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ABSTRACT
We study eigenmodes of acoustic oscillations of high multipolarity l ∼ 100–1000 and high fre-

quency (∼100 kHz), localized in neutron star envelopes. We show that the oscillation problem

is self-similar. Once the oscillation spectrum is calculated for a given equation of state (EOS)

in the envelope and given stellar mass M and radius R, it can be rescaled to a star with any M
and R (but the same EOS in the envelope). For l � 300, the modes can be subdivided into the

outer and inner ones. The outer modes are mainly localized in the outer envelope. The inner

modes are mostly localized near the neutron drip point, being associated with the softening of

the EOS after the neutron drip. We calculate oscillation spectra for the EOSs of cold-catalyzed

and accreted matter and show that the spectra of the inner modes are essentially different. A

detection and identification of high-frequency pressure modes would allow one to infer M and

R and determine also the EOS in the envelope (accreted or ground state) providing a new,

potentially powerful method to explore the main parameters and internal structure of neutron

stars.
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1 I N T RO D U C T I O N

Neutron stars can be considered as resonators where various oscil-

lation modes can be excited. These oscillations are attracting much

attention because, in principle, they can be used to study the inter-

nal structure of neutron stars. Some of them (for instance, r modes)

can be accompanied by a powerful gravitational radiation. Because

neutron stars are relativistic objects, their oscillations must be stud-

ied in the framework of General Relativity. The relativistic theory

of oscillations was developed in a series of papers by Thorne and

co-authors (Thorne & Campolattaro 1967; Price & Thorne 1969;

Thorne 1969a,b; Campolattaro & Thorne 1970; Ipser & Thorne

1973). In particular, the rapid (∼1 s) damping of p modes with multi-

polarity l = 2 by gravitational radiation was demonstrated by Thorne

(1969a). An exact treatment of general-relativistic effects is compli-

cated, but in many cases it is possible to use the relativistic Cowling

approximation (McDermott, Van Horn & Scholl 1983). An analysis

of various oscillation modes and mechanisms for their dissipation

was carried out by McDermott, Van Horn & Hansen (1988). Let

us also note the review paper by Stergioulas (2003), which con-

tains an extensive bibliography. As a rule, one considers neutron

star oscillations with low values of l.
Although neutron stars are objects at the final stage of stel-

lar evolution, they can be seismically active for many reasons.

�E-mail: andr.astro@mail.ioffe.ru

Possible mechanisms for the generation of oscillations have been

widely discussed in the literature (see e.g. McDermott et al. 1988;

Stergioulas 2003, and references therein). Recently, much attention

has been paid to r modes – vortex oscillations that can be gener-

ated in rapidly rotating neutron stars and accompanied by powerful

gravitational radiation. In addition, oscillations can be excited in

neutron stars, for example, during X-ray bursts (nuclear explosions

in outermost layers of accreting neutron stars), bursting activity of

magnetars (anomalous X-ray pulsars and soft gamma-ray repeaters;

see e.g. Kaspi 2004) and glitches (sudden changes of spin periods)

of ordinary pulsars.

In this paper, we focus of high-frequency (∼100 kHz) pressure

oscillations (p modes) with high multipolarity l � 100 localized in

neutron star envelopes (crusts). In our previous paper (Chugunov

& Yakovlev 2005), we have studied these oscillations for l � 500.

In that case p modes are localized in the outer envelope (before the

neutron drip point, at densities ρ � 4 × 1011 g cm−3), where the

equation of state (EOS) of stelar matter is relatively smooth. Ac-

cordingly, the oscillation spectrum is simple and well established.

Notice that oscillations with high multipolarity l ∼ 600 at frequen-

cies ∼30 Hz from radio pulsars have possibly been observed by

radio astronomical methods (Clemens & Rosen 2004).

In the present paper, we extend our analysis to p modes with

lower l. These oscillations penetrate into the inner envelope of the

star, where the EOS undergoes considerable softening due to neu-

tronization and becomes more complicated (essentially different for

ground-state and accreted matter). We show that the neutron drip
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affects strongly the oscillation spectrum. If detected, this spectrum

would give valuable information on the EOS in neutron star en-

velopes and also on global parameters of neutron stars (their masses

and radii).

2 F O R M A L I S M

Following Chugunov & Yakovlev (2005), we study oscillations lo-

calized in a thin neutron star envelope. It is convenient to use the

approximation of a plane-parallel layer, and write space–time metric

in the envelope as

ds2 = c2 dt2 − dz2 − R2 (dϑ2 + sin2 ϑ dϕ2), (1)

where the local time t and local depth z are related to the

Schwarzschild time t̃ and circumferential radius r by

t = t̃
√

1 − RG/R, z = (R − r )/
√

1 − RG/R, (2)

r = R is the circumferential radius of the stellar surface, ϑ and ϕ are

spherical angles, RG = 2GM/c2 is the gravitation radius and M is

the gravitational mass of the neutron star. The metric (1) is locally

flat and allows us to use the Newtonian hydrodynamic equations for

a thin envelope with the gravitational acceleration,

g = G M

R2
√

1 − RG/R
. (3)

The pressure in the envelope is primarily determined by degener-

ate electrons and neutrons (in the inner envelope), being almost

independent of temperature T . Accordingly, we can use the same

zero-temperature EOS for the equilibrium structure of the envelope

and for perturbations. Employing this EOS, we neglect the buoyancy

forces and study p modes. The linearized hydrodynamic equations

(for a non-rotating star) can be rewritten as (see e.g. the monograph

by Lamb 1975)

∂2φ

∂t2
= c2

s �φ + g · ∇φ, (4)

where φ is the velocity potential and c2
s ≡ ∂P 0/∂ρ 0 is the squared

sound speed. The velocity potential can be presented in the form

φ = eiωt Ylm(ϑ, ϕ) F(z), (5)

where ω is an oscillation frequency, and Y lm(ϑ , ϕ) is a spherical

function (see e.g. Varshalovich, Moskalev & Khersonskii 1988).

An unknown function F(z) obeys the equation

d2 F

dz2
+ g

c2
s

dF

dz
+

(
ω2

c2
s

− l(l + 1)

R2

)
F = 0. (6)

The boundary condition at the stellar surface is F(0) = 0. It comes

from the requirement of vanishing Lagrange variation of the pres-

sure at the surface. The formal condition limz→∞ F(z) = 0 in the

stellar interior should be imposed to localize oscillations in the en-

velope. Of course, the actual variable z is finite and the real depth of

oscillation localization will be controlled in calculations. The EOS

of matter in neutron star envelopes contains a sequence of first-order

phase transitions associated with changes of nuclides with growing

density. These phase transitions are relatively weak (the density

jumps do not exceed 20 per cent). We should add boundary con-

ditions at all phase transitions within the envelope. These are two

well-known conditions at a plain boundary of two liquids (Lamb

1975). The first condition can be written as

F ′
1(z) = F ′

2(z). (7)

It ensures equal radial velocities at both sides of the boundary. The

second condition is

F1 = ρ2

ρ1

F2 +
(

ρ2

ρ1

− 1

)
g

ω2
F ′

1. (8)

It comes from the requirement of pressure continuity at the bound-

ary. Note that the boundary conditions (7) and (8) provide a source

of buoyancy which leads to the density discontinuity of g modes

(see e.g. McDermott 1990).

Oscillations of a plane-parallel layer for a polytropic EOS (P ∝
ρ1+1/n , n being the polytropic index) were studied analytically by

Gough (1991). In this case, the squared sound speed is c2
s = g z/n.

The solution for eigenfrequencies is

ω2
k = g

R

√
l(l + 1)

(
2k

n
+ 1

)
, (9)

and eigenmodes are given by

Fk(z) = exp

(
−

√
l(l + 1)

z

R

)
L (n−1)

k

(
2
√

l(l + 1)
z

R

)
, (10)

where L (n−1)
k (x) is a generalized Laguerre polynomial (Abramovitz

& Stegun 1971), and k = 0, 1, . . . is the number of radial nodes.

Note that the mode with k = 0 does not have any radial nodes;

its properties are independent of the polytropic index n. This mode

corresponds to the vanishing Lagrangian variation of the density

(incompressible motion). Adding the condition �φ = �U = 0 to

equation (4), one can easily show that the mode with the frequency

ω2
0 = g

R

√
l(l + 1) (11)

and the eigenfunction F 0(z), defined by equation (10), is the proper

mode for a wide class of EOSs. Note that the boundary conditions (7)

and (8) are automatically satisfied for this mode, and it is continuous

at phase transitions. The oscillation frequency redshifted for a distant

observer is

ω̃2
0 =

(
1 − Rg

R

)
g

R

√
l(l + 1)

= G M

R3

√
1 − RG/R

√
l(l + 1).

(12)

The frequency ω0 will be used to normalize eigenfrequencies of

other p modes. The number of radial nodes k will be used to enu-

merate the modes.

2.1 Self-similarity and scaling

Let us use the equation of hydrostatic equilibrium dP/dz = ρg
and transform equation (6) taking the equilibrium pressure P as an

independent variable,

d2 F

dP2
+ 2

ρ c2
s

dF

dP
+ 1

ρ2

(
ω2

g2 c2
s

− l(l + 1)

g2 R2

)
F = 0. (13)

The boundary conditions (7) and (8) can be written as

ρ1

dF1

dP
= ρ2

dF2

dP
, (14)

F1 = ρ2

ρ1

F2 +
(

ρ2

ρ1

− 1

)
g2

ω2
ρ1

dF1

dP
. (15)

Therefore, equation (13) with the boundary conditions (14) and

(15) and with regularity requirement can be treated as the equa-

tion for an eigennumber λ = ω2/g2 containing the scaling parameter
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ζ = √
l (l + 1)/(gR) (with ζ ≈ l/(gR) for l � 1). Accordingly, the

eigenfrequencies can be written as

ω2
k = g2 gk(ζ ) = ω2

0 fk(ζ ). (16)

Here, gk(ζ ) and f k(ζ ) are functions which can be calculated nu-

merically. They are universal for all neutron stars with a given EOS

in the envelope. The velocity potentials Fk are also universal func-

tions of P. Therefore, p-mode oscillations in thin stellar envelopes

are self-similar (owing to the plane-parallel approximation) and can

easily be rescaled to a neutron star with any radius and mass. In

principle, this can be used to determine R and M (see Section 3.2).

3 N U M E R I C A L R E S U LT S

Numerical results are presented for a ‘canonical’ neutron star model,

with the mass M c = 1.4 M and the radius R c = 10 km. For this

model, we have gc ≈ 2.42 × 1014 cm s−2,

ω0 ≈ 1.56 × 105[l(l + 1)/104]1/4 s−1 (17)

and (for a distant observer)

ω̃0 = ω0

√
1 − RG/R ≈ 1.19 × 105[l(l + 1)/104]1/4 s−1. (18)

Oscillation frequencies have been determined via a series of iter-

ative trials, checking the coincidence of the mode number and the

number of radial nodes.

3.1 Equations of state

We employ two models of matter in neutron star envelopes, the ac-

creted and ground-state matter. For the accreted matter, we use the

EOS of Haensel & Zdunik (1990) (hereafter HZ). It was derived by

following transformations of atomic nuclei (beta captures, emission

and absorption of neutrons, pycnonuclear reactions) in an accreted

matter element with increasing the pressure. The EOS was calcu-

lated for the densities from ρ = 3.207 × 107 to 1.462 × 1013 g cm−3.

For lower densities, we have taken the matter composed of 56Fe

and the EOS of degenerate electrons with electrostatic corrections.

For higher densities, we use the EOS of the ground-state matter

presented by Baym, Pethick & Sutherland (1971) (hereafter BPS)

because, as remarked by Haensel & Zdunik (1990), the HZ EOS

becomes very similar to the BPS EOS at ρ > 1013 g cm−3.

We have also considered envelopes composed of the ground-state

(cold catalyzed) matter. In the outer envelope we use the EOS of

Haensel & Pichon (1994) (hereafter HP) and the recent EOS of

Rüster, Hempel & Schaffner-Bielich (2006; hereafter RHS). For the

inner envelope, we employ the EOS of Negele & Vautherin (1973).

Phase transitions in these EOSs have been treated carefully us-

ing the boundary conditions (7) and (8) at any phase transition. For

comparison, we have also employed the model of the outer enve-

lope composed of ground-state matter with a smoothed composition

(the smooth composition model – SCM). In the latter case we have

included only a large density jump at the neutron drip boundary

between the inner and outer envelopes.

The squared sound speed c2
s as a function of depth z for all these

EOSs is shown in Fig. 1. The solid line is for the accreted envelope;

the dashed, dotted and dash-and-dot lines are for the HP, RHS and

SCM EOSs of the ground-state matter. The different versions of

the ground-state EOS show approximately the same sound speed

profiles, but the profile in the accreted envelope is significantly dif-

ferent.

Figure 1. The squared sound speed c2
s as a function of depth z. Solid line is

for an accreted envelope. The dashed, dotted and dash-and-dotted lines are

for the HP, RHS and SCM EOSs of the ground-state matter.

The depth of the accreted envelope (up to the density 2.004 ×
1014 g cm−3, which is the largest density in the envelope, where the

atomic nuclei are present, for the BPS EOS) is z ≈ 1150 m. For all

models of the ground-state matter, the largest density in the envelope

has been taken ≈1.7 × 1014 g cm−3; the envelope depth is z ≈ 985 m.

3.2 Eigenfrequencies

Figs 2 and 3 show squares of dimensionless eigenfrequencies ω2
k/ω

2
0

versus multipolarity l for accreted and ground-state envelopes of the

canonical neutron star. Because of the scaling (16) the figures can

be easily transformed to a star with any gravity g and radius R by

changing scale of the l axis by a factor of gR/(gc R c).

For any envelope, the modes with l � 300 can be subdivided into

two groups, with a pronounced linear dependence and with a weak

dependence of ω2
k/ω

2
0 on l. As will be shown in Section 3.4, the

modes of the first type (the inner modes, shown by thicker lines in

Fig. 2) are localized in the vicinity of the neutron drip point, while the

modes of the second type (the outer modes) are localized in the outer

envelope. In Figs 2 and 3 one can see a number of avoided crossings.

When passing through a quasi-crossing point (with growing l), an

Figure 2. Squared normalized eigenfrequencies ω2
k/ω

2
0 versus multipolar-

ity l for the accreted envelope of the canonical neutron star. The numbers

next to curves indicate the number of radial nodes. Thin parts of the curves

correspond to the outer modes and (for low l) modes which a spread over

the entire envelope, while thick segments refer to the inner modes.
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Figure 3. Same as in Fig. 2, but for the envelope composed of the ground-

state matter (the inner modes are not emphasized). Lines are for the HP EOS;

crosses ‘×’ are for the RHS EOS; crosses ‘+’ are for the SCM.

inner mode gains an additional radial node, but an outer mode loses

one.

Let us consider the outer modes. The eigenfrequencies are the

same (within ∼1 per cent) for all ground-state EOSs (see Fig. 3). For

the accreted envelope, eigenfrequencies are larger because the EOS

is stiffer. With decreasing l, oscillations penetrate deeper into the

outer envelope, where the EOS is softer because electrons become

relativistic, and because they undergo beta captures. It leads to a

gradual decrease of ω2
k/ω

2
0. As in the model with the polytropic EOS,

given by equation (9), separations between squares of neighbouring

dimensionless eigenfrequencies ω2
k/ω

2
0 are approximately constant

for a fixed l. The weak decrease of separations with the growth of

k is due to the penetration of oscillations into deeper layers of the

star, where the EOS is softer. The latter effect is more pronounced

for the ground-state matter owing to a stronger softening of the

EOS. Finally, at l ∼ 1000 the outer p modes are localized in the

outer layers of the outer envelope, where the matter is composed of
56Fe nuclei for both accreted and ground-state EOSs. Accordingly,

eigenfrequencies become nearly equal.

Naturally, the oscillation frequencies of outer modes with l �
500 for the ground-state envelope are the same as calculated by

Chugunov & Yakovlev (2005).

To demonstrate explicitly that inner modes are caused by the neu-

tron drip in the inner envelope, in Fig. 4 we present eigenfrequencies

for a model envelope without any neutron drip. Here we employ the

Figure 4. Same as in Fig. 2, but for a model envelope in which the outer

envelope is composed of the ground-state matter and the inner envelope is

composed of 116Se.

RHS EOS in the outer envelope but assume that the inner envelope

is composed of 116Se ions (the last element at the outer envelope)

and electron gas (no free neutrons). The oscillation spectrum does

not contain any inner modes. A small decrease of ω2
k/ω

2
0 for 200 �

l � 500 is produced by the softening of the EOS at the bottom of

the outer envelope. The growth of frequencies at l ∼100 is caused

by the penetration of oscillations into the inner envelope, where our

model EOS is polytropic (with the index n = 3). Accordingly, os-

cillation frequencies tend to the values provided by the polytropic

model (9).

3.3 Inferring M, R and the crustal EOS
from oscillation spectrum

If detected, outer modes would give us ω̃0, and therefore

M R−3
√

1 − RG/R; see equation (12). A detection of the only

one fundamental mode (k = 0) would be sufficient to determine

M R−3
√

1 − RG/R. A detection of several outer modes (with dif-

ferent l and/or k) would confirm and strengthen this determination.

Our calculations show that for the inner modes the ratio ω2
in/ω

2
0 is

a linear function of l. Using the scaling relation (16), we can present

this linear dependence in the form

ω2
in

/
ω2

0 = A + B l, B = β/(g14 R6). (19)

Here, g14 is the surface gravity in units 1014 cm s−2, R6 = R/

106 cm = R/10 km, while A and β are dimensionless constants

determined by the EOS in a neutron star envelope.

For the canonical neutron star with the ground-state envelope, we

obtain A = 0.75 and B = 0.0032 in the case of inner modes with

lowest frequencies. For the same star with the accreted crust we have

A = 0.65 and B = 0.0073. The values of B allow us to determine β.

In this way we obtain

A = 0.75, β = 0.0013 for ground-state crust; (20)

A = 0.65, β = 0.0030 for accreted crust. (21)

Hence, the difference between the ground-state and accretion en-

velopes is quite pronounced in oscillation spectra.

Therefore, if several (minimum two) inner modes could be de-

tected in addition to outer modes, their frequencies could be fitted by

a function (19) and the values of A and B could be determined. An ac-

curate determination of A would enable one to distinguish between

the ground-state and accretion envelopes. The value of B would give

then g R. Combining this g R with the value g R−1
√

1 − RG/R, de-

termined from the detection of the outer modes, one would get a

simple system of two equations for two unknowns, M and R. Thus,

a detection of one outer mode and several inner ones could in princi-

ple enable one to discriminate between the ground-state and accreted

envelopes and determine neutron star mass and radius.

3.4 Eigenmodes

Figs 5–8 show profiles of the angle-averaged energy density of os-

cillations as a function of z. The root-mean-square amplitude of

radial displacements of the stellar surface has been set equal to 1 m.

The subscript of ε indicates the number of radial nodes. The ver-

tical dotted line marks the boundary between the inner and outer

envelopes (z ≈ 432 m for the accreted envelope, and z ≈ 364 m for

all ground-state envelopes of the canonical neutron star).

Fig. 5 depicts eigenmodes with l = 100 for the accreted envelope.

The modes are spread over the entire envelope; their subdivision into

the outer and inner modes is not obvious. However, some traces of
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Figure 5. Angle-averaged energy density of oscillations for modes with l
= 100 in the accreted envelope. The subscript of ε indicates the number of

radial nodes. The root-mean-square amplitude of radial displacements at the

stellar surface is 1 m. The vertical dotted line shows the boundary between

the inner and outer envelopes.

Figure 6. Same as in Fig. 5 for modes with l = 400 in the accreted envelope.

two mode types are visible. The mode with one radial node (the

dashed line), whose frequency belongs to the branch of the outer

modes, is primarily localized in the vicinity of the neutron drip

point. However, other modes do not demonstrate this feature. The

effects of phase transitions are relatively small (∼20 per cent) and

only slightly noticeable in Fig. 5. They are local and do not change

global (on scales of �20 m) energy-density profiles.

Fig. 6 shows eigenmodes with l = 400 for the accreted envelope.

This value of l is very close to the avoided crossing point for the

modes with four and five radial nodes (see Fig. 2). The subdivision

into the outer and inner modes is clear – the modes with k = 0, 1, 2,

3, 5, 6 radial nodes are mostly localized in the outer envelope, but the

energy of the mode with k = 4 is concentrated in the outer part of the

inner envelope. This subdivision is the same as in Section 3.2 (see

Fig. 2). The energy-density profiles of the fourth and fifth modes are

very similar at z � 250 m, but at z ∼500 m the energy densities differ

by more than two orders of magnitude! The outer modes ‘feel’ the

lowering of the sound speed in the outer layers of the inner envelope

(see Fig. 1) and increase their energy density in this region. However,

the increase is not so large as for the inner modes. The signatures of

phase transitions are very small (∼10 per cent) and hardly visible in

Fig. 6. They are local and do not change energy-density profiles on

scales �20 m. Notice that the inner modes do not vanish exactly at

the stellar surface. Moreover, they look similar to the outer modes

in the very surface layers (and can be potentially observed along

Figure 7. Same as in Fig. 5 for modes with l = 100 in the ground-state

envelope.

with the outer modes) but they have large amplitudes deeper in the

neutron star envelope.

Figs 7 and 8 are plotted for the ground-state envelope with the

RHS EOS. The results for the HP and SCM are qualitatively the

same.

Fig. 7 depicts eigenmodes with l = 100. The modes are localized

in the entire envelope and cannot be subdivided into the outer and

inner ones. The traces of these two types of modes are weaker than

for the accreted envelope (see Fig. 5). The signatures of phase tran-

sitions in the outer envelope are small � 10 per cent and have scales

∼10 m. They are noticeable only for the modes with a few number

of radial nodes. Many modes show large (∼50 per cent) jumps of

the energy density at the neutron drip point.

Fig. 8 shows eigenmodes with l = 500. This value of l is close to

the avoided crossing point for modes with k = 2 and 3 and with k =
5 and 6 (see Fig. 3). The modes can obviously be subdivided to the

two types. The modes with k = 0, 1, 3, 4, 5 are localized in the outer

envelope; the energy of the modes with k = 2 and 6 is concentrated

near the neutron drip point. The subdivision of modes is the same as

suggested in Section 3.2 on the basis of Fig. 3. The energy profiles

of the second and third modes are very close for z � 200 m, but for

z ∼420 m, the energy density differs by more than three orders of

magnitude. Qualitatively the same feature is demonstrated by the

fifth and sixth modes. The outer modes ‘respond’ to the lowering of

the sound speed after the neutron drip point by increasing the energy

density in this region. This increase is greater for the second and

fifth modes whose frequencies are close to the frequencies of the

Figure 8. Same as in Fig. 5 for modes with l = 500 in the ground-state

envelope.
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inner modes. However, it is not so large as for the inner modes. The

signatures of phase transitions in the outer envelope are extremely

small (∼5 per cent) and are almost invisible in Fig. 8. The scales

of such features are ∼1 m. The large phase transition at the neutron

drip point produces the signature with the same properties.

4 C O N C L U S I O N S

We have studied high-frequency pressure oscillations which are lo-

calized in the envelopes of neutron stars composed of the accreted

or ground-state matter.

Our main conclusions are as follows.

(1) The oscillations are almost insensitive to various modifica-

tions of the EOS for the ground-state matter (Section 3.2). All EOSs

we have used (HP, RHS, SCM) give the same oscillation spectrum.

(2) The neutron drip and associated softening of the EOS in the

inner envelope do not affect strongly the spectrum of the well-known

(outer) oscillation modes which are localized predominantly in the

outer envelope (Section 3.2).

(3) However, the neutron drip leads to the appearance of inner

oscillation modes localized mostly near the neutron drip point (Sec-

tion 3). The spectrum of these modes is sensitive to the EOS in the

envelope (accreted or ground state).

(4) The p mode oscillation problem is self-similar (in the plane-

parallel approximation). Once the problem is solved for one stellar

model, it can easily be rescaled to neutron star models with any mass

and radius (but the same EOS in the envelope; see Section 2.1).

(5) A detection and identification of one outer mode and several

inner modes would enable one, in principle, to discriminate between

the ground-state and accreted envelope and determine neutron star

mass and radius (Section 3.3). For example, a detection of the funda-

mental mode with l = 900 at the frequency 74 kHz and of two inner

modes with l = 300 and 900 at 56 and 140 kHz, respectively, would

indicate a canonical neutron star with the ground-state envelope.

Therefore, high-frequency pressure modes are potentially good

tools to explore the physics of matter in neutron star envelopes

and to determine masses and radii of neutron stars. The oscillation

frequencies could be detected by radio-astronomical methods very

precisely. A detailed analysis of pulse shapes of some radio pulsars

reveals that oscillations with large multipolarity are possibly excited

there (Clemens & Rosen 2004) but their frequencies are ∼30 Hz, so

that they are not high-frequency p modes we discuss here.

A search for high-frequency p modes could be useful. High-

multipolarity p modes do not damp very quickly because they do

not produce any powerful gravitational or electromagnetic emission

(see e.g. Chugunov & Yakovlev 2005). They are robust because they

are relatively independent of the thermal state of the star, and they

should not be strongly affected by neutron star magnetic fields. The

inner p modes, localized in the inner envelope, could be easily trig-

gered by pulsar glitches, which are thought to occur just in inner

envelopes of pulsars. Chugunov & Yakovlev (2005) studied the dis-

sipation of p modes localized in the outer envelope; this dissipation

is mainly produced by the shear viscosity. It may be enhanced by

thin viscous layers near numerous nuclear phase transitions. The

viscosity in these layers can be diffusive or turbulent. Note that fun-

damental modes do not produce viscosity layers because they pass

phase transitions without velocity discontinuities (see Section 2).

Their dissipation is not enhanced by phase transitions.

Finally, p modes in neutron star envelopes are relatively insen-

sitive to the EOS and composition of neutron star cores. However,

these modes can be useful to discriminate between ordinary neutron

stars and strange stars with crust. The latter stars are thought to con-

tain extended cores composed of strange quark matter. Nevertheless,

a core is assumed to be surrounded by an envelope of normal matter

(see e.g. Zdunik 2002), so that a strange star with the crust may look

like an ordinary neutron star from outside. The density of the normal

matter in a strange star does not exceed the neutron drip density. The

pressure modes in the envelopes of such stars should easily ‘feel’

underlying dense quark matter, and the oscillation spectrum would

reflect the presence of the quark core. We intend to consider this

effect in a future publication.
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