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Abstract. Motion of a neutral two-body system transverse to a uniform magnetic field breaks
the axial symmetry and causes a shift of the wavefunction outward from the Coulomb wet.
Therefore the preferable position of the centre of the transverse basis for the wavefunction
expansion depends on the motion. In strong magnetic fields, the most appropriate is a set of
Landau functions which describe the states of free charged particles. We employed this basis
shifted with respect to the Coulomb well and considered radiative transitions between eigenstates
with different shifts. Transverse parts of the dipole matrix elements are calculated analyticatty.
The expressions obtained enable one to apply the adiabatic approximation to the photofonization
of a moving hydrogen atom with the choice of the transverse (Landau) parts of wavefunctions
being localized in the Coulomb and magnetic wells for the initial (ground) and final (continuum)
states, respectively. Contrary to the usnal adiabatic approach, this method gives good agreement
with more precise non-adiabatic calculations.

1. Introduction

The two-body problem in the presence of a magnetic field arises in different branches of
modern physics, In solid state physics, it is associated particularly with properties of exitons
in magnetized crystals and with diamagnetism of hydrogen atoms (see, for example, Ipatova
et al 1984 and Vincke et ol 1992, respectively). In astrophysics, photoionization of the
hydrogen atom in strong magnetic fields (B = 10'-10"* G) significantly affects formation
of thermal spectra of cooling neutron stars (Paviov et af 1994). The latter process has been
studied in a number of papers (Hasegawa and Howard 1961, Gnedin er af 1974, Schmitt
et al 1981, Wunner ef al 1983, Miller and Neuhauser 1991, Potekhin and Pavlov 1993). It
has been shown that strong magnetic fields, ¥ =#°B/(m?%e%c) = B/(2.35 x 10° G) > 1,
change drastically both the atomic structure and radiative transition rates. The atom is
compressed transverse to the field, and the photoionization cross sections change their
frequency dependence and acquire strong dependence on polarization.

The above-cited papers are based on the adiabatic approximation for a non-moving
atom. In this approximation, the interpal atomic motion transverse to the magnetic field
is treated as non-perturbed by the Coulomb interaction and is described by the Landau
wavefunctions. Radiative matrix elements are factorized into “transverse’ and ‘longitudinal’
parts, the first being calculated analytically.

The situation is much more complicated when atomic motion across the magnetic field
is taken into account, which breaks the axial symmetry. The electric field induced in the
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atomic rest frame pulls the electron density disiribution apart from the Coulomb well in
the plane transverse to the magnetic field. The displacement depends on the magnetic
field value and the quantum state of atom (Vincke ef al 1992). It is maximal when the
relative electron-to-proton motion wavefunction is localized in the magnetic well, which
corresponds to strongly decentred atomic states (Burkova et af 1976, Ipatova et af 1984).
The approaches, at which the transverse basis of the Landay functions may be centred at the
Coulomb or magnetic well, are based on the relative Hamiltonians, which are well known
in the literature (see, for example, Gorkov and Dzyaloshinsky 1968, Herold er af 1981).
However, they cannot be optimal for the adiabatic approximation, since the electron density
centre actually lies between these two wells.

Recently Vincke et af (1992) have applied gauge choice freedom and canonical operator
transformations to obtain 2 Hamiltonian which can be used for constructing the arbitrarily
displaced adiabatic wavefunctions. In our paper we also derive a convenient relative
Hamiltonian wsing 2 more transparent method of explicit coordinate transformation of the
wavefunction (section 2). Then we consider radiative transitions between two states, for
which appropriate adiabatic solutions correspond to different displacements. The Landau
state creationfannihilation operator formalism is presented. It enables us to calculate
analytically the transverse parts of radiative matrix elements (section 3). The advantages
of the new approach are illustrated in section 4 by a comparison of the adiabatical
photoionization cross sections with those calculated more precisely (using the non-adiabatic
wavefunction of the initial state).

2. General expressions

Eigenstates of a neutral two-body system of particles with masses, charges and coordinates
m_, —e, r_ and my., e, vy (e > 0), respectively, which move in an uniform magnetic
field B, may be characterized by the generalized momentum A K, which is the eigenvalue
of the operator (Gorkov and Dzyaloshinsky 1968)

- .. 0 €

PR, r)= ma—R——z—c-er 4]
where R = (m_r_ +myr ) /M and r = r_ — r, are the centre-of-mass and relative
coordinates, respectively, M = m_ + m.. is the total mass, and the cylindric gauge of the
vector potential, A(r) = %B x 7, is used. The corresponding wavefunction of the system

can be presented in the pseudo-factorized form

= i £ ©
Vi (R, T) = exp [;, (hK+ —B xr) R} v @) @)
The wavefunction of relative motion wg)(r) satisfies the Schrédinger equation

(A - By =0 (3)
with the Hamiltonian

- ) G- N eh .

o_2> . Pogh Rl e % 4
H i +2M+ J.(T¢)+MC( LxByr,+ V(r) )

where pr = ~ihd/dz, the z-axis is directed along B, p = (m,m_)/M is the reduced mass,
V(r) = —e?/r is the Coulomb potential, and E is the energy of the system,
The Hamiltonian
f]’(q-)—ﬁi B L e (L 1 B(r, xp,) )
L0 T 2u 0 8uct !t 2e\m- m. TLHDL
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where p, = —ikd/dr,, corresponds to the harmonic motion in the plane perpendjcular to
the magnetic field. The energies and wavefunctions can be written as

B = o7 (14 )+ (V+ 4

it 2 (©)
q’n,N (T.L) = JZ_nam Fn,N (zarzn>
wheren =0,1,2,... and N =0, 1,2, ... enumerate the Landau levels of the negatively
and positively charged particles, respectively, wl = eB/(mzc) are the gyrofrequencies, r)
and ¢ are the polar coordinates of r, an = +/ch/(eB) is the magnetic length, and the
function F, () isequal to zero if n < Gor N < (, while at n 2 0, N 2 0 it is given by
the expression (Kaminker and Yakovlev 1981)

ol 12
Fan(u) = (1N Fy o) = (mu’v "E_") LY="(u) (7

where L (1) is the Laguerre polynomial.

The term with K x B in (5) describes the influence of the electric field generated by
the motion transverse to 5 on the energy of the system. This term is eliminated by the
transformation (Gorkov and Dzyaloshinsky 1968, Herold et af 1981)

Y (r) = exp (=K r1) ¥ (r = ro) ®)
where & = (my — m.)/(2M) and vy = —(aﬁl/B) K| x B, which leads to the equation

(Ax’ - E)yi ) =0. ©)
The transformed Hamiltonian

. thz 2

AP =t 2 L3 st AL +V(r+rg) (10)

contains the shifted potential of interaction between the particles. A more general
ransformation reads

Y (r) = exp (i K r) Wi (r — nro) (1)
with wg}(r) satisfying the equation

( (TJ) ) w('?)(,r) =0 (12)
where
. niK? ?‘12 ﬁ2
AY = K ra- )2 21 e+ d —-n)—(fﬁ x Byr)

2M 2
+ff(r+qro). (13)

The Hamiltonian (13) reduces to (5) and (10) at » = 0 and » = 1, respectively, and is
equivalent to that obtained by Vincke et al (1992) on the basis of generalized canonical
transformations.

In strong magnetic fields it is convenient to expand the wavefunctions over the transverse

basis of the Landau states (6)

v r) = Z g;f-)i: w8 (1L} (14)
n', N’

where the coefficients 3}2&;;;'.N'(Z) are to be calculated numerically. In this approach,
the eigenstates of the system |K,i) = |K,n, N, v) are determined by the generalized
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momentum %K, the Landau aumbers # and ¥, and by an additional quantum number v
related to the ‘longitudinal’ energy (either positive or negative). The stronger the magnetic
field, the better is the convergence of the expansion (14). If a;, « (m/up)ay, where
ay = h?/(me?) is the Bohr radius (for the hydrogen atom it means y 3 1), the adiabatic
approximation may be applied, in which only the main term with n’ =n and N' = N 18
kept in {14):

() = 80, (@B (r1) (15)

(0}

where gj-; (2} = g}g).i;n,N(Z)'

3. Radiative transitions

Let us consider the radiative transition between two eigenstates, | K, i} and [ K, f}, which
are determined by the generalized momentum values K and K’ and by the sets i and f of
additional quantum numbers. To obtain the corresponding cross section one should calculate
the matrix element I} (see equation {A13)). We shall choose the length representation and
consider the dipole approximation at different shifts, n and r’, for the initial and final
wavefunctions, respectively. Then

D = (¥ (v + v exp (iz(n ~ 1)K 1r1) vly 2 (r)) (16)

where T, = (n — 5")ro. Let now in this equation the transverse basis (6) be used for the
exact (14) or adiabatic representation (13) of the initial and final wavefunctions. Since the
operator 7 transforms the Landau state {7, N} into the superposition of the neighbouring
states [n — 1, NY, In+ 1, N), n, N — 1) and |n, N + 1) (see, for example, Hasegawa and
Howard 1961, or (21) and (22) below) one comes to the separate problem of calculation of
the ‘transverse’ matrix elements

Ly wmy = (Bp pe(rL + 7| exp (i(n — 0K ir1) [Ran(ry)). (1n

In the case of motion (K¢ # 0 ), if n" 5 #, the direct integration in (17) with the
Landau functions (6} is complicated due to the shift r,. However, it is possible to use
a method which does not employ an explicit form of the wavefunctions. First, the final
wavefunction can be written as

Doy (rs 1) =TS0 w(ry) (18)
where

R 3 - i,

T =exp (nér_J_) = exp (ET*IJJ_) (19)
is the shift operator. Due to the orthogonality of v, and K , the arguments of the exponents
in (17) and (19) commute, and one may multiply them to obtain the equation

, i,
Iewrnn = 0, N'lexp | —=7.p, + i’ — Ko7y | |In. N) {20)
h

in which the wavefunctions are no longer mutually shifted.
For further calculations it is convenient to use the relations

A am ~ o - "‘..]. ro_ iam - At ~ "+)
f=——=la+a —A-A =—-—la—-a"+A-A
7 ) ﬁ( an
if ar 2 2 . B . .- o
pr = a—at— A+ AT =— a4at+ A+ At
Px gfm( ) Py zﬁam( )
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which determine the creation 4* and A*, and annihilation operators & and A of the states
with the Landan numbers n and N, respectively,

aln, Ny = /n|n — 1, N} atin, Ny =n+1ln+1,N)

R N (22)
Aln, NY = ~/N|n, N — 1) AT, Ny =N ¥ 1ln, N +1).

From equation (22) the commutation rules follow:
[a,6)=1  JAA*)=1 [4A4]=[a A*]=[a", A] =[a*, A7]=0. (23)

It should be noted that expressions (21} and (22) correspond to the well known matrix
elements of the operators f‘ 1 and P, in the basis of the Landau states (6), and allow one to
present the Hamiltonian H; in the form of the superposition of the independent harmonic
motions of the particles transverse to the magnetic field,

AL =hoy (e + 1) +nof (ATA+ 1) (24)

the energies E,y = {(n, N lf? 1 In, N} of the eigenstates |n, N} being determined by
equation (6).

In terms of the creation and annihilation operators the matrix element (20} reduces to
the form (B1) (see appendix B), where

a=ShE0-M(K+iK)  p= TR -m (KiK. 25)
Thus, with the aid of the result (B9) one obtains
Loy = €N R, () Py (us) (26)
where
€= % + tan~! (I%) Uy = (%)2 -1 u=(@uKy)2. @7)

For the adiabatic approximation (15), this leads to the following expressions for the cyclic
components (D = (D, £ iDy)/ﬁ, Dy = D,) of the vector D:

=i ~N"—n—14N)e

X [V F 1 Pt () Fve o @) — VN By ) Pyt (82 s 1252)

D_y = —aye i ~N —rti e (28)
X [V Fut 0t @) Fao  (04) = VN L =) Fyeov 1) (830 5 1250}
Do = N =mMe B, ) Fro (gl 12180y}

D—H = @

It should be noted that the direction of the centre-of-mass motion in the xy-plane affects only
the common phase of each component. When the shifts coincide (7' = 5 and/or K, = 0),
we have i, = u_ = 0, and all F-functions turn to delta-symbols. In this case the transverse
parts of D, do not depend on the particle masses and for u = %1 reduce (with accuracy of
a phase factor) to the well known matrix elements of ry (see, for example, Hasegawa and
Howard 1961).
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4. Photoionization of the moving hydrogen atom

Expressions (28) enable one to extend the ranges of the adiabatic approximation
applicability. We illustrate this by calculation of photoionization rates for a moving hydrogen
atom.

To write the photoionization cross section summed over all final states, take into account
that the dependence of the continuum wavefunction on the relative coordinate z along B
at large z has the asymptotic behaviour wﬁj) I exp(ik'z), where &’ is determined by the
(positive) ‘longitudinal’ energy,

202 2 gri2

E = ﬁ_;'—’:E'—h K,

i 2M

If L, is the normalizing length, then &" = (2n /L, )V, and the final state density is equal to
dos = dv' = (L, /2m)dk’. In terms of the ‘longitudinal’ energy we have

—hog (0 + ) —hof (V' + 3) - (29)

L dE
dpr = —* \/E . (30)
dmag ¥ m E! R}’
Y=
where Ry = me*/(2h*) = 13.6 eV is the Rydberg energy. Substitution of (30} into (A9)
and summation over the sets [n’, N', E;!) give

2L h
O'K.f(w,t?)=7fe——z EZ:IEEDF 2

hcag ¥ m 75 /E\ Ry

where Eﬁ is determined by (29) with E' = E + fiw and K' = K (for the dipole
approximation), 8(§) =0 at £ < 0 and 6(£) =1 at § > O, the factor (£ I',/Ry) reflects the
threshold character of partial cross sections associated with different final states.

For calculation of the matrix efement D in (31), the wavefunctions of the initial wﬁ?z
and final 1}{}3)1. states can be expanded over the partially shifted transverse basis according
to (14). In strong magnetic fields (¥ 3> 1) the terms »’ 22 0 may be omitted from (14) at
energies |E|, | E'| « hw; . However, in matrix elements I? of radiative transitions this can
be done if only the length form is used, in analogy with the case of K, = 0 (Potekhin and
Pavlov 1993). When keeping only one of the remaining N'-terms, one comes to the adiabatic
approximation (13), while keeping more terms enables one to describe the wavefunction
more accurately. The coefficients 3}?:'; .y Of the expansion (14) can be found from a set
of coupled linear second-order differential equations. Analytical estimates of Ipatova et af
(1984) and variational results of Vincke et af (1992) showed that at transverse momenta
RK; below some critical value kK. the ground-state electron is localized near the nucleus.
Hence the non-shifted (n = 0) adiabatic approximation is appropriate at K, < K. for this
initial state. On the other hand, only full-shift (" = 1) representation ensures the correct
K value when an electron is gone far from the nucleus, which is the case of continuum
1}11(,}) # functions.

We treat the continuum wavefunctions adiabatically. Coulomb forces, however,
distort them at short distances. This effect may be taken into account approximately by
orthogonalization of the final wavefunction with respect to the initial one:

By = v - v, ) (32)

8(E}/Ry) (1)

with
i) = exp (iztn — VK Lr ) pi2(r = 7). 33)
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Figure 1. Influence of the motion across the strong magnetic field B = 2.35 x 10" G on
the photoionization cross sections of the hydrogen atom. The cross sections {in units of the
Thomson crass section or = 6,65 x 10~25 ¢m?) are plotted as functions of the photon energy
(in Ry = 13.6 eV) for the longitudinal (1t = 0}, right (¢ = +1) and left circular (4 = —1)
polarization of the incident radiation. Long~dashed, short-dashed, and full curves correspond to
the transverse atomic wave numbers K) = 10/ap, 50/ap, and 100/ay, respectively.

It is equivalent to replacing * by r — rf;f-)',. in (16), where
rie = W WIrlvg,w) (34)

is the mean value of r in the initial state. Since for the adiabatic approximation of gbg)‘. (r)
we have ’"5‘2’).: = 0, such a procedure does not change (28). ’

We have calculated photoionization cross sections of the hydrogen atom moving across
the magnetic field using the dipole approximation for I and representations with equal
shifts ¥ = n = 1 in (14). The initial (bound) state was treated non-adiabatically, with
allowance for an admixture of the proton Landau states (see Potekhin 1994 for details). In
this case the mean value r?{)‘. was not equal to zero (but was very close to zero, because
the decentring was very small), The corresponding terms were taken into account in the
transverse part of the D expansion. It should be noted that it would be more consistent to
treat the final (continuum) state also non-adiabatically. Then the orthogonality of the initial
and final wavefunctions could be achieved with an appropriate accuracy and it would not
be necessary to resort to the special procedure. Now the treatment involving the effects of
the coupling of different Landau orbitals in the continuum is in progress.

Figure 1 shows the numerical results for ¥y = 1000 and various K; < K, (where
K ~ 150/ay, see, for example, Vincke er af 1992). Cross sections for longitudinal (x = 0)
and circular (u = £1, where p denotes the cyclic components of e) polarizations of
incident radiation are presented. The jumps near the ionization thresholds are due to
inclusion of partial transitions to different & channels, all of them being allowed at K; 7 0.
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Morcover, transitions from the ground state under left-polarized radiation are not forbidden
with allowance for motion. Thus the dipole selection rules are broken by the motion, in
agreement with the conclusion of Pavlov and Mészdros (1993).

The non-adiabatic results (full curves) for 4 = 0 and 4 = +1 are compared in figures 2
and 3 with those obtained when w}g?l is treated adiabatically. Long- and short-dashed lines
correspond to the different adiabatic approximations, the conventional one (' = 1 = 1} and
the modified one (' = 1, 5 = 0), respectively. Since the first approximation assumes the full
decentring of the wavefunction, it fails when such a situation does not occur (K, < K;) and
the shift value is greater than the transverse size of the wavefunction (7 > an), for example,
when ./¥/ag < K1 < K. Numerical calculations confirm that under those conditions
threshold energies and especially transition rates are strongly underestimated. In contrast to
this, the new adiabatic results, calculated from expressions (28) for thecase ' = 1,3 =10,
are remarkably close to the non-adiabatic ones. The small discrepancy between the tails
of the adiabatic and non-adiabatic cross sections is connected with a small decentring of
the initial state, which is not taken into account by the adiabatic wavefunction ‘Pg?i' Our
numerical tests prove this fact and give the value of corresponding shift (n ~ 0.2 for
y = 1000 and K 5 = 100/ag), which eliminates this deviation when one uses the adiabatic
wavefunction t}f}’{"f. Therefore, an analytic estimate of the shift n(B, K, ) associated with
the decentring is thought to be useful. This would give an additional improvement of our
adiabatic approach.
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Figure 2, Comparison of the traditional (4" = n = 1, long-dashed curves) and modified
(7 = 1,7 = 0, short-dashed curves) adiabatic approximations of the phototonization cross
sectons of the moving hydrogen atom with more precise non-adiabatic crass sections (full
curves) for magnetic field B = 2.35 x 102 G and transverse wavenumber k) = 50 /ap.
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Figure 3. The same as in figure 2 for £; = 100/ap.

5. Conclusion

We have considered the family of Hamiltonians (13) for a two-body system moving in a
magnetic field, parametrized by the variable n which determines the position of the Coulomb
centre in the relative motion coordinate frame. Corresponding eigenfunctions describe
internal motion in the system in terms of the shified relative coordinate r = r_ — ;. — 51,
and can be expanded over the basis of the Landau states, associated with free relative
motion of the particles across the magnetic field. In this case matrix elements for the
radiative transitions between differently shifted eigenstates involve ‘transverse’ parts which
are explicitly calculated on the basis of the creation/annihilation operator technique.

For a moving hydrogen atom, the exact ground-state wavefunction exhibits only a small
decentering in strong magnetic fields, when the transverse generalized momentum value
%K is below some critical one %K, (Ipatova et al 1984, Vincke et af 1992}, In this case,
the non-shifted (n = 0) adiabatic approximation should be valid. As for the continuum,
the full-shifted (' = 1) representation should be applied in order to make the Hamiltonian
{13) axially symmetric at large z. Therefore, the analytical results obtained for the radiative
transition matrix elements enable one to extend the range of the adiabatic approach. This
conclusion is illustrated by a good agreement of the adiabatic photoionization cross sections
with those calculated with the aid of more precise (non-adiabatic) wavefunctions.
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Appendix A, Interaction with radiation

The differential cross section for the radiative transition | K, i} — |K', f} caused by the
absorption of a photon with frequency w, wave vector g and polarization unit vector e is
determined by the expression

2 2 4

d
2
|€MK FEADIS(E — E —hew) a3

where E and E’ are the energies of the initial and final states, respectively, dpy is the density
of final states associated with the set of quantum numbers | f},

My ;@) = e s (- I M@ Y, (r_, 7)) (A2)
is the matrix element of the operator

N exp(igr_) hg expligr..) /. h
M(Q)=T(P + = er- 2)—p—m+L(P+—2_BX Tyt q)

dog 5 ri(w, @) = dor (AD)

(A3)

where p. = —ihd/drz. After introducing the centre-of-mass and relative coordinates
and using the form (2) for the eigenfunctions, the integration over A in (A2) gives the
conservation of the generalized momentum

Mg k(@) = @r)’ LY (3K - K — q). (Ad)
Here the matrix element
) 7 @0 ©
Koy = (i (| Ly @I () (A5)
is calculated w1th the wavefunctions of the relanve motion, X' = K + ¢, and
00 ~ (0
L(U] (q) =exp (1ﬁqr) F + exp (-—1;}—(]1‘) F, (A6)
where
5 (0) I ¢, ¢ K hg
F_ ' =—{p+—B t— e A7
* mx (p 2c % ) M 2mg (A7)

The term in parentheses in (A7) gives the momentum operators in the presence of the
magnetic field,

1":-=33+2%er and ﬁ:ﬁ—%er (A8)

corresponding to negatively and positively charged particles, respectively. Using equation
(A4), one can perform summation in (A1) over all the final values of K’ and obtain

2,2
—le L (@)*8(E' — E ~hw)dpy . (A9)

dog, .. {0, @) =

Equation (A6} represents the ve[oczty form of the matrix element L% 7.:(q}, which is

0.0)
produced by the operator L(U) (q). Alternative is the fength form, which can be obtained
on the basis of the relations

()

.. m.y.
. p A
[H“”. exp (ilqr)] = Migexp (iAgr) { EialsZBpxr (A10)
U 2 cp

o R "
AQ =AY - ;(hx+—q+-3x)
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and is determined by (AS) with the operator

L:?) ](q) = exp (1ﬁqr) [1— [wf, - qF(o)] e m)]

M
A m_ (@ 20
+exp(—1—ﬂ-4—qr){ i [wf,-i-qF ] +G+ } (A11)
where
2,(0) e RK  ng
G, =%F|— — 4 — Al
g q:[Mchr+ o +2m;l (Al2)

and wy,; = (E' — E)/h is the frequency of the transition. Velocity (A6) and length (A11)
forms correspond to (A4) and (A7), respectively, of Potekhin and Paviov (1993), for the
matrix elements

D = (iw) L¥ () (A13)

at the transverse polarization of radiation, when eq = 0.

For applications it may be convenient to describe the relative motion by the
eigenfunctions of the Hamiltonian (13), in general case the values of n and »’ being different
for the initial and final states, respectively. The expressions for the matrix element L‘;{ (q)
and two alternative forms of corresponding operator can be obtained from (A3), (A6) and
(A11), if we perform the shift transformations (11) and change the variable of the integration
in (A5). This gives

g ~ (7'
LE (@) = (P e + rolLy )y (@) (Al4)
where v, = (n — n')ry,
2 ('.n) (n)
L(v) “(g) = exp (1;0(" r’})F + exp (ip} o ”))F+ (A15)
for the velocity representation, and
(1'.m) = (0
B (@ = exp (6™) [iTF [0 - aF T ) 0+ ro) + 67
- 2,
+exp (1;::5’," ”)) II—E [wf + qF ](r + nrg) + Gf (A16)
for the length representation. Here
m 4 m
oy = [&(n KL £ ((1 - n’)—* + %) ru] rL+nva = ﬁqzz
a (m) hKJ_ th hq
F +—B 1- + Al7
i m;(P ;B xT)E - M omg 1D
2,n) hE ﬁKz hqg
=T |—B8 1- .
G =F|: xr+(1-n i + 7 +2m:F
Equations (A15)-(A17) are simplified in the case n’' = n = 1, when
m
P = £1qu(rs + o) = 202
= (1) RK,
F_. = + 4B + —= :I: Al8
( 2" ") M 2m; (A1)

L
.'.F
€ z haq
—_ .
[M 2’%]
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and for the dipole approximation (g = 0)

S 1
B (0) = exp {iztn — ) K 1ry ) (1 + —-)
m- - my (A19)

g
(;)"(0) iwy,; exp {i@(n ~ K L1re} (r+nro).

The exponent in (Al9) corresponds to the transformation (11) between the
wavefunctions w*(")('r + r,}) and w*(") (r) or between the wavefunctions t[f(")f(r) and

\b(’”(r + 7,), respectively. Thus the length form of the dipole matrix element can be
written, for examplc as

K@) = W2, @)r + nroly 2y (r)) . (A20)

Since here the ﬁnal and initial wavefunctions relate to the same Hamiltonjian (13) but
correspond to the different energies, E' # E, they are orthogonal, and the term nry does
not contribute, Therefore this term may be omitted in the expression for the corresponding
operator and one may set
(n"sm) ; ;
Ly (0) = iwp, exp {ie(n — i) Koo ]r. (A21)

Appendix B. Transverse matrix element

Let us consider the matrix element
Ly wan = (0, N'lexp (0 — a*a* 4 BA — B*A*)in, N}. (B1)

Since the creation and annihilation operators, which change the Landaun level numbers for
different particles, commute, one may write

Ty vran = (', N exp (wd — a3+ exp (B4 — B*A*)n, N). (B2)
Using the relation

exp (A + B) = exp (A) exp (B) exp ( — 1[4, B)) (B3)
and the commutation rules (23), it is possible to reduce (B2) to the form with four separated
exponents
by wan = exp (—Lhal?) exp (~1181%)

x (', N'|exp (—a*a*) exp (&) exp ( — B A*) exp (BA)In, N} (B4)
Now each exponent can be expanded over the powers of the operators. Taking into account
that

n!
e . —_— |
@'n, N} = (n— k)
0 k>n

n_“k, N) kﬁn (BS)

that (&)Y operates from the right-hand side the state {n', N'| in the same way, and that
the operators A* and (A*)* have analogous properties, one reduces (B4) to the sum of the
scalar products (n' — k', N' —U'|n — k, N —{}, which are equal to &y _p »—iSn'—p y—¢ due
to the normalization property of the transverse basis. This gives

[n',N',n.N = In’.n(a' a*)lﬁ".”(ﬁ! ﬁ*) (B6)
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where

. A oon (_a*)k' (Ot)k "yl
bt @) = exp (= glel’) 3 ) ~—p \/(n, = 1:)! (n =1 ke

k=0 k=0

(B7)

and Iy n{(B, B*) is determined by the same equation. Now it is possible to perform the
summation over k' (at n’' > n) or over £ (at " < n) in (B7). The remaining sum in the first
case reduces to the Laguerre polynomial

n n (_Ja[z‘,)k

n'-n PAY.
Ly (|&‘| )—é(n/_n+k)!(n—k)!k! &

while in the second case it reduces to the Laguerre polynomial L™ (leef).
Finally, independently of a relation between the Landau numbers, one obtains

o n'=n)/2 B* (N'-N)/2
Tt Nt = (;) (F) Fon (101?) Frw (185) (B9)

where the functions F,, and Fyr y are determined by (7). Thus, in spite of the fact that
Landau basis (6) is connected with the eigenstates of the relative motion of the particles,
result (BY) for matrix element (B1} has the factorized form, which is natural for the non-
interactive particles.
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