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We study the stability of compressible differentially rotating flows in the presence of the magnetic field, and
we show that the compressibility profoundly alters the previous results for a magnetized incompressible flow.
The necessary condition of newly found instability can be easily satisfied in various flows in laboratory and
astrophysical conditions and reads BsB����0, where Bs and B� are the radial and azimuthal components of
the magnetic field, ��=d� /ds with s being the cylindrical radius. Contrary to the well-known magnetorota-
tional instability that occurs only if � decreases with s, the instability considered in this paper may occur at
any sign of ��. The instability can operate even in a very strong magnetic field that entirely suppresses the
standard magnetorotational instability. The growth time of instability can be as short as a few rotation periods.
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INTRODUCTION

Instabilities caused by differential rotation of a magne-
tized gas may play an important role in enhancing transport
processes in various astrophysical bodies and laboratory ex-
periments. It is well known since the classical papers by
Velikhov �1� and Chandrasekhar �2� that a differentially ro-
tating flow with a negative angular velocity gradient and a
weak magnetic field is unstable to the magnetorotational in-
stability. This instability has been analyzed in detail in the
astrophysical context �see �3–5�� because it can be respon-
sible for transport of the angular momentum in various ob-
jects ranging from accretion disks to galaxies. In accretion
disks, this instability is also well studied by numerical simu-
lations in both linear and nonlinear regimes. Simulations of
this instability in accretion disks �see, e.g., �6–8�� show that
the generated turbulence can enhance substantially the angu-
lar momentum transport.

Astrophysical applications of the magnetorotational insta-
bility have created great interest in trying to study this insta-
bility in the laboratory �9–12�. The experiments, however,
are complicated because very large rotation rates should be
achieved. Recently, Hollerbach and Rüdiger �13� argued that
the rotation rate can be substantially decreased adding an
azimuthal field. It is known since the paper by Tayler �14�
that an azimuthal field produces a strong destabilizing effect
and, as a result of this additional destabilization, the critical
Reynolds number in experiment can be reduced.

On the other hand, the magnetorotational instability is not
the only instability that operates in differentially rotating
magnetized flows. For example, even a weak axial depen-
dence of the angular velocity can result in a double diffusive
instability that is often called the Goldreich-Schubert-Fricke
instability �e.g., �15,16��. Note that many previous stability
analyses have adopted the Boussinesq approximation, and
have therefore neglected the effect of compressibility. This is
allowed if the magnetic field strength is essentially subther-
mal, and the sound speed is much greater than the Alfvén
velocity, cs�cA, but often this cannot be realized in real
astrophysical conditions and in many numerical simulations.

An attempt to consider the effect of compressibility on the
magnetorotational instability was undertaken by Blaes and
Balbus �17� in the context of astrophysical disks. The authors
considered a very simplified case of the wave vector parallel
to the rotation axis and a vanishing radial magnetic field. As
a result, the most interesting physics has been lost in this
study since only the standard magnetorotational instability
operates in this simple geometry.

In this paper, we show that an instability different from
the standard magnetorotational instability may occur in a
compressible differentially rotating magnetized flow. This in-
stability appears for any differential rotation and may occur
if the magnetic field has nonvanishing radial and azimuthal
components. The instability can arise even in a sufficiently
strong magnetic field that suppresses the magnetorotational
instability. Stability analysis done in this paper will hopefully
prove to be a useful guide to understanding various numeri-
cal simulations that explore the nonlinear development of
instabilities and their effects on the resulting turbulent state
of rotating magnetized flows.

BASIC EQUATIONS AND DISPERSION RELATION

We work in cylindrical coordinates �s, �, z� with the unit
vectors �e�s, e��, e�z�. The equations of compressible magneto-
hydrodynamics �MHD� read

v�̇ + �v� · �� �v� = −
�� p

�
+ g� +

1

4��
��� � B� � � B� , �1�

�̇ + �� · ��v�� = 0� , �2�

ṗ + v� · �� p + �p�� · v� = 0� , �3�

B�̇ − �� � �v� � B� � + ��� � ��� � B� � = 0� , �4�
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�� · B� = 0� . �5�

Our notation is as follows: � and v� are the density and fluid
velocity, respectively; p is the gas pressure; g� is gravity that

can be important in astrophysical applications; B� is the mag-
netic field; � is the magnetic diffusivity; and � is the adia-
batic index. For the sake of simplicity, the flow is assumed to
be isothermal.

The basic state on which the stability analysis is per-
formed is assumed to be quasistationary with the angular

velocity �=��s� and B� �0� . Generally, a quasistationary ba-
sic state cannot be achieved for any differentially rotating
magnetic configuration, therefore we discuss in more detail
when this assumption can be satisfied. We assume that gas is
in hydrostatic equilibrium in the basic state. Then

�� p

�
= D� +

1

4��
��� � B� � � B� , D� = g� + �2s� . �6�

Generally, a geometry of the magnetic field can be rather
complex, and our study primarily addresses such complex
magnetic configurations in which the radial and azimuthal
field components are presented. The presence of a radial
magnetic field and differential rotation in the basic state can
lead to the development of the azimuthal field. Nevertheless,
the basic state can be considered in some cases as quasista-
tionary despite the development of the toroidal field.

For example, if the magnetic Reynolds number is large ��
is small�, then one can obtain from Eq. �4� that the azimuthal
field grows approximately linearly with time,

B��t� = B��0� + s��Bst , �7�

where ��=d� /ds, and B��0� is the azimuthal field at t=0.
As long as the second term on the right-hand side �r.h.s.� is
small compared to the first one, and

t � 	� =
1

s��

B��0�
Bs

, �8�

stretching of the azimuthal field does not affect significantly
the basic state; 	� is the characteristic time scale of genera-
tion of B�. As a result, the basic state can be treated as
quasistationary during the time t�	�. If B��0� /Bs�1, then
steady state can be maintained during a relatively long time
before the generated azimuthal field begins to influence the
basic state. We will show that the growth time of instability
can be shorter than 	� in many cases of interest.

If the magnetic Reynolds number is moderate, then
stretching of the azimuthal field from Bs by differential rota-
tion can be compensated by Ohmic dissipation, and the basic
state can be quasistationary as well. Then, we have from Eq.
�4� the following condition of steady state:

��� � �v� � B� ��� = ���� � ��� � B� ��� �9�

or

�
 −
1

s2�B� = −
s

�
��Bs. �10�

The generated toroidal field is typically stronger than the
radial field by a factor of the order of the magnetic Reynolds
number. This simple model applies only in the case of mod-
erate Reynolds number since the generation of a very strong
toroidal field could lead to instabilities of the basic state
caused, for example, by magnetic buoyancy or reconnection.
Note that a quasistationary basic state with nonvanishing ra-
dial and azimuthal field components can be achieved in other
models as well. For example, if the angular velocity depends
on both the s and z coordinates, then changes in B� caused
by stretching from the radial and vertical field components
due to radial and vertical shear, respectively, can balance
each other in such a way that B� will be steady state. In fact,
there is no principal difference for instability which mecha-
nism is responsible for maintaining a quasistationary basic
configuration. The only important point for our model is the
presence of the magnetic field with nonvanishing radial and
azimuthal components, but such magnetic configurations are
rather common in astrophysics �galactic and accretion disks,
stellar radiative zones, oceans of accreting neutron stars, etc.�

We consider the stability of axisymmetric short-
wavelength perturbations with the spacetime dependence
� exp��t− ik� ·r��, where k� = �ks ,0 ,kz� is the wave vector,
�k� ·r� � �1. Small perturbations will be indicated by subscript
1, while unperturbed quantities will have no subscript. Then,
to the lowest order in �k� ·r��−1 the linearized MHD equations
read

�v�1 + 2�� � v�1 + e��s��v1s =
ik�p1

�
−

i

4��
�k� � B� 1� � B� ,

�11�

��1 − i��k� · v�1� = 0� , �12�

�p1 − i�p�k� · v�1� = 0� , �13�

�B� 1 = e��s��B1s − i�B� · k��v�1 + iB� �k� · v�1� , �14�

k� · B� 1 = 0� . �15�

We neglect Ohmic dissipation in the induction equation be-
cause the inverse Ohmic decay time scale is small for many
cases of interest in astrophysics.

Generally, the dispersion relation for Eqs. �11�–�15� is
rather complicated and, in this paper, we consider only a
particular case when the wave vector of perturbations is per-

pendicular to B� , k� ·B� =0� . This case, being mathematically
much simpler, illustrates very well the main qualitative fea-
tures of the new magnetic shear-driven instability. Besides,
the standard magnetorotational instability does not operate in

this case because its growth rate is proportional to k� ·B� .
Therefore, the difference between instabilities is seen most

clearly if k� ·B� =0� .
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In the case k� ·B� =0� , Eqs. �11�–�15� may be combined after
some algebra into a fifth-order dispersion relation,

�5 + �3�0
2 + �e

2� + �2B�
3 + ���e

20
2 + ��e

2B�
3 = 0,

�16�

where we denote

�e
2 = 2��2� + s���, 0

2 = k2�cs
2 + cm

2 �, � = kz
2/k2,

cm
2 =

B2

4��
, cs

2 =
�p

�
, B�

3 =
k2B�Bss��

4��
.

This equation describes five nontrivial modes that exist in a

rotating magnetized flow if k� ·B� =0� .

In the nonmagnetic case, B� =0� , Eq. �16� yields

�4 + �s
2 + �e

2��2 + �s
2�e

2 = 0, �17�

where s=kcs is the frequency of sound waves. The solution
is

�1,2
2 = −

1

2
�s

2 + �e
2� ±�1

4
�s

2 + �e
2�2 − �s

2�e
2. �18�

Instability arises only if the well-known Rayleigh criterion is
fulfilled, �e

2�0. In this case, the inertial mode is unstable,
which corresponds to the upper sign. The sound mode that
corresponds to the lower sign is always stable.

To have an idea about the properties of the dispersion
equation �16�, we can consider a particular case of flow with
��s−2. Then, �e

2=0 and we have from Eq. �16�

�3 + �0
2 + B�

3 = 0. �19�

The solutions of this equation are

�1 = u + v, �2,3 = −
1

2
�u + v� ±

i�3

2
�u − v� , �20�

where

�u,v� = �−
B�

3

2
±�B�

6

4
+

0
6

27
�1/3

. �21�

One of the roots has a positive real part �instability� if u+v
�0. The latter condition is equivalent to B�

3 �0, which is
the criterion of instability in this simple case. It is clear from
this simple example that the quantity B� plays a crucial role
for stability of magnetized compressible flows.

CRITERIA AND GROWTH RATE OF INSTABILITY

The conditions under which Eq. �16� has unstable solu-
tions can be obtained by making use of the Routh-Hurwitz
theorem �see �18,19��. In the case of the dispersion equation
of a fifth order, the Routh-Hurwitz criteria are written, for
example, in �20�. According to these criteria, Eq. �16� has
unstable solutions if one of the following inequalities is ful-
filled:

��e
2B�

3 � 0, B�
3 � 0, �B�

3 �2 � 0. �22�

These inequalities yield the criterion of instability

B�
3 � 0. �23�

Apart from differential rotation, this criterion requires non-
vanishing radial and azimuthal field components. The verti-

cal component of B� is unimportant for criterion �23�, and the
instability may occur even in a plane parallel magnetic field
with components only in radius and azimuth. The direction

of B� and the sign of �� are insignificant, and the instability
may occur for both the inward and outward decreasing an-
gular velocity. Note that this is in contrast with the magne-
torotational instability that can arise only if ���0. Another
important difference is that the magnetorotational instability
is suppressed by a sufficiently strong field, whereas the in-
stability given by Eq. �23� can arise even in a very strong
field.

To calculate the growth rate in the general case, it is con-
venient to introduce dimensionless quantities

� =
�

�e
, � =

1

x2

0
2

�e
2 , � =

1

x2

B�
3

�e
3 , x = ks �24�

�we assume that �e
2�0�. Note that the parameters � and � do

not depend on the wave vector. Then, Eq. �16� becomes

�5 + �3�1 + �x2� + �2�x2 + ���x2 + ��x2 = 0. �25�

This equation was solved numerically for different �, �, and
� by computing the eigenvalues of the matrix whose charac-
teristic polynomial is given by Eq. �16� �see �21� for details�.

In Fig. 1, we plot the dependence of the real and imagi-
nary parts of � on x for �=0.3, �=0.1, and �=0.1. The solid
lines show the growth rate and frequency for complex con-
jugate roots, and the dashed line for a real root. As men-
tioned, there should be no instability in the incompressible
limit because all the considered perturbations are stable with
respect to the standard magnetorotational instability. Our cal-
culations, however, clearly indicate that some roots have a
positive real part and, hence, there should exist a new shear-
driven instability in the compressible flow with ��0. There
are two pairs of unstable complex conjugate roots and one
real stable root with negative Re �. In the considered domain

FIG. 1. The dependence of the real and imaginary parts of � on
x2 for �=0.3, �=0.1, and �=0.1. Solids lines show the growth rate
and frequency of complex roots, and the dashed line corresponds to
the real root.
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of parameters, Im � for complex roots is typically 	10–30
times greater than Re � except the region of not very large
x2	10–50, where they are of the same order of magnitude
�but still Im ��Re ��. One pair of unstable roots has a very
small growth rate 	10−4�e, but another one grows much
faster. For these roots, the growth rate is 
0.5�e and varies
very slowly with the wavelength of perturbations. Note that
calculations for other values of the parameters show that
typically Re �	0.5 if �	�, but Re � becomes smaller if
���. This is qualitatively clear because the case ��� cor-
responds to the incompressible limit when the considered
instability is substantially suppressed.

In Fig. 2, we plot the dependence of Re � on x for the
case �=0.3, �=0.1, and �=−0.1. We do not plot Im � be-
cause this dependence does not differ much from what is
shown in Fig. 1. The change of sign alters qualitatively the
behavior of roots. If � is negative, then all oscillatory modes
are stable �Re ��0� but the real mode becomes unstable.
This conclusion is completely consistent with our analytical
consideration of Eq. �14�. It is worth mentioning that calcu-
lations for other �, �, and � also indicate that this sort of
behavior is rather general, and the nonoscillatory mode is
typically unstable for negative � whereas the oscillatory
modes are unstable for positive �. Like the previous case, the
growth rate depends weakly on the wavelength except in the
region x2�200, where this dependence is stronger. The char-
acteristic value of the growth rate is larger for negative � and
reaches 
�e for x2�200. Note that this is typical also for
other values of � and � and that a nonoscillatory mode
�negative �� grows faster than oscillatory modes �positive ��
for the same ���.

Figure 3 illustrates the behavior of roots as functions of
the parameter � for fixed value of x. It is seen that Re �
vanishes for both oscillatory and nonoscillatory modes when
� goes to zero. Since ��B�, the instability occurs only if
B��0 in complete agreement with the criterion �13�. As
usual, the real root is positive �instability� at ��0 whereas
the oscillatory roots have positive real parts at ��0. For the
same ���, the growth rate is larger for negative �.

DISCUSSION

To summarize then, we have considered the instability
caused by differential rotation of compressible magnetized

gas. To illustrate the main qualitative features of the instabil-
ity associated to compressibility and shear, we analyzed a
particular case of perturbations with the wave vector k� per-

pendicular to the magnetic field B� . In this case, the standard
magnetorotational instability, well-studied in incompressible
fluids �see, e.g., �1,2,5��, does not occur because its growth

rate is proportional to �k� ·B� �. Nevertheless, even perturba-

tions with k� ·B� =0� turn out to be unstable if the necessary
condition of the new instability, ��BsB����0, is satisfied.

In our stability analysis, we assume that the basic state is
quasistationary. This assumption can be fulfilled in many
cases of astrophysical interest despite the development of the
azimuthal field from the radial one due to differential rota-
tion. For instance, if the magnetic Reynolds number is large,
then the time scale of generation of the toroidal field is 		�

if B��0��Bs. Instability can be considered in a quasistation-
ary approximation if its growth time is shorter than 	�. As is
seen from Eq. �21�, the growth rate of instability in the case
of a strong compressibility can be roughly estimated as B�.
Then, the condition of quasistationarity reads B��1/	�, or

kcAs � s��� Bs

B��0��
2

. �26�

Since the left-hand side �l.h.s.� of this equation is propor-
tional to k but the r.h.s. does not depend on k, there always
exists the range of k for which Eq. �26� can be satisfied and
the basic state is quasistationary.

The considered instability is related basically to shear and
compressibility of a magnetized gas. In the incompressible
limit that corresponds to cs→� or 0

2→�, we have from Eq.
�16�

���2 + ��e
2� = 0, �27�

and the instability disappears. This is a principal difference
from other well-known instabilities caused by differential ro-
tation such as the Rayleigh or magnetorotational instabilities.
Note that an attempt to consider instability associated with
compressibility of differentially rotating magnetized gas has
been undertaken by Blaes and Balbus �17�. These authors,
however, analyzed only the unperturbed configuration in
which the magnetic field has vertical or azimuthal compo-

FIG. 2. The dependence of the growth rate on x2 for �=0.3,
�=0.1, and �=−0.1. The solid and dashed lines correspond to com-
plex and real roots, respectively.

FIG. 3. The dependence of Re � on � for �=0.3, x2=10, and
�=1. Solid and dashed lines correspond to complex and real roots,
respectively.
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nents, but such configurations are stable in accordance with
our criterion �23�.

The properties of the considered instability are very dif-
ferent from those of other instabilities that can occur in cy-
lindrical magnetized flows. The necessary condition of the
instability �23� can be satisfied for both outward increasing
and decreasing ��s�, whereas the magnetorotational instabil-
ity occurs only if ��s� decreases with s. The found instability
operates only if the basic magnetic configuration is relatively
complex with nonvanishing radial and azimuthal field com-
ponents while the standard magnetorotational instability can
arise also if both these components are vanishing and only
Bz�0.

This new instability can be either oscillatory or nonoscil-
latory, depending on the sign of �, whereas the standard mag-
netorotational instability is always nonoscillatory. Typically,
the considered instability is nonoscillatory if ��0 and oscil-
latory if ��0. One more important difference is associated
with the dependence on the magnetic field strength. A suffi-
ciently strong magnetic field, satisfying the inequality

�k� ·B� �2�8��s� ��� � �kz
2 /k2��, completely suppresses the

standard magnetorotational instability. On the contrary, the
instability discovered in our study cannot be suppressed even

in very strong magnetic fields, as is seen from the criterion
�23�. All this comparison allows us to claim that our analysis
demonstrates the presence of the new instability in com-
pressible cylindrical flow.

The growth rate of the newly found instability can be
rather large and reach 	�e. Basically, the growth rate is
larger for nonoscillatory modes which are unstable if
B�

3 �0. The growth rate depends on compressibility, being
smaller for a low compressibility. The incompressible limit
�Boussinesq approximation� corresponds to cs�cA, and the
considered instability is inefficient in this limit because of a
low growth rate. However, in the case of a strong field with
cA	cs when the Boussinesq approximation does not apply,
the instability can be much more efficient than the magne-
torotational instability.
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