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Abstract

The pair distribution function g(r) of ions in body-centered-cubic and face-centered-cubic
Coulomb crystals is calculated using the harmonic-lattice (HL) approximation in a wide tem-
perature range, from the high-temperature classical regime (T�˝!p; !p is the ion plasma
frequency) to the low-temperature quantum regime (T�˝!p). The radial pair distribution func-
tion g(r) is calculated by averaging g(r) over orientations of r. In the classical limit, g(r) is also
obtained from extensive Monte Carlo (MC) simulations. MC and HL results are shown to be in
good agreement. With decreasing temperature T , the correlation peaks of g(r) and g(r) become
narrower and 6nally freeze at T�˝!p being solely determined by zero-point ion vibrations.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

A model of a Coulomb crystal of point charges in a uniform neutralizing background
of opposite sign is widely used in solid-state physics for describing electron–hole
plasma (e.g., Ref. [1]), in plasma physics for describing dusty plasmas and ion plasmas
in Penning traps (e.g., Ref. [2]); it is also used in astrophysics for describing crystals
of ions in the cores of white dwarfs and the envelopes of neutron stars (e.g., Ref. [3]).

∗ Corresponding author.
E-mail address: yak@astro.io>e.rssi.ru (D.G. Yakovlev).

0378-4371/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0378-4371(02)02027-7

mailto:yak@astro.ioffe.rssi.ru


414 A.I. Chugunov et al. / Physica A 323 (2003) 413–427

To be speci6c, we consider a crystal of ions in a uniform electron background. We
focus on correlation properties of ions described by the pair distribution function g(r) ≡
g(x; y; z) [the relative probability to 6nd two ions at a distance r; a formal de6nition
is given by Eq. (5) below] and by the radial pair distribution function g(r) obtained
from g(r) by averaging over orientations of r.
Both functions, g(r) and g(r), are important for calculating various thermodynamic

and kinetic properties of the crystals. For instance, they determine Coulomb energy
of the system and provide the basis for a strict description of the processes involv-
ing ions. As an example, we can mention the problem of calculating nuclear reaction
rates in dense stellar matter where the ions are arranged in Coulomb lattice (e.g.,
Ref. [4]). Under these conditions, the penetration of the Coulomb barrier takes place
in the pycnonuclear or thermally excited pycnonuclear regimes being extremely sensi-
tive to correlations (to pair distribution functions) of reacting ions. The problem has
been solved under some simplifying assumptions and the main features have been un-
derstood, but the exact solution has not been derived so far. Moreover, the Fourier
transforms of the pair distribution functions, the structure factors [see Eq. (1)], are
needed to calculate, for instance, electron scattering rates in the Coulomb crystals and
associated electron transport properties (e.g., Refs. [5–7]).
In principle, g(r) and g(r) can be determined numerically: by classical Monte

Carlo (MC; e.g., Ref. [8], and references therein), molecular dynamics (MD; e.g.,
Ref. [9]), and also by path-integral Monte Carlo (PIMC; e.g., Ref. [10]). The re-
sults of these studies are very impressive, but the numerical methods are time con-
suming and require the most powerful computers. So far, accurate calculations of
g(r) have been performed only by MC for classical body-centered-cubic (bcc)
and face-centered-cubic (fcc) Coulomb crystals (T�˝!p) at r=a . 7, where !p =√

4�e2Z2n=M is the ion plasma frequency, a = (4�n=3)−1=3 is the ion sphere radius,
Ze is the ion charge, M is its mass, and n is the number density. Accurate MC cal-
culations of g(r) in the classical regime would be straightforward but they would
require much more computer resources (because of very pronounced peak structure
of g(r), see Section 3). They have not been performed so far, to the best of our
knowledge.
Recently, Baiko et al. [6,11] constructed a semi-analytic model for calculating cor-

relation properties of Coulomb crystals (dynamic and static structure functions as
well as pair distribution functions) based on the harmonic lattice (HL) approxima-
tion (e.g., Ref. [12]). This model is much simpler for practical realization. It does not
take into account ion statistics (exchange terms) but describes correctly other quantum
e>ects.
In Ref. [11] the radial distribution function g(r) given by the HL model was com-

pared with MC results for classical bcc crystals (T�˝!p), and the agreement turned
out to be very good for 1:5. r=a. 7:3. In addition, the HL g(r) was calculated for
a quantum bcc crystal at one particular temperature T = 0:1˝!p.
In this paper we present the results of HL calculations of g(r) and g(r) for bcc and

fcc crystals. We obtain also new, more accurate, MC g(r) for classical crystals and
con6rm good agreement with the HL model. Furthermore, we analyze the HL g(r)
and g(r) in the quantum and intermediate (classical–quantum) regimes.
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2. Formalism

Let us remind the main expressions of the HL approximation (e.g., Refs. [12,6,11]).
We stress that the HL formalism has been known for a long time (e.g., Ref. [12]). We
discuss here its implementation for Coulomb crystals. As can be shown, for instance,
from Eqs. (6) and (9) of Ref. [6], the static ion–ion structure factor can be written as

S(k) =
∑
R

eik·R−2W (k)+v��(R)k�k� − (2�)3n�(k) ; (1)

where the sum is over direct lattice vectors R, and e−2W (k) is the Debye–Waller factor.
The functions W (k) and v��(R) can be expressed as

W (k) =
3˝
2M

〈
(k · e�)2
!�

(
Hn� +

1
2

)〉
ph
=
˝k2
2M

〈
1
!�

(
Hn� +

1
2

)〉
ph
; (2)

v��(R) =
3˝
2M

〈
e��e��

!� tanh(z�=2)
eiq·R

〉
ph
: (3)

In this case, � ≡ (q; s) labels phonon branches; q; e�, and !� are, respectively, phonon
wave vector (in the 6rst Brillouin zone), polarization vector and frequency (to be
determined from the standard dynamic-matrix equation); Hn� = (ez� − 1)−1 is the mean
number of phonons in a mode �; z� = ˝!�=T . The brackets

〈f�〉ph = 1
24�3n

3∑
s=1

∫
dqf� (4)

denote averaging over the phonon spectrum, which can be performed numerically,
e.g., Refs. [13,5]; the integral is taken over the 6rst Brillouin zone. The last equality
in Eq. (2) is exact at least for bcc and fcc crystals. For these crystals, W (k)= r2T k

2=6,
where r2T is the mean squared displacement of an ion in a lattice site.
Our main goal is to study the ion pair distribution function

g(r) = 1 +
1
n

∫
dk

(2�)3
[S(k)− 1] e−ik·r : (5)

Using Eq. (1) we have

g(r) =
1
n

∑
R

′ ∫ dk
(2�)3

eik·(R−r)−2W (k)+v��(R)k�k� : (6)

The prime over the sum means that the central (R = 0) lattice vector is excluded.
At this stage it is natural to introduce the matrix V��(R) = r2T ���=3 − v��(R) and
its inverse: N��(R) = (V−1)��. We can integrate then over k and obtain an analytic
expression:

g(r) =
∑
R

′
√
N (R)

8�3=2n
e−N��(R) (R�−r�)(R�−r�)=4 ; (7)
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where N (R)=det{N��(R)}. This expression is convenient for numerical evaluation. Un-
der the conditions, at which the present approach is valid (neglect of exchange terms),
g(r) is the sum of Gaussian peaks centered at direct lattice vectors, R.
The peaks should be narrow and should not essentially overlap. The major axes ni ;
i = 1; 2, 3, of the Gaussian distribution for any peak at r≈R are the major axes of
N��(R) (N��(R)ni� = Ni(R)ni�, with ni · nk = �ik). They are also the major axes of
the initial matrix v��(R). The peak widths along the major axes are determined by the
associated eigenvalues Ni(R) (i.e., a width in the direction ni is ˙ 1=

√
Ni(R)). Notice

also that N (R) = N1(R)N2(R)N3(R).
For many problems, it is important to introduce the radial pair distribution function

g(r) =
1
4�

∫
d g(r) =

∑
R

′
gR(r) ; (8)

where d is the solid angle element in the direction of r, and gR(r) is the contribution
from an ion in a lattice site R. The latter contribution is non-negligible only if r
is close enough to R. To 6nd gR(r) we must integrate the Rth term in (7) over
orientations of r on a sphere of radius r. It is clear that only a small part of the
spherical surface contributes to the integral, where r≈R. While integrating, we can
neglect the curvature of the spherical surface, and approximate this part of the surface
by a plane which is perpendicular to the vector rR̂ and touches the end of this vector
(R̂ is the unit vector directed along R). In the exponent argument of the integrand, we
may introduce u= r−R=u0 +Mu, where u0 =(r−R) R̂ and Mu lies in the integration
plane (perpendicular to R). It is convenient to introduce a 2D tensor Lij=Nij, where i
and j refer to two arbitrary orthogonal axes (i; j= 1; 2) in the integration plane. Thus,
Lij represents the projection of N�� onto the integration plane. Let us also introduce the
major orthogonal axes of Lij in the integration plane. They are de6ned by the orthogonal
unit vectors l (k); k = 1 and 2, which lie in the integration plane and diagonalize
Lij: Lijl

(k)
j = L(k)l(k)i (L(k) is an eigenvalue of Lij). The integration then yields

gR(r) =

√
N

8�r2n
√
�L(1)L(2)

exp
(
− ũ 0�N��ũ 0�

4

)
; (9)

where ũ0 = u0 −
∑

k (l
(k)
� N��u0�) l (k)=L(k).

Note one important limiting case in which v��(R)= v0(R) ���. In this case V��(R)=
V0(R) ���, with V0(R) = r2T =3 − v0(R). The tensors N��(R) and Lik(R) also become
isotropic, and Eq. (9) reduces to

gR(r) =
1

8�nr2
√
�V0(R)

exp
[
− (R− r)2

4V0(R)

]
: (10)

Baiko et al. [11] proposed another algorithm of calculating g(r). Their Eqs. (14)
and (15) are more general since they do not neglect the curvature of the integration
surface. A careful examination of these equations shows that several terms are canceled



A.I. Chugunov et al. / Physica A 323 (2003) 413–427 417

out, so that their gR(r) can be written as

gR(r) =
√
�

(2�)3rn

∑
%=±1

∫
d k
x2

&e−&
2
; (11)

where &=(r+%R')=x; '=cos#; # is an angle between k and R, x2=4k�V��(R)k�=k2,
and d k is the solid angle element in the direction of k.
Thus g(r) can be calculated from Eq. (8) with gR(r) taken either from Eq. (9) or

from (11). The 6rst algorithm is much more eOcient (does not require 2D integration)
and will be used below. Both algorithms give almost the same results in all physically
reasonable cases we have checked.
The functions g(r) and g(r) depend on the lattice type and on two parameters: the

classical ion-coupling parameter )=Z2e2=(aT ) and the quantum parameter *=˝!p=T
that measures the importance of zero-point lattice vibrations. In addition, it is useful
to introduce a density parameter. The most familiar density parameter is Rs = a=aB,
where aB = ˝2=(Z2e2M) is the ion Bohr radius. However, we 6nd more convenient
to introduce another parameter )q = Z2e2=(a˝!p) = (Rs=3)1=2 which is similar to the
standard ion-coupling parameter ) but with ˝!p instead of the thermal energy T in
the denominator. With this de6nition, ) = )q*.

3. 3D pair distribution

In this section we analyze the results of HL calculations of g(r) from Eq. (7).
Figs. 1 and 2 show g(r) for classical fcc and bcc Coulomb crystals at ) = 180
(i.e., close to the melting value )melt ≈ 175; see, e.g., Ref. [14]). In both 6gures, r
varies in the planes containing lattice sites. One can observe Gaussian correlation peaks
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Fig. 1. g(r) as a function of x and y in units of basic cube lengths at z = 0 for a classical fcc crystal at
) = 180. The bottom plane shows isolines of g(r).
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Fig. 2. g(r) in the plane formed by two indicated directions (in units of basic cube lengths) for a classical
bcc crystal at ) = 180. The bottom plane shows isolines of g(r).
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Fig. 3. Isolines of g(r) for a classical fcc crystal at ) = 180 in the plane shown in Fig. 1.

centered at these lattice sites. The peaks are high (the heights are as large as 30–
40) and narrow, i.e., they do not overlap. The peak widths are determined by thermal
vibrations of ions in their lattice sites. The plane at the bottom of each 6gure dis-
plays isolines of g(r). Fig. 3 shows these isolines for the fcc crystal in more detail.
The isolines for neighboring ions (close to the origin of coordinate system), are el-
lipsoidal, rather than circular. Thus, the ion–ion correlation properties depend on the
direction of ion displacements. For more distant ions, the isolines become circular. For
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Fig. 4. g(r) versus r in direction [1 1 0] for fcc crystal at )q = 1800 and four values of *.
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Fig. 5. Same as in Fig. 4 but at )q = 3600.

these ions, the equality v��(R) = v0(R) ��� and associated Eq. (10) become a good
approximation.
As long as the crystal remains classical (* . 1) the peak heights grow with ) as

˙ )3=2, and the peak widths decrease as )−1=2; the isoline ellipses decrease in size
but remain selfsimilar. The situation becomes di>erent for a quantum crystal.
A transition from classical to quantum crystals with decreasing temperature at a

6xed number density of ions can be seen from Figs. 4–7. These 6gures exhibit g(r)
for fcc (Figs. 4 and 5) and bcc (Figs. 6 and 7) crystals at two values of the density
parameter, )q =1800 (Figs. 4 and 6) and )q =3600 (Figs. 5 and 7). Each 6gure shows
g(r) as a function of r in units of a (the ion sphere radius) for a given )q in one
direction of r for four values of the quantum parameter: * = 0:1242, 0.4548, 1.666,
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Fig. 6. g(r) versus r in direction [1 1 1] for bcc crystal at )q = 1800 and four values of *.
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Fig. 7. Same as in Fig. 6 but at )q = 3600.

and 300. The chosen directions of r lie in the planes displayed in Figs. 1 and 2. The
lowest values of * correspond to classical crystals while the highest * corresponds to
essentially quantum crystals. Logarithmic scale of g(r) is used to show that the pair
distribution varies with r by many orders of magnitude.
Consider, for instance, Fig. 4 which visualizes g(r) along the direction x=y; z=0.

The solid line gives the pair distribution for the classical fcc crystal with )=220, which
does not di>er strongly from that in Fig. 1. One can observe two closest correlation
peaks and the wing of the third one. The peak heights reach the values ∼100 and
the peak widths are moderately small. In this classical regime, the pair distribution
is actually determined by one parameter ) = *)q. Other lines correspond to a colder
crystal of the same number density. The dashed line refers to )≈ 820. The crystal is
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Fig. 8. Isolines of g(r) for a fcc crystal in the plane shown in Fig. 1 but in the quantum regime (T = 0) at
)q = 100.

still classical; the peak heights reach the values ∼500, and the peaks are noticeably
narrower. The values of g(r) outside the peaks are much smaller than for the solid
line (not seen in the 6gure). The next, dash-and-dotted line refers to the intermediate
classical–quantum regime, ) = 3000. The peak heights are as large as ∼3000, and
the peaks are narrower. With further decrease of T (increase of *) the peaks will
become even higher and narrower, and we will enter the essentially quantum regime.
In that regime, the rms ion displacements around the lattice sites are determined by
zero-point ion vibrations, independent of temperature. The pair distribution becomes
“frozen” (temperature independent) being solely determined by the density parameter
)q. The peak heights in this regime scale as )3=2

q and the peak widths scale as )−1=2
q .

This limiting pair distribution is shown by dots. The peak heights reach the values
of ∼30 000, and the peaks are very narrow. The pair distribution outside the peaks
becomes extremely small. The isolines of g(r) for such a case are plotted in Fig. 8
(for the fcc crystal in the same plane as in Fig. 1 but in the quantum regime). For a
better presentation we have chosen the value )q =100. The isolines look more circular
than in the classical crystal (cf. Fig. 3). Note in passing that )q = 100 for a carbon
plasma is realized at the density of 5:8× 105 g cm−3, which is a typical density in the
cores of white dwarfs and the outer envelopes of neutron stars.
Fig. 5 shows the same pair distribution as in Fig. 4 but for a lower number density

of ions (for higher )q ˙ n−1=6). The main features are the same. Since the density is
lower, zero-point ion vibrations are less pronounced and the peak heights of the pair
distribution in the frozen quantum regime (the dotted line) are even higher, reaching
the values ∼105. The peak heights in the classical regime are solely determined by
the value of ) = )q* (not )q, see above). Thus the di>erence of peak heights in the
classical regime in di>erent 6gures is caused by the di>erence of the values of ) for
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Fig. 9. g(r) for a classical bcc Coulomb crystal at )= 800. Filled dots: MC with N = 1024 particles; open
dots: MC with N = 686; solid line: HL.

di>erent curves. Note that, contrary to )q, )˙ n1=3 decreases with decreasing density
(at a 6xed T ).
Fig. 6 is similar to Fig. 4, but for the bcc lattice (in the direction in which x=y= z,

at )q =1800). Fig. 7 corresponds to the same bcc crystal but for )q =3600; it is similar
to Fig. 5. One can see that the main features of the pair distributions for the bcc and
fcc lattices are the same.

4. Radial pair distribution

Now we focus on the properties of radial pair distribution function g(r). First con-
sider a classical Coulomb crystal, * → 0, for which extensive MC simulations have
been performed. The MC method is described, e.g., in Ref. [8].
Fig. 9 shows three sets of calculated g(r) data for )=800. The solid line represents

the HL curve. One can clearly observe the correlation peaks accumulated from all
directions of r. Particularly, they come from direction [1 1 1] displayed in Fig. 6 (the
appropriate g(r) in Fig. 6 is shown by the dashed line; it corresponds to the classical
crystal at )≈ 820). The peak heights of g(r) are naturally much lower than the peak
heights of g(r) because of averaging over directions of r.
Open circles in Fig. 9 exhibit MC data obtained with N = 686 particles over nearly

108 MC con6gurations already reported in Ref. [11]. The MC results for g(r) are
limited to half the size of the basic cell containing the N charges due to the bias
from particles in the image cell adjacent to the basic cell. For N = 686, the basic cell
length is about 14:2a. Accordingly, the MC g(r) for this simulation is valid only out
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Fig. 10. g(r) for a classical fcc Coulomb crystal at )=800. Filled dots: MC with N =864; open dots: MC
with N = 500; solid line: HL.

to r≈ 7:3a while g(r), given by the HL model, remains accurate as r → ∞. However,
as discussed in Ref. [11], at small particle separations, r . 1:5a, the HL model is less
accurate than MC (and MC data are available down to r & 1:1a). Filled circles in
Fig. 9 show our new MC g(r) obtained with N = 1024 particles. As expected, larger
N extends the validity of MC results from r≈ 7:3a to 8:3a.
Fig. 10 is similar to Fig. 9 but displays g(r) for fcc Coulomb crystal. We present the

results of our two MC runs obtained with N = 500 and 864. In the 6rst case, the MC
g(r) is accurate at r . 6:4a while in the second case it is accurate to about r . 7:7a.
The peak positions are di>erent from those in Fig. 9 due to di>erent lattice structure.
The peaks for fcc lattice are slightly more pronounced than those for bcc lattice.
Figs. 11–14 present HL g(r) calculated for bcc (Figs. 11 and 12) and fcc (Figs. 13

and 14) for two values of the density parameter: )q =1800 (Figs. 11 and 13) and 3600
(Figs. 12 and 14). Each 6gure shows the curves which correspond to four values of
the quantum parameter *. These 6gures can be directly compared with Figs. 4–7 which
display g(r) for the same values of )q and *. The behavior of g(r) in Figs. 11–14
is qualitatively similar. Under the same conditions (the same )q and *) the peaks of
g(r) for fcc are slightly higher than for bcc (in agreement with Figs. 9 and 10). The
solid curves (*= 0:1242) are very close to those for classical Coulomb crystals (with
) = 224 in Figs. 11 and 13, and ) = 447 in Figs. 12 and 14).
Comparing the solid, dashed, dot-and-dashed, and dotted curves in each 6gure one

can follow the evolution of g(r) with increasing *, i.e., decreasing temperature (at a
given density) during transition from a classical to a quantum crystal. The evolution
reRects the evolution of g(r) described in Section 3. In the course of this transition, the
peaks are seen to become higher and narrower which is associated with decreasing rms
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Fig. 11. g(r) for a bcc Coulomb crystal at )q = 1800 and four values of *=0:1242, 0.4548, 1.666, and 300.

Fig. 12. Same as in Fig. 11 but at )q = 3600.

amplitude, rT , of ion vibrations in a lattice. In the classical regime, the peak heights
evolve as

√
), and the peak widths as )−1=2. The highest *= 300 corresponds to the

purely quantum crystal. In the latter case g(r) is independent of T (or *) and describes
the “frozen” (T =0) pair distribution determined by zero-point lattice vibrations alone.
The peaks acquire their maximum heights and minimum widths (the heights behave as√
)q and the widths as )−1=2

q ). Outside the peaks g(r) is nearly zero.
If we decrease the number density of ions (equivalently, increase )q; cf. Figs. 11 and

12; and also Figs. 13 and 14) the quantum peaks become higher and narrower [ just
as for g(r)]. On the contrary, if we were to increase the number density of ions the
peaks in the quantum regime would become smaller and broader. At very high densities
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Fig. 13. g(r) for a fcc Coulomb crystal at )q = 1800 and * = 0:1242, 0.4548, 1.666, and 300.

Fig. 14. Same as in Fig. 13 but for )q = 3600.

they would start overlapping. We expect that, under these conditions, our consideration
would fail because the exchange e>ects which we ignore would become important. Note
that under these conditions zero-point ion vibrations may become suOciently strong to
prevent the appearance of crystal from Coulomb liquid (see, e.g., Ref. [3]).
Let us emphasize once more the simplicity of the HL model which allows us to

calculate g(r) and g(r) to very large r using very modest computer resources. For
instance, in Fig. 15 we present HL g(r) for fcc crystal at ) = 800 and two values of
* = 0:1 (classical regime) and 10 (quantum regime) evaluated up to r = 400a. One
can observe a pronounced peak structure even for r∼400a but the peak heights de-
crease gradually with r. The classical peaks are naturally higher and narrower. We
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fcc 

Fig. 15. Radial pair distribution function of an fcc crystal at )= 800 and *= 0:1 (thin lines) and 10 (thick
lines) in six intervals of r up to r = 400a.

have checked that in all the panels of Fig. 15 but the upper left panel (r6 5a) g(r) is
accurately reproduced assuming that distant ions vibrate independently in their
lattice sites (which is equivalent to v��(R) = 0; V0(R) = r2T =3 in the equations of
Section 2). Thus the pair distribution at large r is fairly simple. For the conditions
displayed in Fig. 15 the approximation of independent ion vibrations becomes very
accurate at r & 20a.

5. Conclusions

We have calculated the pair-distribution functions g(r) and g(r) in the HL approxi-
mation for bcc and fcc Coulomb crystals in a wide temperature range, from the classical
high-temperature regime (*�1) to the quantum low-temperature regime (*�1). In the
classical regime, we have compared the HL g(r) with the results of MC calculations
at di>erent numbers of ions N . We 6nd a very good agreement of MC and HL results
and show that increasing N used in MC runs makes this agreement better.
Using the HL g(r) and g(r), we have shown that with decreasing temperature the

peaks of the pair distribution become higher and narrower, and they 6nally “freeze” in
the quantum regime being solely determined by zero-point ion vibrations.
Let us stress that the quantum e>ects cannot be taken into account in a classical

MC scheme. In principle, they may be explored using PIMC but such studies require
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very powerful computers. At present, the HL model gives the only simple method
to explore ion correlations in quantum Coulomb crystals. Equally, the HL model is
the only one which gives accurate values of g(r) for any crystal-vibration regime,
classical or quantum. In addition, we would like to stress the simplicity of the HL
method. It allows one to study not only static correlations but also dynamical e>ects
[11] important in thermodynamics and kinetics of Coulomb crystals (Section 1) as well
as ion correlations in a crystal in the presence of a magnetic 6eld.
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