the widely accepted opinion (see, e.g., Spruit 1999; Zhang et al.
2003) that the toroidal field is always unstable near the axis.
This idea is based on the analysis of cylindrical configurations
and on the apparent similarity of the magnetic field topology in
the infinite cylinder and the geometry near the rotation axis in
spherical geometry. However, there is a qualitative difference
between these two cases: the magnetic field in spherical geom-
etry depends generally on the coordinate along the axis and this
dependence can provide a stabilizing effect. Therefore, a di-
rect analogy between stability of a cylinder with the azimuthal
field and the toroidal field in stellar radiation zones is generally
incorrect.

It is well known that stable stratification can suppress the
Tayler instability of the toroidal field. Calculations by Bonanno
& Urpin (2012) show that, indeed, the instability does not arise
if the Brunt–Väisälä frequency is greater than ωA0 by a factor
of ∼5–10 and the thermal conductivity is neglected. Since ωBV
is typically high in radiative zones (∼10−3 to 10−4 s−1) the
instability sets in only if the field is very strong (�106–107 G).
However, the thermal conductivity reduces the stabilizing effect
of stratification drastically. It turns out that the growth rate is
non-vanishing for any stratification (Bonanno & Urpin 2012).
Even very strong gravity cannot stop the instability but it only
decreases the growth rate. Rotation provides also a strong
stabilizing influence on the Tayler instability. The effect of
rotation is characterized by the parameter η = 2Ω/ωA0, which
can be large in radiation zones. A reduction of the growth rate
becomes significant already at a relatively low angular velocity,
Ω ∼ ωA0, that corresponds to η ∼ 1. All these factors are always
present in stellar radiation zones and, therefore, it is of great

importance to study the stability of magnetic configurations
under their combined influence.

The collective effect of stratification, rotation, and thermal
conductivity turns out to be rather unexpected: the instability of
the toroidal magnetic field cannot be suppressed if all these three
factors are presented except, possibly, in the case of very small
values of δ (which is unrealistic). The combined effect cannot
stop the instability but can only decrease the growth rate. The
decrease can be substantial, however. For example, a decrease of
σ caused by stratification and thermal conductivity is inversely
proportional to the square of the Brunt–Väisälä frequency. If
gravity is strong but the magnetic field is weak, the instability
sets in very slowly. Generally, for a sufficiently weak magnetic
field, the growth rate can be comparable to the inverse lifetime
of a star. Rotation also cannot stop the instability but, such as for
stratification and thermal conductivity, it only reduces its growth
rate. The growth rate is non-vanishing for any rotation, but it can
be drastically reduced in rapidly rotating stars. At large η, the
growth rate decreases ∝ 1/η. Since the parameter η is typically
large in the radiation zones, the growth rate should be small.
Note, however, that the Alfvén timescale, ω−1

A0 , is usually short
compared to the lifetime of a star; therefore, even a suppressed
instability with a reduced growth rate can play an important role,
for instance, in transport processes in radiation zones (mixing,
transport of the angular momentum, etc.). It should also be noted
that, most likely, the field does not decay to zero because of this
instability. When the field becomes weak, the growth rate of
the instability is too small. Likely, the field can decay only to
the value at which the growth rate becomes comparable to the
inverse lifetime of a star.

Note finally that we considered only the ideal case and ne-
glected viscosity and magnetic diffusion. Dissipative effects
make the problem much more complicated and we plan to con-
sider them elsewhere. Qualitatively, however, it seems that more
or less plausible values of the magnetic diffusivity should not
change essentially our results. The point is that the characteris-
tic length scale of the fundamental eigenfunction, despite being
relatively short, is still rather large to cause a significant dissi-
pation. Therefore, the magnetic diffusivity should not influence
the fundamental eigenfunctions and eigenvalues. The only ex-
ception can be very rapidly rotating stars for which the radial
scale of fundamental eigenfunctions might be very short. The
magnetic diffusivity can also change the properties of modes
with large radial numbers and with large l and m.
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Kitchatinov, L., & Rüdiger, G. 2008, A&A, 478, 1

Landau, L. D., & Lifshitz, E. M. 1959, Fluid Mechanics (Course of Theoretical
Physics; Oxford: Pergamon)

Markey, P., & Tayler, R. J. 1973, MNRAS, 163, 77
Mathis, S., & Zahn, J.-P. 2005, A&A, 440, 653
Spruit, H. C. 1999, A&A, 349, 189
Tayler, R. J. 1973, MNRAS, 161, 365
Tayler, R. J. 1980, MNRAS, 191, 151
Urpin, V., & Gil, J. 2004, A&A, 415, 305
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