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Long-Wavelength MHD Instability in the Prefront
of Collisionless Shocks with Accelerated Particles

A. M. Bykov1*, S. M. Osipov2, and I. N. Toptygin3

1Ioffe Physicotechnical Institute, Russian Academy of Sciences,
ul. Politekhnicheskaya 26, St. Petersburg, 194021 Russia

2Academic Physicotechnological University, Russian Academy of Sciences, St. Petersburg, Russia
3St. Petersburg State Polytechnical University,

ul. Politekhnicheskaya 29, St. Petersburg, 195251 Russia
Received October 16, 2008

Abstract—Collisionless shocks in turbulent space plasmas accelerate particles by the Fermi mechanism to
ultrarelativistic energies. The interaction of accelerated particles with the plasma inflow produces extended
supersonic MHD flows of multicomponent plasma. We investigate the instabilities of a flow of three-
component turbulent plasma with relativistic particles against long-wavelength perturbations with scales
larger than the accelerated particle transport mean free path and the initial turbulence scales. The presence
of turbulence allows us to formulate the system of single-fluid equations, the equation of motion for the
medium as a whole, and the induction equation for the magnetic field with turbulent magnetic and kinematic
viscosities. The current of accelerated particles enters into the induction equation with an effective
magnetic diffusion coefficient. We have calculated the local growth rates of the perturbations related to the
nonresonant long-wavelength instability of the current of accelerated particles for MHD perturbations in
the WKB approximation. The amplification of long-wavelength magnetic field perturbations in the flow
upstream of the shock front can affect significantly the maximum energies of the particles accelerated
by a collisionless shock and can lead to the observed peculiarities of the synchrotron X-ray radiation in
supernova remnants.
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INTRODUCTION

The processes of rapid energy release in plas-
mas are often accompanied by supersonic flows and
shock formation. Shocks play a special role in shap-
ing the nonthermal radiation spectra and generating
the magnetic fields in various objects. A long series
including gamma-ray bursts (Meszaros 2006), su-
pernova remnants (Reynolds 2008), clusters of galax-
ies, and intergalactic medium (Bykov et al. 2008a;
Ryu et al. 2008) provides examples.

The Chandra observations of nonthermal struc-
tures in supernova remnants dominated by con-
tinuum X-ray emission probably of a synchrotron
origin are interpreted as observational evidence for
the effects of fast particle acceleration to energies
above 1014 eV with the simultaneous superadiabatic
amplification of the local magnetic field approximately
by two orders of magnitude by a collisionless shock
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(see the review by Reynolds (2008) and references
therein). The proper interpretation of observational
data requires modeling and understanding the non-
thermal processes in collisionless shocks.

Some fraction of the kinetic energy of supersonic
and super-Alfvénic flows is converted into the ther-
mal energy of the plasma through collective plasma
processes. As a result, a collisionless shock front is
formed. The collective relaxation is accompanied by
the excitation of a large number of degrees of freedom
with a strong coupling between the plasma modes
and particles (Sagdeev 1964; Boyd and Sanderson
2003). The strong perturbations of the electromag-
netic field of short-lived plasma modes dissipate in-
side the viscous subshock region. The width of the
viscous subshock ∆sh at which part of the directed
flow velocity is thermalized through collective pro-
cesses, the plasma is compressed, and, accordingly,
the transverse magnetic field is amplified reaches sev-
eral hundred inertial ion lengths li = c/ωpi ≈ 2.3 ×
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107n−0.5 cm (here, the plasma density is measured
in cm−3), depending on the magnetic field inclination.

Upstream of the dissipative viscous subshock
region, the conversion of plasma flow energy into
particle energy continues via the scattering of a
group of suprathermal particles by long-lived Alfvén
MHD oscillations frozen into the preshock plasma
flow. The possibility of an efficient acceleration of
energetic nonthermal particles is an important dis-
tinctive feature of the shocks in extended cosmic
objects.

A small fraction of particles is accelerated by the
Fermi mechanism to energies that exceed the kinetic
energies of the particles of the supersonic plasma
flow in a collisionless shock in a turbulent medium
by many orders of magnitude on macroscopic length
scales lf ∼ c/ush × Λ(p). Here, ush is the plasma flow
velocity relative to the shock front and Λ(p) is the
transport mean free path of an energetic particle with
momentum p in a turbulent magnetic field. Ener-
getic nonthermal particles penetrate to a depth of
the order of lf and modify the preshock plasma flow
by producing a prefront. The size of the prefront ∼lf
exceeds the width of the viscous subshock ∆sh by
many orders of magnitude. Modeling supersonic and
super-Alfvénic flows including the relativistic particle
acceleration effects with both Particle-in-Cell (PIC)
and hybrid codes requires a self-consistent allowance
for the nonlinear processes in three dimensions and
on greatly differing scales, ∆sh and lf. The first suc-
cessful PIC models of collisionless shocks with Fermi
particle acceleration were obtained only for relativistic
shocks by Spitkovsky (2008). Modeling nonrelativis-
tic shocks requires a much higher computer power.

The shocks in the shells of young supernova
remnants have typical velocities of ∼0.1–0.01 c
and accelerate particles to energies of ∼100 TeV
(Reynolds 2008). Modeling such shocks with PIC
(and hybrid) codes is unachievable on modern com-
puters (for a discussion, see Vladimirov et al. 2008).
An MHD description of turbulent supersonic flows
and averaged nonthermal particle distribution func-
tions are commonly used. Strongly nonlinear models
of such shocks can be constructed by the Monte
Carlo method in which the relationship of the particle
transport mean free path to the local macroscopic
flow parameters and MHD turbulence properties
are postulated a priori (Vladimirov et al. 2006).
Parameterizing the transport mean free path in a
Monte Carlo model requires a separate analysis of
the MHD turbulence properties on the microscopic
level.

Nonequilibrium accelerated particle distributions
can be unstable and can amplify the fluctuations of
various scales in the prefront. The resonant excitation

of oscillations by anisotropic distributions of relativis-
tic particles underlies most of the models for cosmic-
ray propagation (Skilling 1975; Berezinskii et al.
1990; Blandford and Eichler 1987; Kulsrud 2005).
In this case, anisotropic flows of relativistic particles
amplify the modes in resonance with the particle
gyrofrequencies. The plasma instabilities related to
the presence of an accelerated particle pressure gra-
dient were investigated by Dorfi and Drury (1985),
Berezhko (1986), Chalov (1988), and Malkov and
Drury (2001) in terms of a model approach to describe
the accelerated particle pressure.

Nonresonant plasma instabilities related to the
presence of an external current of energetic par-
ticles are also possible. Bell (2004) pointed out
that MHD fluctuations with wavelengths smaller
than or of the order of the gyroradii rg(p1) of the
lowest-energy accelerated particles, i.e., under the
condition krg(p1) > 1, could be amplified. Below, we
call this limit the short-wavelength current insta-
bility. Bell (2004) estimated the saturation level of
the magnetic field amplitude in an unstable short-
wavelength mode, δBsat/8π ∼ ush/c × PCR. The
nonthermal particle pressure PCR in the case of an
efficient particle acceleration by a collisionless shock
can account for a sizeable fraction (more than 10%)
of the kinetic energy density of the plasma flow
on the collisionless shock front. Thus, according
to the estimate by Bell (2004), δBsat in a strong
collisionless shock can exceed appreciably the un-
perturbed magnetic field strength in the collisionless
shock prefront and can affect both the width of the
viscous subshock in the collisionless shock and the
maximum energies of the accelerated particles. A
dramatic growth of short-wavelength longitudinal
MHD modes was also obtained in the numerical
nonlinear MHD models investigated by Zirakashvili
and Ptuskin (2008). The first results of the simula-
tions of a short-wavelength instability using a three-
dimensional plasma code (Niemiec et al. 2008) are
also indicative of the presence of instability but they
give a slower growth of the longitudinal MHD mode
than that predicted by Bell’s quasi-linear analysis.
The longitudinal short-wavelength fluctuations in the
model are saturated at the level of an unperturbed
longitudinal field δBsat ∼ B0 with the formation of
a strongly discontinuous filamentary magnetic field
structure (Niemiec et al. 2008). A dramatic growth
of oblique perturbations was found in the model. A
further study of the nonlinear evolution of the short-
wavelength instability is needed for a fuller under-
standing of the mechanisms and saturation levels of
the nonresonant perturbations. Pelletier et al. (2006)
and Marcowith et al. (2006) discussed the formation
of MHD turbulence spectra in the presence of a Bell
instability with anisotropic cascades and pointed to a
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possible modification of the Fermi acceleration related
to efficient field generation.

The current instability can also be accompanied
by the nonresonant generation of long-wavelength
fluctuations when the suppression mechanisms of the
transverse plasma conductivity are present (Bykov
and Toptygin 2005, 2007; Reville et al. 2007). In
this case, perturbations with a wavelength exceeding
the mean free path of energetic particles Λ(p) grow.
The long-wavelength instabilities attributable to the
presence of a current of energetic particles exter-
nal with respect to the background (quasi-thermal)
plasma differ from the instabilities of a background
plasma with an anisotropic Weibel (1959) velocity
distribution. The current of energetic particles in-
duces currents and fields in the background plasma,
which admit a linear instability when the external cur-
rent shielding suppression mechanisms are present,
in particular, through an anomalous increase in mag-
netic diffusion by turbulence. Turbulent magnetic dif-
fusion of the plasma reduces the shielding of the ex-
ternal current of accelerated particles producing the
instability in the background plasma. The magnetic
diffusion can be increased by small-scale electromag-
netic fluctuations (see, e.g., Moffat 1980; Vainshtein
et al. 1980; Bykov and Toptygin 1993).

In the papers devoted to the current instability,
the Alfvénic perturbations propagating along the nor-
mal to the front of a longitudinal collisionless shock
related to the anisotropy of energetic particles and
maintained through their free energy were investi-
gated.

Here, we investigate the possibilities for realizing
a nonresonant long-wavelength instability of MHD
fluctuations with wavelengths exceeding both the gy-
roradius of a particle with momentum p in a mean
effective magnetic field and the transport mean free
path Λ(p) of energetic particles with momentum p
(i.e., kΛ(p) < 1) in supersonic and super-Alfvénic
turbulent plasma flows. Long-wavelength fluctua-
tions with krg(p) � 1 can be amplified by the in-
stability of the current of energetic particles if the
magnetic diffusion is increased significantly by fluc-
tuations with scales krg(p1) > 1.

The amplified long-wavelength fluctuations will
resonantly scatter the highest-energy (∼pmax) parti-
cles and, hence, their simulations are fundamentally
important in estimating the maximum energies of
the particles accelerated by the Fermi mechanism.
Moreover, turbulent magnetic fields increase dramat-
ically the efficiency and lead to temporal variations
in the synchrotron radiation of ultrarelativistic elec-
trons accelerated in supernova remnants (see Bykov
et al. 2008b). Rapidly varying synchrotron radiation
in the X-ray energy band is observed from some su-
pernova remnants (Uchiyama et al. 2007).

EQUATIONS OF MOTION
FOR A TURBULENT PLASMA

WITH NONTHERMAL PARTICLES

To investigate the stability, we will derive a sys-
tem of equations that reduces the dynamics of the
long-wavelength perturbations of a collisionless tur-
bulent plasma with energetic particles to a single-
fluid model. To this end, we will average the equations
of plasma motion over fluctuations with scales smaller
than the mean free path of the accelerated energetic
particles. In particular, the Bell (2004) instability can
be a source of small-scale fluctuations. We will av-
erage the equations for the background plasma and
nonthermal particles over the MHD fluctuations and
calculate the turbulent viscosity and magnetic diffu-
sion coefficients by the methods of mean-field elec-
trodynamics widely used in the dynamo theory (for a
detailed review, see Brandenburg and Subramanian
2005).

Averaging the Equations of Motion and Magnetic
Induction over Small-Scale Fluctuations

Let us derive the magnetic induction equation
averaged over fluctuations with scales smaller than
the gyroradius of the accelerated particles. We will
perform the averaging by the method suggested by
Blackman and Field (2002). After the separation of
the fields in scales B = B + b and V = V + v, where
B and V are the large-scale magnetic field and veloc-
ity of the medium, we will write the equation for the
large-scale quantities:

∂B
∂t

= c∇× E + ∇× (V × B) + νm�B. (1)

Here, νm is the magnetic viscosity, cE = 〈v × b〉
is the turbulent electromotive force, v and b are
the small-scale magnetic field and velocity of the
medium, the brackets 〈〉 denote averaging over the
small-scale fluctuations. The electromotive force E
can be found from the dynamic equation

c
∂E
∂t

=
〈

∂v
∂t

× b
〉

+
〈
v × ∂b

∂t

〉
. (2)

The equation for the small-scale fluctuations of
the background plasma velocity in our case differs
from that used by Blackman and Field (2002) by
the presence of a current of accelerated particles in
the problem. This current at the averaging stage in
question is external and affects the magnetic field via
the Maxwell equations including the Ohm law:

curlB =
4π
c

(j + Jcr), (3)

Jcr = j
cr + jcr, E = −1

c
(V × B).
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The equation of motion for the background
plasma is

ρ

(
∂V
∂t

+ (V∇)V
)

(4)

= −∇P +
1
c
(j × B) + e(ni − ne)E + ν�V;

we assume the medium as a whole to be quasi-
neutral, ni + ncr = ne.

To simplify our calculations, following Blackman
and Field (2002), we assume the small-scale modes
to be incompressible. To obtain ∂E/∂t in Eq. (2), we
need an equation for the small-scale velocity, which
we derive from (4) using (3),

∂vq

∂t
= P̂qi

{
− 1

cρ
(j cr × b)i +

encr

cρ
(v × B)i (5)

+
1

4πρ
(B∇)bi +

1
4πρ

(b∇)Bi

+
encr

cρ
(V × b)i − (V∇)vi − (v∇)Vi

− (v∇)vi + 〈(v∇)vi〉 +
1

4πρ
(b∇)bi

− 1
4πρ

〈(b∇)bi〉
}

+ ν�vq + fq,

where P̂qi ≡ (δqi −∇−2∇q∇i) is the projection op-
erator that provides incompressibility in the Navier–
Stokes equation, fq is the part of the force in Eq. (5)
uncorrelated with b, and j cr is the large-scale current
of cosmic rays. We neglect the fluctuations in the
current of cosmic rays on scales much smaller than
the gyroradius of the accelerated particles (see also
Bell 2004), but below we will take into account the
large-scale variations in this current. Here, ncr is the
number density of the accelerated particles (these are
assumed to be protons), e is the elementary charge,
ρ is the background plasma density, and ν is the
viscosity. The equation for the small-scale magnetic
field is

∂b
∂t

= (B∇)v − (v∇)B + ∇× (V × b) (6)

+ ∇× (v × b) −∇× 〈v × b〉 + νm�b.

Next, we will consider the small-scale turbulence
produced by the Bell (2004) instability. We will as-
sume that the turbulence consists of growing modes
with the wave vector directed along the local large-
scale field B and this direction will be chosen as
the z axis. According to Bell (2004), the dispersion
relation for this instability can be derived from the

following equations for the transverse (to the wave
vector) components of the small-scale field:

(ω2 − v2
ak

2
z) bx + i

(j cr
z − encrV z)Bz

cρ
kzby = 0, (7)

(ω2 − v2
ak

2
z)by

− i
(j cr

z − encrV z)Bz

cρ
kzbx = 0,

where va = Bz/
√

4πρ. Thus, from (7) we obtain the
dispersion relation

ω2 = v2
a(k

2
z − k1kz), k1 =

4π
c

(j cr
z − encrV z)

Bz

. (8)

For a growing mode at (j cr
z − encrV z) > 0 and

Bz > 0,

ω = iva

√
k1|kz| − k2

z . (9)

At the stage of linear growth, we have the following
relation between the amplitudes of the Fourier har-
monics of the small-scale field bk and velocity vk

from the induction equation:

iωbk = −iBzkzvk. (10)

Using the fact that k1 
 |kz| for the region in k with
the greatest mode amplification and Eqs. (9) and (10),
we obtain

|vk|2 ≈ 1
4πρ

k1

|kz|
|bk|2. (11)

Substituting (9) into (7) yields the polarization of
the growing mode

bx = i
kz

|kz |
by. (12)

Using (9), (11), and (12), we will obtain the
Fourier transforms of the correlators of the small-
scale quantities

〈b∗α(k)bβ(k)〉 =
〈b2(kz)〉

2
(13)

× δ(kx)δ(ky) ×

⎛
⎜⎜⎜⎝

1 − i kz
|kz| 0

i kz
|kz| 1 0

0 0 0

⎞
⎟⎟⎟⎠ ,

〈v∗α(k)vβ(k)〉 =
1

4πρ

k1

kz

〈b2(kz)〉
2

(14)

× δ(kx)δ(ky)

⎛
⎜⎜⎜⎝

1 − i kz
|kz| 0

i kz
|kz| 1 0

0 0 0

⎞
⎟⎟⎟⎠ ,
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〈v∗α(k)bβ(k)〉 =
1√
4πρ

√
k1

kz

〈b2(kz)〉
2

× δ(kx)δ(ky)

⎛
⎜⎜⎜⎝

i kz
|kz| 1 0

−1 i kz
|kz| 0

0 0 0

⎞
⎟⎟⎟⎠ ,

〈b∗α(k)vβ(k)〉 = −〈v∗α(k)bβ(k)〉. (15)

Substituting (5) and (6) into (2) and performing
averaging using (13)–(15) yields the equation for the
electromotive force

∂E
∂t

= −〈v · ∇ × v〉Bzez (16)

+
1
ρc

〈b2〉(j cr
z − encrV z)ez

+
〈v2〉
2

(
∂Bz

∂y
ex − ∂Bz

∂x
ey) + . . . ,

where the ellipsis denotes the triple correlators and
ex, ey, ez are unit vectors along the corresponding
axes. In deriving Eq. (16), we discarded the terms
containing correlators (13) and (15), except the term
containing the current of accelerated particles, be-
cause these correlators are small compared to cor-
relator (14) at k1 
 |kz|. Below, we will also omit
the terms containing the derivatives of the large-
scale quantities with respect to the x and y coordi-
nates, because these derivatives are small for the low-
amplitude perturbations of the large-scale quantities
under consideration.

Using (14), we obtain the relation

−〈v · ∇ × v〉 =
1
ρc

〈b2〉(j
cr
z − encrV z)

Bz

. (17)

Following the method and using (1), (16), and
(17), we find the induction equation for the large-
scale magnetic field (here, the large-scale current
of accelerated particles and magnetic field were as-
sumed to be coaligned)

∂B
∂t

= ∇× (V × B) +
2
ρc

τcor〈b2〉∇ (18)

× (jcr − encrV) + νm�B,

where τcor is the effective correlation time introduced
into mean-field electrodynamics by the method of
Blackman and Field (2002). The coefficient
〈b2〉
4πρ

τcor = νs characterizes the turbulent diffusion of

the mean transverse magnetic field and determines
the shielding of the external current in mean-field
electrodynamics.

Note that the presence of a current of accelerated
particles in Eq. (5), which leads to the instability
of small-scale Bell modes with a relation between
the velocity and field amplitudes different from that
for Alfvén modes, is important in deriving Eq. (18).
Averaging over the small-scale modes gives the sec-
ond (current) term and the nonzero first term on the
right-hand side of Eq. (16) responsible for the long-
wavelength instability that we study below.

Averaging the terms 〈(v∇)v〉 and 〈(b∇)b〉 in the
Navier–Stokes equation for the large-scale quan-
tities similarly to the averaging 〈v × b〉 yields the
following equation for the large-scale plasma velocity:

∂V
∂t

+ (V∇)V = −1
ρ
∇P − 1

c ρ
(j cr × B) (19)

+
e ncr

cρ
(V × B) +

1
4πρ

((∇×B) × B)

− τcor
1
cρ

(
∂j

cr
z

∂x
ex +

∂j
cr
z

∂y
ey

) ∞∫
0

dkz
1√
4πρ

×
√

k1

kz
〈b2(kz)〉 + τcor〈v · ∇ × v〉

×
(

∂V z

∂y
ex − ∂V z

∂x
ey

)
+ τcor

〈v2〉
2

(
∂2V
∂x2

+
∂2V
∂y2

)

+ ν�V − 1
cρ

〈(jcr − e ncrv) × b〉 . . . .

Below, in Eq. (23), we neglect the terms containing
the derivatives of the large-scale quantities with re-
spect to the transverse x and y coordinates, which
are small when the growth rates of longitudinal low-
amplitude large-scale perturbations are calculated.

After averaging Eq. (19) over fluctuations with
scales larger than the gyroradius of the accelerated
particles and their mean free path (these two param-
eters are close in the Bohm limit), the last term of
this equation has the meaning of an elastic collision
integral via the small-scale fluctuations with the ac-
celerated particles. Let us consider the hydrodynamic
equation for the accelerated particles

∂P(r)

∂t
+ ∇ · Π̂(r) =

1
c
(Jcr × B) + encrE, (20)

where the momentum flux density is expressed in
terms of the accelerated particle distribution func-
tion Fr as

Π(r)
αβ =

∫
vαpβFrd

3p = ρru
(r)
α u

(r)
β + Pcrδαβ . (21)

Given (3), Eq. (20) after averaging over the small
scales reads

〈∂P
(r)

∂t
+ ∇ · Π̂(r)〉 =

1
c
(j cr × B) − encr(V × B)

(22)
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+
1
c
〈(jcr − encrv) × b〉.

Adding (19) and (22) divided by ρ term by term, we
will obtain the equation of motion for the system as
a whole. This equation is valid on scales larger than
the mean free path of the accelerated particles for the
scattering by magnetic fluctuations, where the hy-
drodynamic approximation for the relativistic particle
momentum flux can be properly used:

∂V
∂t

+ (V∇)V = −1
ρ
∇(P + Pcr) (23)

+
1

4πρ
((∇× B) × B) + ν�V.

In contrast to the small-scale magnetic field
fluctuations, the long-wavelength fluctuations induce
significant perturbations of the current of accelerated
particles δjcr. Below, we will seek the growth rates
of low-amplitude large-scale perturbations using the
relations between the variations δjcr, δb, and u in the
current of accelerated particles, the magnetic field,
and the velocity of the medium propagating along a
constant magnetic field B0 directed along the normal
to the shock front. We use a coordinate system in
which the direction of the z axis coincides with that of
the constant magnetic field B0.

The Current of Accelerated Particles Produced
by a Long-Wavelength MHD Perturbation

Below, we will seek the growth rate of low-
amplitude modes. To close the system of equations
requires finding the perturbation δj(r) of the current of
accelerated particles produced by a weak MHD per-
turbation δb of the magnetic field.

In the small-scale domain, the perturbation of
the current of accelerated particles can be derived
from the collisionless kinetic equation for the acceler-
ated particle momentum distribution function f(p) ∼
p−4−ε with p0 ≤ p ≤ pmax:

jcr
⊥ = σ

j||
B||

B⊥, (24)

where

σ = (1 + ε)(rgk||)
1+ε

1
rgk||∫
0

λε (25)

×
{

3
4
λ(1 − λ2)

[
ln

(
1 + λ

1 − λ

)
+ iπ

]
+

3
2
λ2

}
dλ,

where rg =
cp0

eB||
is the gyroradius of the acceler-

ated particles with the lowest momentum. In the

simplest case of the spectrum of particles acceler-
ated by a shock with a small distortion of the flow
profile by the accelerated particle pressure, ε → 0,
we have σ ≈ (rgk||)−2 � 1 for small-scale fluctua-
tions with k||rg 
 1. This allows the fluctuations in
the current of relativistic particles to be neglected in
the regime of small-scale instability (see Bell 2004;
Pelletier et al. 2006). However, for long-wavelength
perturbations with k||Λ(p) ≤ 1, the variations in the
current of relativistic particles and the magnetic field
are strongly correlated (Bykov and Toptygin 2007)
and this correlation essentially determines the pattern
of the long-wavelength instability.

We will calculate the current of accelerated par-
ticles on large scales using the kinetic equation that
describes the particle scattering by magnetic fluctua-
tions,

∂Fr

∂t
+ v · ∂Fr

∂r
+ eE · ∂Fr

∂p
(26)

− ec

E (B0 + δb) · OFr = I[Fr],

where O is the momentum rotation operator; E, δb is
the external electromagnetic field of the MHD wave;
Fr(r,p, t) is the accelerated particle distribution
function; and I[Fr] is the collision integral (see
Toptygin 1983).

We will linearize the kinetic equation (26) by as-
suming the external field to be weak and by separating
out the small part δf attributable to this field from the
distribution function Fr = f0 + δf :

∂δf

∂t
+ v · ∂δf

∂r
− ec

E B0 · Oδf (27)

= −eE · ∂f0

∂p
+

ec

E δb · Of0 + I[δf ].

The unperturbed distribution function is

f0(p, θ) =
1
4π

[
N(p) +

3u0|| · v
v2

N(p)
]

, (28)

where u0|| is the velocity with which the medium flows
onto the shock front and N(p) is the isotropic part
of the distribution function. In what follows, we will
consider power-law relativistic particle momentum
distributions:

N(p) = (α − 3)N0
pα−3
0

pα
eu‖z/κΘ(p − p0), (29)

α ≥ 4, pm ≥ p ≥ p0 ≈ mic.

The last term in (27) accounts for the relaxation
of the distribution function δf through the interac-
tion of accelerated particles with background parti-
cles and stochastic fields. We will represent it in the
relaxation-frequency approximation: I[δf ] → −νδf .
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Here, we assume a low level of large-scale turbulence,

i.e., ν � eB0

p
; in this case, we consider perturbation

wavelengths larger than the minimum gyroradius of
the accelerated particles and neglect contributions of

the order of
k||c

ωBp

, where ωBp =
eB0

p0
is the gyrofre-

quency of the accelerated particles with the minimum
magnitude of the momentum p0 = mpc. Solving this
problem in the same way as in the review by Bykov
and Toptygin (2007), we find a linear (with respect to
the magnetic field δb) relation,

δjcr = g
′
δb, (30)

with the kinetic coefficient

g ′ =
eu0||ncr

B0
. (31)

Equation (30) with (31) is similar to (24) for k||rg �
1, i.e., at σ ≈ 1. The kinetic coefficient g

′
is a pseudo-

scalar, since the current is written via the magnetic
induction pseudo-vector. On the right-hand side
of (31), the projection of the polar vector onto the
direction of the regular magnetic field B0, i.e., u0||
is a pseudo-scalar.

THE LOCAL GROWTH RATE
OF MHD OSCILLATIONS

Let us derive the expression for the local growth
rate of Alfvén modes from Eqs. (18), (23), and the
continuity equation

∂ρ

∂t
+ ∇(ρV) = 0 (32)

by taking into account Eq. (30) for the perturbation of
the current of accelerated particles. We consider the
simplest type of perturbation in the form of an Alfvén
mode with the wave vector k||e0 along the normal to
the longitudinal collisionless shock front.

Substituting the low-amplitude perturbations of
the large-scale quantities in the form δb = B − B0,
δv = V, and δj = j

cr − j|| into Eqs. (18), (23),
and (32) using (30) and eliminating δv, we obtain
the following relations for the transverse components
of the large-scale magnetic field perturbation:

[ω2 − v2
ak2

||]δbx − i(8π/c)νsg
′
k||ωδby = 0, (33)

[ω2 − v2
ak2

||]δby + i(8π/c)νsg
′
k||ωδbx = 0,

where va = B0/
√

4πρ is the Alfvén velocity.
Setting the determinant of system (33) equal to

zero, we find the dispersion relation

ω2 − v2
ak2

|| ± i
8π
c

νsg
′
k||ω = 0. (34)

The imaginary part of the frequency γ = �ω is
defined by the relation

γ(k) = ∓νs
4πk||

c
g
′
. (35)

Substituting (31) into (35) yields the expression
for the growth rate

γ(k) = νsk0k||, k0 =
4π
c

eu0‖ncr

B0
. (36)

The growing mode has the polarization δby1 =
iδbx1 and it is opposite to the polarization of the
small-scale modes over which the averaging was
performed. Averaging over the large-scale turbu-
lence will make a contribution to the helicity density
〈u · ∇ × u〉 > 0. Thus, when averaging over the
developed large-scale turbulence, the term −〈u ·
∇ × u〉∇ × B will appear in the magnetic field in-
duction (18) that will compensate for the contribu-
tion from the current term. Hence, following Tay-
lor (1986), we can estimate the saturation level of the
large-scale field related to the compensation effect,

〈δb2〉τ cork|| ∼ 〈b2〉τcork0, (37)

where τ cor is the correlation time on large scales;

k0 =
MA

2
ωpi

c

ncr

ni
, (38)

where ωpi is the plasma ion frequency, MA is the
Alfvén Mach number of the shock, and ni is the
background plasma ion number density. Note that
nonlinear effects can change the saturation level of
the harmonic amplitudes.

We will estimate the growth rate of long-
wavelength perturbations by noting that the quantity

τcor

√
〈b2〉
4πρ = ξ

k0
is the effective mixing length of the

small-scale turbulence (where ξ is a dimensionless
parameter):

γ(k) =

√
〈b2〉
4πρ

ξk||. (39)

The growth rate of the small-scale Bell instability
responsible for the formation of magnetic field fluctu-
ations 〈b2〉 determining the shielding of the current

of accelerated particles has a maximum at ksm =
k0

2
.

If the original spectrum of small-scale fluctuations
declined with increasing ksm, then ξ > 1 are also
possible. Since the small-scale modes grow only in
a region smaller than the gyroradius of the acceler-
ated particles with the minimum momentum and at a
wave number ksm smaller than its critical value (k0),
we have k−1

0 < k−1
sm < rg. Note that k0 depends on
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the current of accelerated particles and the constant
magnetic field (36) and, thus, the formation condition
for the small-scale instability needed for the realiza-
tion of turbulent transport coefficients is

4π
c

eu0||ncr

B0
> r−1

g . (40)

It is also important to keep in mind that the polar-
ization pattern of the small-scale modes defined by
Eq. (12) plays an important role in calculating νs.

The current of accelerated particles is localized in
the shock prefront region with size lf and, hence, the
instability region is also finite. The convective drift
time of the fluctuations on the shock front can be
estimated from the formula

τd ≈ cΛ
3u2

0||
. (41)

We find from (39) and (41) that a noticeable growth of
unstable fluctuations with a wave number k|| requires

γ(k)τd =
ξ

3

c
√

〈b2〉
4πρ

u2
0||

k||Λ > 1. (42)

It follows from estimate (39) that the shocks
in the shells of young supernova remnants can
amplify long-wavelength magnetic field fluctuations
with scales larger than the mean free paths of the
accelerated relativistic particles by a nonresonant
mechanism. The growth rate of the long-wavelength
fluctuations is proportional to the turbulent mag-
netic viscosity. Strong turbulent fluctuations with
scales smaller than the gyroradii of the accelerated
relativistic particles, the possibility of whose ampli-
fication was investigated by Bell (2004) (see also
Pelletier et al. 2005; Zirakashvili and Ptuskin 2008;
Niemiec et al. 2008), play a significant role in increas-
ing considerably the turbulent magnetic viscosity
compared to the effects attributable to the finite
(even anomalous) conductivity. The growth rates of
the nonresonant current mechanism described by
Eqs. (39) and (41) allow long-wavelength magnetic
field fluctuations with scales larger than 1015 cm
in supernova remnants with shock velocities u0|| ∼
0.01 s to be amplified in a time of the order of a year.

Long-wavelength magnetic field fluctuations en-
sure a much more efficient scattering of relativis-
tic particles than fluctuations with scales krg(p) 

1. The transport mean free path of the relativistic
particles scattered by small-scale inhomogeneities
with krg(p) 
 1 increases rapidly with an increase
in momentum Λ(p) ∝ p2 (Toptygin 1983) incompat-
ible with the Bohm diffusion traditionally used in the
models of particle acceleration by shocks. The scat-
tering of particles by long-wavelength magnetic field

fluctuations usually provides the regimes of longitu-
dinal diffusion Λ(p) ∝ pa with indices a ≤ 1, which,
in particular, is important in modeling the spectra of
the highest-energy nuclei accelerated in supernova
remnants.

CONCLUSIONS

Below, we summarize our main results.

(1) We obtained the system of equations that re-
duced the dynamics of the long-wavelength pertur-
bations of a collisionless turbulent three-component
plasma (electrons, background and energetic ions)
to a single-fluid model. By the long-wavelength per-
turbations we mean those with scales exceeding the
mean free path of relativistic particles for the scat-
tering by magnetic fluctuations. The relaxation of
the system that makes the single-fluid description
possible proceeds through momentum and energy
exchange between the plasma components via elec-
tromagnetic field fluctuations.

(2) The presence of developed small-scale turbu-
lence was shown to lead to rapid turbulent magnetic
diffusion that suppresses significantly the shielding of
the large-scale current of relativistic particles and, as
a result, to the growth of a long-wavelength insta-
bility determined by this current. The mean helicity
density of the amplified long-wavelength modes is
opposite in sign to the helicity density produced by
small-scale modes.

(3) The instability under consideration is non-
resonant and all energetic particles, not only those
resonant with the wave being excited, are involved
in the amplification of the oscillations. This circum-
stance is particularly important in the case of strong
turbulence, which distorts the helical trajectories of
the accelerated particles and removes them from a
narrow resonance.

(4) We restricted ourselves to the calculation of
linear instability growth rates and to the application
of the effect considered to collisionless shocks that
efficiently accelerate particles. The magnetic field of
the growing modes is perpendicular to the unper-
turbed magnetic field upstream of the shock front.
This can be a factor that limits the nonlinear field
growth. Constructing a nonlinear theory is beyond
the scope of this paper.

(5) The long-wavelength turbulence amplification
mechanism considered is universal and, in addition to
the plasma flows related to collisionless shocks, it can
be efficient in another very important class of flows,
accretion plasma flows onto gravitating centers, in
the presence of a source of accelerated particles.
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