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Generalized Linear Mixing Rule for Classical Coulomb Mixtures
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It is shown that the Coulomb energy U of fully ionized ionic mixture can be written as a sum over partial
contributions of ion species j: U = T

∑
j Nju(Γj , yj) (generalized linear mixing rule). In contrast to the tra-

ditional linear mixing rule ULM = T
∑

j NjuOCP(Γj), applicable for strong coupling, the partial contribution
function u depends not only on Γj , but on an additional parameter yj = (rD/r

OCP
D )2 also. Here rD and rOCP

D

are Debye radiuses in the mixture and in the one component plasma at coupling parameter Γj , correspondingly.
The parameter yj does not depend on a specific composition of the mixture, but on the Debye radius rD only,
making function u(Γj , yj) universal. The generalized linear mixing rule can be applied at any coupling param-
eter, if ionic mixture is not crystallized. It reproduces results of the Debye-Hückel theory at weak coupling and
traditional linear mixing rule at strong coupling. It can be easily applied to the complicated mixtures, composed
of a large number of ion species. Since yj is temperature independent, the Coulomb contribution to Helmholtz
free energy of the mixture can also be presented in a form of generalized linear mixing rule.
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1 Introduction and main equations

In this paper we discuss strongly coupled classical Coulomb mixtures composed of a set of ion species with
charges Zje immersed into neutralizing nonpolarisable background of electrons. Let nj and Nj to be number
density and total number of ions of type j, correspondingly. The electroneutrality fix electron number density
ne =

∑
j Zjnj . Equation of state (EOS) of such a system at gaseous and liquid phases was recently fitted

to results of Monte Carlo (MC) and hypernetted-chain (HNC) simulations with high accuracy [1] (hereafter
PCCDWR EOS). But this fit is somewhat artificial and more physical approximations may be useful. For this
aim we suggest representation of EOS in form of generalized linear mixing (GLM) rule for Coulomb energy of
the system:

U = T
∑
j

Nju(Γj , yj). (1)

Here u(Γj , yj) is partial contribution function, which is universal for all Coulomb mixtures and depend just on
two parameters: effective coupling parameter of correspondent component Γj = Z2

j e
2/(ajT ) and composition

dependent parameter

yj =

(
rD

rOCP
D

)2

=
3Γj r

2
D

a2j
=

Zj 〈Z〉
〈Z2〉 . (2)

Here Debye radius rD = [4π
∑

njZ
2
j e

2
j/T ]

−1/2 and rOCP
D = aj/

√
3Γj is Debye radius in one component

plasma (OCP) at coupling parameter Γj . In addition, aj = Z
1/3
j ae = Z

1/3
j (4πne/3)

−1/3. For future discussion
let us introduce number fractions of each ion type xj = Nj/N , total number of ions N =

∑
j Nj and the mean

coupling parameter of the mixture Γ =
∑

j xjΓj = 〈Z5/3〉e2/(aeT ).
The idea of GLM representation comes from well known (traditional) linear mixing (LM) rule (see [2–5], for

example), which suggest U to be equal to ULM = T
∑

j NjuOCP(Γj).
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It is applicable for strong coupling Γ � 1. Here, the energy uOCP(Γj) is temperature normalized OCP
Coulomb energy per one ion at coupling parameter Γj . This function is well discussed and we will apply approx-
imation suggested at [6] with parameter set fitted to MC results of paper [7]. At GLM representation the partial
contribution function u depends not only on Γj , but on an additional parameter yj providing thus possibility to
describe mixtures at weak coupling. Really, at Γ � 1 the Coulomb energy of the mixture can be calculated
within Debye-Hückel theory. It gives

UDH = −
∑
j

Nj

Z2
j e

2

rD
= −

∑
j

Nj

(
3Γ3

j

4 yj

)1/2

. (3)

This formula agree with GLM, but can not be written in form of LM rule.
Two previous attempts to generalize linear mixing rule should be mentioned. Rosenfeld [3] suggest repre-

sentation of the EOS of Coulomb mixture which correspond to GLM partial contribution function u(Γj , yj) =
yjuOCP(Γj/yj). It well agree with DH limit, but, unfortunately not enough accurate at strong coupling. At [4]
he generalize linear mixing rule to a case of strongly coupled Yukawa systems. Here we concentrate on pure
Coulomb systems only, and treat u(Γj , yj) as a free function with two restrictions: (a) to agree with LM at
Γ � 1, partial contribution functions u(Γj � 1, yj) ≈ uOCP(Γj) being almost independent on yj ; (b) to agree

with DH theory at weak coupling Γ � 1, one should have u(Γj → 0, yj) ≈ − [
3Γ3

j/(4 yj)
]1/2

. Our aim is to
check applicability of GLM representation of EOS at intermediate coupling by fitting of u(Γj , yj) function. The
accuracy achieved in this fitting is discussed in Sec. 3.

Since parameters yj do not depend on the temperature, the possibility of GLM representation of Coulomb
energy (1) guarantee accuracy of GLM representation for the Coulomb contribution to Helmholtz free energy F :

F = T
∑
j

Njf(Γj , yj) (4)

with f(Γj , yj) =
∫ Γj

0
u(Γ′j , yj)/Γ

′
j dΓ

′
j .

2 Properties of the generalized linear mixing rule

Let us discuss binary ionic mixtures (BIM) and demonstrate two important properties of GLM representation
of EOS: (1) Arbitrary EOS can not be presented in GLM form. So possibility of GLM representation is an
important feature of EOS; (2) Just the same GLM EOS can be presented by different functions u(Γj , yj) [see Eq.
(8)]. However, for y = 1 this function is well defined: u(Γj , 1) = uOCP(Γj).

It is easy to show that composition of binary mixture (x1, x2 = 1− x1, and Z2/Z1) is unambiguously defined
by a couple of parameters (y1, y2):

Z2

Z1
=

y2
y1

, x1 =
y2 (y2 − 1)

(y2 − y1) (y2 + y1 − 1)
. (5)

The conditions 0 < x1 < 1 and 0 < x2 < 1 restricts available parameter space to 0 < y1 < 1 and 1 < y2. Here
we suppose Z1 < Z2 for definiteness. So, we can characterize BIM by a set of three numbers: (Γ1, y1, y2).

Generalized linear mixing rule for BIM can be written in form:

u(Γ1, Z2/Z1, x1, x2) = x1(y1, y2)u(Γ1, y1) + [1− x1(y1, y2)]u(Γ1 (y2/y1)
5/3, y2). (6)

Here u(Γ1, Z2/Z1, x1, x2) = U/(T
∑

j Nj) and U is the Coulomb energy of this mixture.
Let us fix three parameters Γ1, y1 and y2 (y1 < 1 < y2) and add to them two arbitrary numbers y3 < 1 and

y4 > 1. This set can be applied to define four different binary mixtures, which correspond to the following triples
of parameters: (Γ1, y1, y2), (Γ1, y1, y4), (Γ3, y3, y2), (Γ3, y3, y4). Here Γ3 = Γ1 (y3/y1)

5/3. Let us write a
generalized linear mixing rule for each of these binary mixtures:

u(Γ1, y2/y1, x1(y1, y2), x2(y1, y2)) = x1(y1, y2)u(Γ1, y1) + x2(y1, y2)u(Γ2, y2),

u(Γ1, y4/y1, x1(y1, y4), x2(y1, y4)) = x1(y1, y4)u(Γ1, y1) + x2(y1, y4)u(Γ4, y4),

u(Γ3, y2/y3, x1(y3, y2), x2(y3, y2)) = x1(y3, y2)u(Γ3, y3) + x2(y3, y2)u(Γ2, y2), (7)
u(Γ3, y4/y3, x1(y3, y4), x2(y3, y4)) = x1(y3, y4)u(Γ3, y3) + x2(y3, y4)u(Γ4, y4).
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Here Γj = Γ1 (yj/y1)
5/3, x2(y1, y2) = 1 − x1(y1, y2) and x1(y1, y2) is given by Eq. (5). If, the BIM EOS

fBIM(Γ1, Z2/Z1, x1, x2) is known, Eqs. (7) can be treated as a system of four equations on the values of partial
contribution function u at correspondent points [u(Γ1, y1), u(Γ2, y2), u(Γ3, y3), u(Γ4, y4)]. However, as it can
be shown analytically, this system is degenerate for any set of values yj , j = 1..4. As a result, Eq. (7) can not be
solved in a case of arbitrary equation of state. So, the first statement has been proofed and an arbitrary equation
of state can not be presented in form of generalized linear mixing rule.

Let us assume, that we find GLM representation of EOS by partial contribution function u0(Γj , yj), which
is enough accurate for Coulomb mixtures and we accept it. But degeneracy of system (7) suggest what choice
of partial contribution function u(Γj , yk) is not unique — exactly the the same GLM EOS can be presented by
different partial contribution functions u(Γj , yj). Really, let us take an arbitrary number ỹ �= 1 and an arbitrary
one parameter function δu(Γ̃) and perform following renormalization of the partial contribution function:

u(Γj , yj) = u0(Γj , yj) + δu

(
Γj

ỹ5/3

y
5/3
j

)
yj (1− yj)

ỹ (1− ỹ)
. (8)

As can be easily shown, such function u(Γj , yj) correspond to exactly the same EOS, as initial u0(Γj , yj). Note,
the OCP correspondent partial function u(Γ, 1) is well defined u(Γ, 1) = uOCP(Γ) and can not be changed by
rescaling relation (8). It is important to stress, that scaling relation (8) conserve EOS not only for BIM, but for
multicomponent systems with arbitrary number of constituents.

a) b)

Fig. 1 The relative a) and absolute b) correction to linear mixing rule. See text for details.
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3 Numerical results

In this section we present numerical results to illustrate accuracy which can be achieved within GLM representa-
tion of EOS.

Figure 1 demonstrates correction to linear mixing rule ΔU = U − ULM for a large set of BIMs. Fig.1a
represent relative correction ΔU/ULM. A normalized value of absolute correction Z1ΔU/(N Z2 T ) is shown on
panel b. Solid lines correspond to PCCDWR EOS [1] and dashed lines to GLM representation. Dots on both
panels are MC data for BIM Coulomb energy from [5]. The mixture parameters are shown on each plot (the
Z2/Z1 ratio is fixed at each column, while x1 is constant in rows).

The agreement between PCCDWR EOS and GLM representation, shown on the figures, seems to be accept-
able. Typical difference between them is the same order of magnitude as deviations between MC calculations of
Coulomb energy of OCP given at [7] and [8]. We should stress that possibility even better GLM representation
of EOS can not be excluded.

4 Conclusions

A generalized linear mixing rule (Eq. 1) is suggested to describe EOS of classical Coulomb mixtures in gaseous
and liquid phases. The following properties of GLM are shown: (1) Possibility of GLM representation is a feature
of the specific class of EOS (see Sec. 2); (2) PCCDWR EOS [1] can be represented in GLM form very accurately
(see Fig. 1); (3) The partial contribution function u(Γ1, y1) is not unique for given GLM EOS, but can be rescaled
according to Eq. (8); (4) GLM rule can be applied not only for Coulomb energy, but for the Coulomb contribution
to Helmholtz free energy also [see Eq. (4)].

The GLM rule was introduced in this paper just on empirical basis, but I hope that it have a simple theoretical
motivation which can be important for understanding of the strongly coupled plasma physics.
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