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Abstract

We briefly examine the properties of dense plasmas characteristic of the

atmospheres of neutron stars and of the interior of massive white dwarfs.

These astrophysical bodies are natural laboratories for studying respectively

the problem of pressure ionization of hydrogen in a strong magnetic field and

the crystallization of the quantum one-component plasma at finite temperature.

1. Introduction

The quest for an accurate description of the thermodynamics properties of dense plasmas

has represented a thriving domain of research since the seminal review by Baus and Hansen

(1980). The interiors of many astrophysical bodies are characterized by strongly correlated

ionic and electronic plasmas, with respective classical and quantum coupling parameters

Ŵi = β(Z ie)
2/ai and rs = ai/(a0 Z

1/3
i ) varying over several decades. Here, a0 = h̄2/(mee2)

denotes the electronic Bohr radius, ai = (3Ni/4πV )1/3 is the mean inter-ionic distance, and

β ≡ 1/(kBT ). The correct description of the thermodynamic properties of these astrophysical

bodies, which determine their mechanical and thermal properties, thus requires knowledge of

the equation of state (EOS) of such plasmas. In this short review, we focus on the case of

neutron stars (NS) and massive white dwarfs (WD), which exhibit two particularly interesting

problems in the statistical physics of dense matter.

2. Ionization equilibrium of a hydrogen plasma in strong magnetic fields

Most NS are characterized by magnetic fields B ∼ 1011–1013 G, whereas some of them

(so-called magnetars) are thought to have B ∼ 1014–1015 G. Although huge by terrestrial

standards, the magnetic energy of a NS, ∼R3 B2/6, represents only a tiny fraction of its

gravitational binding energy EG ∼ GM2/R2.

The photospheric properties of a NS are characterized by temperatures T ≃ 105–107 K

(depending on the age and mass of the star) and densities ρ ≃ 10−2–104 g cm−3 (depending on

T and B). The cooling rates for these stars are entirely determined by the relationship between

the photospheric and the interior temperature profiles. The emitted spectra of these stars can be
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strongly affected by the presence of bound species in the photosphere. Since the atmosphere

can be composed essentially of hydrogen accreted from either the interstellar medium, the

supernova remnant, or a close companion, the determination of the temperature profiles and

spectra requires an accurate description of hydrogen ionization in a strong magnetic field.

The quantum mechanical properties of protons, free electrons, and bound species

(hydrogen atoms and molecules) are strongly modified by the field, which thereby affects

the thermodynamic properties of the plasma. The properties of matter in a magnetic field

under NS conditions have been reviewed recently by Ventura and Potekhin (2001) and Lai

(2001). We refer the reader to these reviews for detailed descriptions of these properties, and

only the most recent results will be outlined in the present paper.

The transverse motion of electrons in a magnetic field is quantized into Landau levels. The

energy of the nth Landau level of the electron (without the rest energy) is mec2(
√

1 + 2bn−1),

which becomes h̄ωcn in the non-relativistic limit, where

h̄ωc = h̄
eB

mec
= 11.577 B12 keV (1)

is the electron cyclotron energy,

b = h̄ωc/mec2 = B12/44.14 (2)

is the field strength in the relativistic units, and B12 = B/(1012 G) is a typical magnetic field

scale for NS conditions.

The atomic unit for the magnetic field strength is set by h̄ωc = e2/a0, i.e. B0 =
(mec/h̄e)(e2/a0) = 2.35 × 109 G. It is convenient to define a dimensionless magnetic field

strength

γ = B/B0 = b/α2
f , (3)

where αf is the fine-structure constant.

For γ ≫ 1, as encountered in NS conditions, the electron cyclotron energy is much larger

than the typical Coulomb energy, so the properties of interacting particles, protons, atoms,

molecules, are strongly affected by the field. The ground-state atomic and molecular binding

energies increase with B as ∼ln2 γ . The atom in a strong magnetic field is compressed in the

transverse directions to the radius ∼am, where

am = (h̄c/eB)1/2 = γ −1/2 a0 = 2.56 × 10−10 B
−1/2
12 cm (4)

is the quantum magnetic length, which becomes the natural length unit in the plasma instead

of a0.

The thermal motion of atoms causes the Stark effect due to the electric field induced in the

comoving frame of reference. At γ ≫ 1, this effect strongly modifies the atomic properties:

the atom becomes asymmetric, and its binding energy and oscillator strengths depend on the

velocity (Potekhin 1994). Two classes of the atomic state arise: so-called centred and decentred

states; for the latter the electron–proton separation is large and the binding energy relatively

small (Vincke et al 1992, Potekhin 1994).

The formation of molecules is also strongly modified in a strong magnetic field. Because

of the alignment of the electron spins antiparallel to the field, two atoms in their ground state

(m = 0) do not bind together, because of the Pauli exclusion principle. One of the two H atoms

has to be excited in the m = −1 state to form the ground state of the H2 molecule, which then

forms by covalent bonding (see, e.g., Lai 2001).

As long as T ≪ h̄ωc/kB = 1.343 × 108 B12 K and ρ ≪ ρB ≈ 7.1 × 103 B
3/2
12 g cm−3,

the electron cyclotron energy h̄ωc exceeds both the thermal energy kBT and the electron

Fermi energy kBTF, so the electrons are mostly in the Landau ground state—i.e., the field is
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strongly quantizing. In this case, typical for the NS photospheres, the electron spins are aligned

antiparallel to the field.

Proton motion is also quantized by the magnetic field, but the corresponding cyclotron

energy is smaller, h̄ωcp = h̄ωcme/mp.

Quantum mechanical calculations of the binding energies and wavefunctions of hydrogen

atoms in any state of motion in the strong magnetic fields have been carried out only recently

(Vincke et al 1992, Potekhin 1994). Using these results, Potekhin et al (1999) derived a model

which describes the thermodynamics of an interacting (H2, H, H+, e−) plasma in a strong

magnetic field. This model is based on the framework of the free energy model developed

by Saumon and Chabrier (1991, 1992) for pressure ionization of hydrogen at B = 0, but

generalizes it to the strong-B case, taking into account the quantum mechanical effects caused

by the thermal motion of atoms across the magnetic field.

Potekhin et al (1999) calculated the ionization equilibrium and EOS at 7 × 1011 G �

B � 3 × 1013 G. In this paper, we extend these calculations up to B = 1014 G, typical for

the magnetars. We calculate the number densities of atoms (nH) and molecules (nH2
) from the

equations

nH = n2
e

λpλe(2πa2
m)2

λ3
H

[1 − e−βh̄ωcp ]Zwe	, nH2
= n2

H(λH

√
2)3 Zw2/Z 2

w, (5)

where ne is the electron number density, λ j = (2πβh̄2/m j)
1/2 is the thermal wavelength of

the particle j ( j = e, p, H), Zw and Zw2 are the internal partition functions for H and H2,

respectively, and 	 is a correction factor, which takes into account electron degeneracy and

filling of the excited Landau levels. The formulae for Zw, Zw2, and 	 are given in Potekhin

et al (1999).

Figure 1 displays the logarithm of the fraction of H and H2 for a magnetic field B = 1014

G, for two isotherms. The solid curve represents the total fraction of atoms fH = nH/n0

(n0 = nH + np + 2nH2
) in all quantum states, whereas the dashed curve shows the fraction

of atoms in the ground state. The dotted curve displays the zero-field result. As seen in

this figure, the strong magnetic field favours atomic and molecular recombination. Since the

binding energies of atoms and molecules increase and TF decreases in the strongly quantizing

magnetic field, pressure ionization occurs at much larger densities than for the field-free case.

Figure 2 displays the resulting EOS. The left panel displays three isotherms at B = 1012 G,

typical of ordinary NS. In the right panel, we compare the isotherm for T = 106.5 K for

B = 1012 G and for the superstrong field B = 1014 G. As expected from the previous

discussion, the EOS in a strong magnetic field differs significantly from the field-free case in

the region of partial ionization. At very high density, excited Landau levels become populated,

due to the increase of the Fermi energy, and the zero-field case is recovered.

3. Crystallization of white dwarf cores

Massive WD (1.2 M⊙ � M � 1.4 M⊙ = MCh, where MCh denotes the Chandraskhar mass) are

C6+/O8+ plasmas with central densities and temperatures ρc ≈ 108–109 g cm−3, Tc ≈ 106 K.

Under these conditions, the ion zero-point energy E0 ∝ h̄
P, where 
P = (3Z 2
i e2/Mia

3
i )

1/2

is the ion plasma frequency, exceeds the classical thermal energy kBT (Chabrier et al 1992),

i.e. η = h̄
P/kBT ≫ 1. Collective diffraction effects thus modify the classical Coulomb inter-

action. The melting values of the coupling parametersŴm for the classical OCP and RS,m, where

RS = ai/(h̄
2/Mi Z

2
i e2) is the ion quantum plasma parameter, for the quantum jellium model at

zero temperature, have been firmly established: Ŵm = 175 (Potekhin and Chabrier 2002); and



9136 G Chabrier et al

Figure 1. Ionization isotherms at B = 1014 G and two values of T . Solid curves: total fraction of

atoms fH = nH/n0; dashed curves: fractions of ground-state atoms; dot–dashed curves: molecular

fraction fH2
= 2nH2

/n0 , where n0 is the total number density of protons (free and bound). Dotted

curves: zero-field case.

Figure 2. The EOS of partially ionized atomic hydrogen in the strong magnetic field (solid curves)

compared with the EOS of a fully ionized ideal electron–proton plasma (dotted curves) and the EOS

of partially ionized hydrogen at B = 0 (dashed curves). Left panel: B = 1012 G, log T (K) = 6.5,
6.0, and 5.5. Right panel: log T (K) = 6.5; B = 1012 and 1014 G. The vertical lines correspond to

the density above which excited Landau levels become populated.

RS,m = 160 for bosons, RS,m = 100 for fermions (Ceperley and Alder 1980). The melting

curve at finite temperature, however, i.e. at η 
= 0 and T 
= 0, still remains poorly determined.

A simplified determination of this curve is based on the Lindemann critical parameter

interpolation between the zero-temperature and the classical melting values (Mochkovitch

and Hansen 1979, Chabrier 1993). These calculations, however, are based on a harmonic

description of the phonon mode spectrum and thus do not include non-harmonic effects. More

recently, Jones and Ceperley (1996) performed path integral Monte Carlo (PIMC) simulations

to try to determine the phase diagram more correctly. They found a maximum melting

temperature almost a factor of 2 larger than the one determined by Chabrier (1993).

In this paper, we present preliminary results based on similar PIMC calculations at finite

temperature. The system under consideration consists of N identical, but distinguishable

particles (boltzmannions) with a mass M and charge Ze in a volume V at temperature T .
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The partition function of the quantum system is given by the trace of the N-body density

matrix ρN ( �R, �R′; β) = 〈 �R|e−βHN | �R′〉. Here �R denotes the 3N coordinates {�ri }i=1,...,N . Using

the Trotter formula, this partition function can be rewritten exactly in terms of the density

matrix ρN ( �R, �R′; τ ) with τ = β/P (Ceperley 1995) as

QN,V,T (β) =
∫ P

∏

α=1

d �Rα ρN ( �Rα, �Rα+1; τ ). (6)

In the P → ∞ limit, the exact density matrix

e−βHN = lim
P→∞

[e− β

P
K N e− β

P
VN ]P (7)

is recovered by using the approximate expression

ρN ( �Rα, �Rβ ; τ ) = ρ0
N ( �Rα, �Rβ ; τ ) exp

[

−τ

2
{V c( �Rα) + V c( �Rβ)}

]

, (8)

where KN and VN denote the kinetic and potential parts of the Hamiltonian, respectively,

ρ0
N ( �Rα, �Rβ; τ ) = (4πτ)−3N/2 exp[−( �Rα − �Rβ)2]/(4τ ) is the density matrix of free particles,

and V c is the classical potential energy of the system.

In terms of the path integral formalism, the particle is defined by its trajectory in ‘imaginary

time’ Pτ , through ‘polymers’ composed of P monomers connected by ‘strings’ of stiffness

Mi/h̄τ .

We have performed simulations along three isochores, RS = 1200, 350, 200, and five

isotherms on each isochore around the estimated melting temperature. In order to estimate the

finite-size effects, we used 16, 54, 128, and 250 particles. For each simulation we took

η/P = 0.05–0.1. We then parametrized the fluid and solid internal energies, including

the finite-size corrections. The melting temperature was estimated both from free energy

comparison and from a dynamical criterion, namely the mean square displacement in units of

the nearest-neighbour distance (〈δr2〉/d2)1/2. This value is finite for a solid and diverges for

a fluid.

Figure 3 displays the internal energy of the quantum fluid for RS = 200. The solid curve

is the result of the PIMC simulation, with N = 54 particles. The dashed curve displays the

(Hansen and Vieillefosse 1975) h̄4-expansion, which diverges when the thermal wavelength

λi is of the order of the inter-ionic distance ai. At large Ŵ, i.e. large η for a given RS, the

energy tends towards the zero-temperature limit (Chabrier 1993). The dashed curve displays

an analytical fit of the PIMC energy at large Ŵ (Douchin and Chabrier 2002).

Our preliminary results yield melting temperatures lower than the ones obtained by Jones

and Ceperley (1996), about a factor of 2 for the maximum melting temperature. This difference

stems from a better correction of finite-size effects, which are known to stabilize the solid. First

of all, we explored in more detail the N-dependence of our PIMC simulations by conducting

calculations with a larger number of particles (up to N = 256). Secondly, we found that

the dependence on Ŵ and RS of the finite-size effects for the liquid phase is more complex

than the simple one used by Jones and Ceperley (1996). This is particularly important for the

extrapolated values of the energy around the turning point. The maximum melting temperature

and corresponding density obtained are (Douchin and Chabrier 2002)

Tmax = 8810 AZ 4 K; ρm = 1280 A4 Z 6g cm−3; i.e.,RS ≈ 235. (9)

These calculations show that, although anharmonic effects are non-negligible both in the

solid phase and in the liquid phase, they are comparable in the two phases and almost cancel

out, so the melting curve lies close to the one estimated from the harmonic spectrum.
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Figure 3. The internal energy of a quantum OCP at RS = 200. Solid curves: PIMC calculations;

left dashed curve: Hansen and Vieillefosse (1975) h̄4-expansion; right dashed curve: analytical fit

of the energy at large Ŵ (Douchin and Chabrier 2002).

(This figure is in colour only in the electronic version)

4. Conclusions

In this short review, we have considered two different problems related to dense plasma physics

as encountered under specific astrophysical conditions. Because of the presence of a strong

magnetic field, the quantum internal levels of atoms and molecules are quantized in Landau

orbits, and the field raises the binding energy of these species, favouring recombination over

dissociation and ionization compared with the field-free case. This modifies the ionization

equilibrium and EOS of the dense plasma.

We also considered the crystallization of a quantum fluid of boltzmannions at finite

temperature with PIMC simulations, taking into account the correction due to finite-size effects.

We found that the crystallization diagram lies close to the one based on an interpolation of the

Lindemann criterion between the classical and the zero-temperature limits. These preliminary

results need to be confirmed by further calculations. Such work is in progress.

These two examples, and many other not mentioned in the present review, stress the

need for detailed calculations of the properties of dense plasmas under extreme conditions for

astrophysical applications.
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