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Abstract—We investigate the unsteady column accretion of material at a rate 1015 g s−1 ≤ Ṁ ≤
1016 g s−1 onto the surface of a magnetized neutron star using a modified first-order Godunov method with
splitting. We study the dynamics of the formation and evolution of a shock in an accretion column near the
surface of a star with a magnetic field 5 × 1011 ≤ B ≤ 1013 G. An effective transformation of the accretion
flow energy into cyclotron radiation is shown to be possible for unsteady accretionwith a collisionless shock
whose front executes damped oscillations. The collisionless deceleration of the accreting material admits
the conservation of a fraction of the heavy nuclei that have not been destroyed in spallation reactions. The
fraction of the CNO nuclei that reach the stellar atmosphere is shown to depend on the magnetic field
strength of the star. c© 2004 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The accretion onto compact objects has been
considered as an effective source of hard X-ray
radiation for about forty years (see Zel’dovich 1964;
Salpeter 1964; Shakura and Sunyaev 1973).

Several analytical, semianalytical, and numerical
models of accretion onto neutron stars (NSs) and
black holes have been constructed (see, e.g., Frank
et al. 2002). However, some of the important ques-
tions formulated even in pioneering papers have no
clear answers as yet. One of the fundamental ques-
tions is the nature of the accreting material: Is it a
gas of interacting particles (hydrodynamic regime) or
a collection of separate noninteracting particles (free-
fall regime)? Zel’dovich (1967) and Zel’dovich and
Shakura (1969) considered these two regimes and
showed that the radiation spectrum near the stellar
surface depends significantly on the accretion regime
under consideration.

Up to now, the authors of themodels have provided
circumstantial qualitative evidence to substantiate a
particular regime in the hope that a realistic model
supported by experimental evidence can a posteriori
justify the choice of a regime, at least for a certain
domain of parameters of the accretion system. Under
which conditions collisionless shocks that decelerate
the material as it moves toward the stellar surface
arise in an accretion flow is another related question.

Bisnovatyi-Kogan and Fridman (1969) pointed
out that a collisionless shock could appear in the
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flow accreting onto a NS if the star possesses a dipole
magnetic field of B ∼ 108 G.

The shock that decelerates the flow accreting
onto a NS in a binary system plays a key role in
the model by Davidson and Ostriker (1973). In their
models, Shapiro and Salpeter (1975), Basko and
Sunyaev (1976), Langer and Rappoport (1982), and
Braun and Yahel (1984) considered the accretion onto
a NS under various assumptions about the magnetic
field strength of the star and found steady-state
solutions of the system of hydrodynamic equations
for the accretion flow. The models by Shapiro and
Salpeter (1975) and Langer and Rappoport (1982)
postulate the existence of a stationary collision-
less shock at a certain height above the surface,
which is a parameter of these models. Basko and
Sunyaev (1976) demonstrated the accretion regime
with a radiative shock in the NS atmosphere. In
their model, Braun and Yahel (1984) showed that a
stationary collisionless shock could exist above the
surface of a magnetized NS only when the accretion
rate is low enough (more specifically, does not exceed
a few percent of the Eddington value).

Detailed models for the two-dimensional unsteady
radiation-dominated super-Eddington accretion
onto a magnetized NS have been developed by Arons,
Klein, and coauthors (see Klein and Arons 1989;
Klein et al. 1996; and references therein). The authors
of these models show that, if the accretion rate is
high enough (more specifically, if the accretion is es-
sentially super-Eddington one), then nonstationary
radiation-dominated shocks appear and evolve in
the column. An important peculiarity of these studies
2004 MAIK “Nauka/Interperiodica”
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Fig. 1. Geometry of the accretion column.

is that the existence of a shock in the column is not
postulated, but is the result of model evolution of the
system.

In this paper, we present a numerical model for the
sub-Eddington one-dimensional unsteady hydrody-
namic (in the above sense) accretion onto a magne-
tized NS. As in the paper by Klein and Arons (1989),
we do not postulate the existence of a shock in the
column from the outset. Our study is unique in that
we construct a hydrodynamic code based on the Go-
dunov method, which allows us to deal with discon-
tinuous flows and, in particular, to describe the shock
dynamics.

The model consistently takes into account the ki-
netics of electron–ion beams in a strong magnetic
field. The magnetic field in the column is assumed
to be known, but the related processes of matter–
radiation interaction play a crucial role in the evolu-
tion of the accretion flow.

In Section 1, we present our hydrodynamic model
of the accretion flow. In Section 2, based on model
profiles of the flow in the column, we consider the
destruction probability of CNOnuclei in the accretion
flow. The results obtained are discussed below.

1. ACCRETION FLOW HYDRODYNAMICS

Formulation of the Problem

We consider the time evolution of the accretion
flow in the magnetic column above the polar cap of a
magnetized NS at distances of no larger than several
NS radii from its surface. We assume that the ac-
cretion is hydrodynamic, because the growth time of
magnetohydrodynamic (MHD) instabilities is short
under the conditions in question. Under the condi-
tions of strong initial anisotropy of the accretion flow,
the multistream instabilities can have characteristic
growth rates comparable to the ion plasma frequency,

ωpi ∼ 1.2 × 1012n
1/2
18 s−1. Such growth rates are typ-

ical of the particle isotropization processes in colli-
sionless shocks. Note that the cyclotron frequencies
are much higher for typical magnetic fields. The char-
acteristic propagation velocity of MHD disturbances
is VA ≈ c(1−α), where α = 10−11n18B

−2
12 � 1. This

estimate can be obtained from general relations (see,
e.g., the book by Velikovich and Liberman 1987).
Since there are currently no microscopic simulations
of instabilities under typical conditions of NS mag-
netic fields, we study the accretion flow by assuming
that instability grows in a subrelativistic flow at a
rate ωpi. The simulations can be used to interpret the
observations of X-ray pulsars.

The electrons and ions move in the accretion flow
with the same mean (flow) velocity, but have different
temperatures.

The NS is assumed to have a constant dipole
magnetic field on the time scales under consideration.
The geometry of the accretion column is shown in
Fig. 1.

Basic Parameters and Equations

The basic model parameters include the mass
(M�) and radius (R�) of the NS as well as the
magnetic field strength (B�) at its magnetic pole
and the accretion rate per unit area of the accretion
column base (Ṁ/A0).

The system of hydrodynamic equations that de-
scribe the evolution of the flow may be written as

∂ρ

∂t
+ div(ρu) = 0, (1)

∂(ρuα)
∂t

+
∂p

∂xα
+

∂

∂xβ
(ρuαuβ) = Fα,

∂

∂t

[
ρs(Es +

u2

2
)
]

+div
[
ρsu(Es +

u2

2
) + psu

]
= Qs,

where ρ = ρe + ρi, p = pi + pe, F and Qs denote the
momentum and energy sources, and s = i, e is the
type of particles.

We supplement this system with the equations of
state for each type of particles. We use the equation
of state for an ideal gas, Es = ps/[ρs(γs − 1)]. For
ASTRONOMY LETTERS Vol. 30 No. 5 2004
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xs = kBTs/(msc
2) � 1, the adiabatic index γs may

be written as γs ≈ γ0s(1 − xi) (de Groot et al. 1980),
where γ0i = 5/3 is a typical nonrelativistic value for
particles with three degrees of freedom, and γ0e = 3,
since the electrons in the strong fields under consid-
eration are quasi-one-dimensional.

The electron momentum distribution is one-
dimensional, because the characteristic relaxation
time of the electron Landau levels is ∼10−15B−2

12 s,
whereB12 = B/1012 G (see, e.g., Bussard 1980), and
it is the shortest time in the system under considera-
tion after the cyclotron time. The radiative decay time
of the excited ion Landau levels is ∼5 ×10−9B−2

12 s,
and is appreciably longer than the collisionless relax-
ation time of the ion momenta ∝ ω−1

pi . Therefore, in
this case, the ions are at highly excited Landau levels
and may thus be considered three-dimensional and
be described quasi-classically.

We consider the one-dimensional motion of the
accreting plasma along the dipole lines of a strong
NS magnetic field. In this geometry, system (1) may
be rewritten as

r3∂ρ

∂t
+

∂

∂r
(r3ρu) = 0, (2)

r3∂(ρu)
∂t

+
∂

∂r
[r3(p + ρu2)] = r3F + 3r2p,

r3 ∂

∂t

[
ρs(Es +

u2

2
)
]

+
∂

∂r

(
r3

[
ρsu(Es +

u2

2
) + psu

])
= r3Qs.

The system of equations (2) should be supplemented
with initial and boundary conditions. As the initial
condition, we consider a column filled with a cold,
freely falling gas. The boundary condition in the upper
part of the column is the condition for the inflow of a
cold supersonic stream, while the boundary condition
in the lower part of the column is the condition for the
absence of a stream flowing into the star.

Physical Processes in the Accretion Flow

Here, we describe the processes that contribute to
the terms F and Qs of system (2).

Since we are considering a single-stream flow, the
forces acting on the ions and electrons add up in one
force term:

F = F i + F e, F i = F i
grav − Fatm,

F e = F e
grav − Fnonres − Fres,

where F i
grav and Fatm denote the gravity and the vis-

cous force of resistance to the flow (which is effective
ASTRONOMY LETTERS Vol. 30 No. 5 2004
only in the NS atmosphere); and F e
grav, Fnonres, and

Fres denote the gravity and the nonresonant and res-
onant radiation pressure forces, respectively.

The gravitational force acting on a unit volume is

Fgrav = F e
grav + F i

grav = (nmi + Znme)
GM�

r2
, (3)

where n is the ion density.
To calculate the nonresonant radiation pressure

force, we use the following formula from the book by
Zheleznyakov (1997):

Fnonres = ne
σT
c

σSTT
4
γ

1 + τT
, (4)

where ne is the electron density, σST is the Stefan–
Boltzmann constant, Tγ is the local temperature of
the radiation field, and τT is the nonresonant optical
depth.

To calculate the resonant radiation pressure force,
we numerically integrate the equation of radiative
transfer in the cyclotron line, find the energy den-
sity of the photon field Uphot, and determine Fres as
dUphot/dr. Since the column in the cyclotron line is
optically thick, the transfer equation may be written
as the diffusion equation

∇ · Jphot = Sphot +
1
3
u · ∇Uphot, (5)

where Sphot are the cyclotron photon sources, and
Jphot = 4

3uUphot − κ∇Uphot is the photon diffusion
flux in the line. Since the diffusion of cyclotron
photons across the magnetic field is severely ham-
pered (see, e.g., Arons et al. 1987), we consider
only the parallel component of Eq. (5), which may
be written as

1
r3

∂

∂r

{
r3

[
4
3
Uphotu− κ||

1
r3

∂

∂r

(
r3Uphot

)]}
(6)

= Sphot +
1
3
u

1
r3

∂

∂r

(
r3Uphot

)
,

where κ|| is the diffusion coefficient parallel to the
magnetic field. This equation can be integrated by
the shooting method. The boundary conditions for
it are the following: the cyclotron photons freely
escape from the upper boundary of the column, and
their number on the stellar surface corresponds to a
blackbody spectrum with temperature Teff.

To calculate the friction force exerted on the flow
from the NS atmosphere, we use the following stan-
dard expression for the Coulomb stopping in a dense
environment:

Fatm =
4πnanie

4Z2 ln Λ
meu2

, (7)
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where Λ is the Coulomb logarithm, na is the electron
density in the NS atmosphere, and u is the velocity
of the accretion flow. A similar expression was used
in the paper by Bildsten et al. (1992) devoted to
the collisional destruction of CNO nuclei in the NS
atmosphere.

The forces acting on the flow work on it, and this
work is effectively redistribited between the ions and
electrons.

Let the external force F i act on the ions and the
external force F e act on the electrons. It then follows
from local electrical neutrality (if the frequencies of
the external-force variations are much lower than the
characteristic plasma frequencies) that the fluxes of
both types of particles are equal, i.e.,

(F e − eE)
ne

meνei
= (F i + ZeE)

ni

miνei
,

where E is the ambipolar electric field, and νei is
the effective electron–ion relaxation frequency. Since
ne = Zni,

eE = F e 1
ξ + 1

− F i ξ

Z(ξ + 1)
,

where ξ = me/mi, and the resulting effective force
acting on the ions is

F i
eff = (F i + F eZ)

1
ξ + 1

,

while the resulting effective force acting on the elec-
trons is

F e
eff = (F i + F eZ)

ξ

Z(ξ + 1)
.

The ion energy changes through the following pro-
cesses:

the small-angle scattering in Coulomb collisions
with electrons Hie;

the collisional excitation of electron Landau levels
Qcyc;

the collisional relaxation on electrons of the NS
atmosphere Qrelax;

the work done by the effective force, F i
effu.

The cyclotron ion cooling was taken into account
in the model. Its effect is noticeable if the dipole
magnetic field exceeds 5 × 1011 G and if the system
is transparent to photons in the proton cyclotron line.

The electron energy changes through the follow-
ing processes:

the small-angle-scattering in Coulomb collisions
with ions Hei;

the bremsstrahlung cooling in collisions with ions
and electrons, Brei and Bree;
the excitation of Landau levels in collisions with
ions and electrons, Cycei and Cycee;

the Compton processes Qcompt;
the work done by the effective force F e

effu.
For details on the calculations of these terms, see

the Appendix.

The Method of Numerical Solution

A multicomponent accretion flow onto the NS
surface can have discontinuities and, in particular,
shocks. For this reason, we chose the standard Go-
dunov method (Godunov 1959; Godunov et al. 1976)
to solve the problem.

The Godunovmethod is directly applicable to one-
component1 systems that are described by equa-
tions without any sources. To include the sources in
Eqs. (2) in the numerical scheme, we use an approach
based on the works by Le Veque (1997). It consists in
splitting system (2) into two parts: one part describes
the conservation of the fluxes along dipole lines and
can be integrated using a modified Godunov method,
and the other part describes the presence of energy
and momentum sources and can be integrated by the
Gear method.

The necessity of using this approach stems from
the multicomponent nature of the system, which con-
tains two types of particles that interact with each
other, with the external magnetic and gravitational
fields, and with the radiation field in a complicated
way.

We make system (2) dimensionless by multiply-
ing F by CF = t�

ρ�u�
and Qs by CQ = t�

ρ�u2
�
, where t�,

u�, and ρ� are the characteristic time, velocity, and
density scales, respectively.

Equations (2) in the column are integrated by a
combinedmethod that allows theGodunov scheme to
be generalized to systems with energy and momen-
tum exchange between its components (the sources
in system (2)). We break down the accretion column
into spatial cells centered on points xi−1/2. From
the initial state at time t = 0 to the state at the
current time t, the integration is performed over the
steps ∆t in each of which the following operations are
performed:

(1) The integration of the equations without
sources corresponding to the conservation of the
fluxes along dipole lines:

r3∂ρ

∂t
+

∂

∂r
(r3ρu) = 0, (8)

1The currently available multitemperature methods were de-
scribed, for example, by Zabrodin and Prokopov (1998).
ASTRONOMY LETTERS Vol. 30 No. 5 2004



DYNAMICS OF THE FLOWS 313
r3∂(ρu)
∂t

+
∂

∂r
[r3(p + ρu2)] = 0,

r3 ∂

∂t

[
ρs(Es +

u2

2
)
]

+
∂

∂r

(
r3

[
ρsu

(
Es +

u2

2

)
+ psu

])
= 0.

At this stage, we integrate the system simultaneously
in the entire column, i.e., in all cells xi−1/2.

(2) The integration of the equations with the mo-
mentum and energy sources written for the quantities
averaged over the spatial cell:

∂(ρiui)
∂t

= CFFi +
3
ri
pi, (9)

∂

∂t

[
ρsi(Esi +

u2
i

2
)
]

= CQQsi ,

where qi are the values of the physical quantities
averaged over cell i, independently in each of the
cells xi−1/2. At each of the two stages, the integration
is performed over the same time interval specified by
the Courant condition at the first stage.

Since system (9) is stiff, we use the standard
LSODE subroutine (Hindmarsh 1983), in which ver-
sion B of the Gear method (see, e.g., Gear 1971)
is implemented, for its integration. Note that many
popular methods for integrating stiff systems that are
based on the modified Bulirsch–Stoer method (Press
et al. 1983) require an explicit specification of the
Jacobian of the system. In our case, this leads to
significant complications, because system (9) has a
complex structure of its right-hand parts that in-
cludes the terms specified only in numerical form.

To integrate system (8), we used the capacitive
modification of the Godunov method of the first order
suggested by LeVeque (1997). The essence of this
method is that, if the conservation law for the physical
quantity q(x, t) is written in generalized form instead
of the classical divergence form,

κ(x)
∂q(x, t)

∂t
+

∂f(q(x, t))
∂x

= 0,

where κ(x) is a given function of the spatial coordi-
nate that denotes the effective capacity of the region
of space under consideration (e.g., the porosity of the
medium), then the conventional Godunov difference
scheme is inapplicable, and instead of the Godunov
standard expression for the grid function q at time
t0 + ∆t

q̃i = qi −
∆t

∆xi
(Fi − Fi+1) ,
ASTRONOMY LETTERS Vol. 30 No. 5 2004
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Fig. 2. Evolution of the accretion flow: (a) shock height
versus time; (b) evolution of the flow velocity profile.

where Fi is the q flux flowing from cell i into cell i− 1,
we may write

q̃i = qi −
∆t

κi∆xi
(Fi − Fi+1) ,

where ∆xi is the size of cell i, and κi is the value of
κ(x) averaged over cell i.

Results

We have implemented the complex scheme of
computations2 described above and investigated the
evolution of the accretion flow for various model
parameters.

We have found that strong shocks develop in the
column on time scales of ∼10−5 s. These shocks
execute stable oscillations about their equilibrium po-
sitions with periods of∼10−5 s that are damped out in
a time of ∼10−3 s. A typical example of the evolution
of the shock front and the flow velocity profile is shown
in Fig. 2.

2Some of the computations were carried out under the sup-
port of the St. Petersburg Branch of the Interdepartmental
Supercomputer Center (http://scc.ioffe.ru/).
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Fig. 3. Dependence of the flow profiles at τ = 1.3 ×
10−3 s on the magnetic field strength.

The model flow profiles shown in Figs. 3 and 4
exhibit stable and strong shocks that decelerate and
heat the accretion flow. The ions at such shocks heat
up much more strongly than the electrons, because
they contain the bulk of the flow kinetic energy. How-
ever, as the heated ions move further toward the sur-
face, they give up much of their energy to the elec-
trons, which, in turn, release their energy in the form
of cyclotron and bremstrahlung photons and give it up
to the nonresonant photons in Compton collisions.

In most cases, the compression ratio at the shock
fronts slightly exceeds 4 (themaximum value for non-
relativistic single-fluid shocks) because of the mildly
relativistic changes in the adiabatic index of the ions
heated to several tens of MeV.

An important property of the model is the transfor-
mation of a substantial fraction of the flow energy into
the energy of photons in an optically thick electron
cyclotron line. This fraction is plotted against the NS
magnetic field strength in Fig. 5. The pressure of the
trapped cyclotron radiation is dynamically significant
for the deceleration of the accretion flow. The cy-
clotron ion cooling is significant for magnetic fields
stronger than 5 × 1011 G. In this case, the accretion
regime depends significantly on the structural fea-
tures of the magnetic fields in the NS atmosphere
at heights of less than 103 cm from the surface. At
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Fig. 4. Dependence of the flow profiles at τ = 5 × 10−4 s
on the accretion rate.

these heights, the field can differ greatly from a dipole
field due to the local fields of higher multipolarity. A
nonuniform field structure makes the column trans-
parent to optical and X-ray photons of the proton
and electron cyclotron radiation. Figure 6 shows the
accretion regimes in the optically thin case where
the ion cyclotron radiation freely escapes from the
column. Allowing for the cyclotron ion cooling leads
to the shock front approaching the NS surface if
the dipole magnetic field exceeds 5 × 1011 G. In this
case, the radiation spectrum of the system exhibits
a prominent optical/ultraviolet proton cyclotron line.
Because of the strong deceleration and effective cool-
ing of the flow in the column in the optically thin case,
only about half of the accretion flow energy reaches
the stellar surface (see Fig. 7).

If the magnetic field has a regular structure, the
proton cyclotron line can become optically thick at
heights of ∼103 cm from the NS surface. In this
case, the accretion regimes are similar to those in
Fig. 3, since the collisionless relaxation with a high
frequency restores the isotropy of the ion distribution
function faster than does the radiative change in the
transverse (with respect to the field) temperature.

It should be noted that the difference in the shapes
of the flow profiles at low and high magnetic field
strengths (Fig. 3) stems from the fact that the elec-
tron temperature downstream of the shock front is
ASTRONOMY LETTERS Vol. 30 No. 5 2004
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Fig. 5. Logarithm of the fraction of the flow free-fall
energy converted into the energy of cyclotron radiation
versus magnetic field strength.

lower for weak fields. Therefore, the gradient in the
energy density of the photons trapped in the cyclotron
line increases toward the surface, providing a radia-
tive pressure that contributes to a more effective flow
deceleration.

2. THE DESTRUCTION OF CNO NUCLEI
IN THE ACCRETION COLUMN

The chemical composition of the material that
reaches the NS surface is an important question in
the theory of accretion flows. This question is im-
portant, in particular, for the theory of X-ray bursts,
because the CNO nuclei are the catalyst for the ther-
monuclear hydrogen burning reaction on the NS sur-
face (see Lewin et al. (1993) and references therein).
It is well known that the spallation reactions of nuclei
with energies of several tens of MeV per nucleon
or higher in the accretion flows of compact sources
may lead to the destruction of nuclei and to a sig-
nificant decrease in the gamma-ray fluxes in lines
(see, e.g., Aharonian and Sunyaev 1984; Bildsten
et al. 1992). This question was considered by Bild-
sten et al. (1992) for the case where the accretion
flow decelerates in a dense NS atmosphere through
Coulomb losses. These authors conclude that almost
all of the CNO nuclei will be destroyed before they
reach the NS surface. However, they note that this
conclusion may be invalid in cases where the flow
decelerates in the column above the atmosphere.
ASTRONOMY LETTERS Vol. 30 No. 5 2004
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Fig. 6. Dependence of the flow profiles at τ = 0.8 ×
10−3 s on the magnetic field strength for the case where
the column is optically thin for the cyclotron photons
emitted by ions.

There is a fundamental possibility of collisionless
flow deceleration through collective plasma effects
and effective energy removal by electron radiation in
a magnetic field. In this case, the thickness of the
material traversed by a nucleus as it decelerates to
energies of ∼10 MeV per nucleon can be appreciably
smaller than the thickness traversed by a nucleus in
the case of its purely Coulomb deceleration to the
same energy. Having constructed the model density,
velocity, and ion temperature profiles in the column,
we can answer the question of how effective the de-
struction of CNO nuclei in the accretion flow is and
where they are destroyed.

To quantitatively verify this effect, we calculated
the destruction probability of a carbon nucleus that
was accreting together with the flow (since the nitro-
gen and oxygen destruction cross sections are close
to the carbon destruction cross section, the destruc-
tion of these nuclei will be similar).

We numerically integrated the cross section for the
destruction of carbon nuclei by protons determined by
Read and Viola (1984) and obtained the frequencies
of the destroying collisions per unit volume. We then
calculated the dependences of the optical depths with
respect to destruction and the destruction probabili-
ties on the distance to the NS surface.
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Fig. 7. Time evolution of the fraction of the flow energy
that reaches the stellar surface.

The destruction probability of a carbon nucleus
is plotted against the distance to the NS surface in
Fig. 8 for a set of magnetic field strengths at the NS
pole. It follows from this figure that, for moderately
strong magnetic fields, a significant fraction of the
nuclei can reach the stellar surface and, hence, can
be the catalyst for X-ray bursts.

CONCLUSIONS

We have constructed a numeral model for the
unsteady accretion of material in a one-dimensional
column above the polar region of a magnetized NS.
The model gives a two-fluid description of the plasma
accretion flow in a strong dipole magnetic field. The
model is unique in that it uses the Godunov method
for numerically integrating the flows of matter with
discontinuities in the form of shocks. Using this
method, we have been able to reveal and investigate
the time evolution of the shocks in the plasma ac-
cretion flow. A steady flow with an accretion shock
is established after a period on the order of several
plasma free-fall times. The ion temperature abruptly
increases at the shock front to∼1011 K, which weakly
depends on the magnetic field strength and the accre-
tion rate. Depending on the magnetic field strength,
the electron temperature reaches (3–5) × 108 K.
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Fig. 8. Destruction probability of a 12C nucleus versus
distance to the stellar surface.

Part of the accretion flow energy transforms into
the energy of cyclotron radiation in an optically thick
line whose pressure affects significantly the plasma
flow deceleration. In this case, a substantial fraction
of the flow kinetic energy is released in the form of
optically thin radiation without reaching the bottom of
the column. It is commonly assumed that the kinetic
energy of the flow and the radiation from the optically
thin part of the column that reach the bottom of
the column transform into blackbody radiation in the
optically thick region of theNS atmosphere. The radi-
ation of the accretion flow energy in the optically thin
part of the column leads to a tangible decrease in the
effective temperature of the blackbody radiation from
the polar spot Teff. In general, the a priori dependence
Teff ∝ Ṁ1/4 breaks down, since the fraction of the
energy radiated in the optically thin part of the column
is a complex function of Ṁ.
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APPENDIX

THE RATES OF PARTICLE–FIELD ENERGY
EXCHANGE

(1) We use the cooling rates in the case of small-
angle scattering Hei (and Hie = −Hei) from Langer
and Rappoport (1982):

Hei = 2

√
2
π
r0nenξ

Ti − Te

Te + ξTi
Z2

√
mec2

kB(Te + ξTi)
Λ,

(A.1)

where Λ is the Coulomb logarithm, and r0 =
4πr2

emec
3 is the characteristic energy loss scale in

this process.
(2) To calculate the cooling rates Qcyc and Cycei,

we numerically integrated the total quantum-electro-
dynamic cross section for the collisional excitation
of electron Landau levels in a strong magnetic field
from Langer (1981). To obtain an acceptable result
over wide ranges of temperatures and magnetic field
ASTRONOMY LETTERS Vol. 30 No. 5 2004
strengths, we took into account the excitation of the
first ten Landau levels in the integration.

(3) To calculate Cycee, we used a fitting formula
from Langer and Rappoport (1982):

Cycee = 2.04r0n
2
eB

−1/2
12

√
kBTe

�ωB
(A.2)

× exp

{
− mec

2

kBTe
(
√

1 + 0.04531B12 − 1)

}

×
(B12

5

)(
kBTe

9597 keV )
0.2

.

(4) To calculate the bremsstrahlung cooling rate
Bree, we numerically integrated the cross section
from Haug (1975) and derived the fitting formula

Bree ≈ 2.5410 × 10−37T 1.45811
e n2

eg(B,Te), (A.3)

where g(B,Te) = (0.409 − 0.0193B12 −
0.00244B2

12)× (kBTe/10 keV)0.25 is the Gaunt factor
from Langer and Rappoport (1982).

(5) To calculate the bremsstrahlung cooling rate
Brei, we numerically integrated the cross section
from the book by Berestetskii et al. (1980) for high
electron temperatures and used the fit from Langer
and Rappoport (1982) for low electron temperatures:
Brei ≈
{

0.36αr0(Te/T
b
e )0.5neniZ

2g(B,Te), Te < T b
e

0.36αr0(Te/T
b
e )1.2neniZ

2g(B,Te), Te ≥ T b
e ,

(A.4)
where T b
e = 5 × 108 K.

(6) Qrelax denotes the Coulomb relaxation of the
accretion flow on electrons of the thin and dense NS
atmosphere. We used the simple model of an isother-
mal atmosphere and determined Qrelax as

Qrelax = −νei
kBni

γi − 1
(Ti − Tatm), (A.5)

where νei is the Coulomb collision frequency.
(7) Qcompt denotes the electron cooling in single

Compton scatterings. For moderately hard photons
( γEγ

mec2
� 1) that scatter nonrelativistic electrons, the

energy lost by an electron in a single nonresonant

scattering is ∆E = − E2
γ

mec2
+ 4kBTeEγ

mec2
. Since 〈Eγ〉 =

3kBTγ , 〈E2
γ〉 = 12kBT 2

γ ,

Qcompt = nenγ〈σTvrel∆E〉H(B,Tγ) (A.6)

= 12nenγσTckBTγkB
Te − Tγ

mec2
H(B,Tγ),
whereH(B,Tγ) = (1+ 0.0165(�ωB/kBTγ)2.48)/(1+
0.0825(�ωB/kBTγ)2.48) is the Gaunt factor for the
process under consideration fromArons et al. (1987);
and nγ and Tγ are the local density and temperature
of the photon field, respectively.
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