
ISSN 1063-7737, Astronomy Letters, 2012, Vol. 38, No. 1, pp. 25–44. c© Pleiades Publishing, Inc., 2012.
Original Russian Text c© A.I. Chugunov, 2012, published in Pis’ma v Astronomicheskĭı Zhurnal, 2012, Vol. 38, No. 1, pp. 28–47.

Electrical Conductivity of the Neutron Star Crust at Low Temperatures
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Abstract—The electrical conductivity of the neutron star crust at low temperatures is calculated by taking
into account the mixing of the electron wave functions due to the interaction with the crystal lattice of
atomic nuclei. We show that the previously existed model of exponential reduction of the electron–ion
scattering rate can lead to an overestimation of the electrical conductivity by several orders of magnitude.
We propose a simple interpolation formula for use in applications that joins the previously known results
of calculating the electrical conductivity at high temperatures with the low-temperature asymptotics found
here.
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1. INTRODUCTION

Knowing the electrical conductivity of neutron star
crusts is important in modeling many of the processes
in neutron stars, such as the ohmic decay of the mag-
netic field and the related crustal heating (see, e.g.,
Pons et al. 2009; Popov et al. 2010), the current prop-
agation in the neutron star crust through the current-
induced pulsar spin-down mechanism (see, e.g., Be-
skin and Nokhrina 2007), and the decay of magnetic
field inhomogeneities important for the gamma-ray
emission from pulsars (Barsukov et al. 2006, 2007,
2009).

Electrons are the main charge carriers in a neutron
star crust, while ions are their main scatterers (see,
e.g., Potekhin et al. 1999). At low temperatures
considered here, ions form a crystal lattice and it is
convenient to describe the electron–ion scattering in
terms of phonon emission and absorption. These
processes are also called electron–phonon scattering.
In this paper, for simplicity, the electrical conductivity
is calculated by assuming the absence of a magnetic
field and is considered to be isotropic.

Up to now, reliable calculations of the electron
transport coefficients have been performed for fairly
high temperatures (Flowers and Itoh 1976; Baiko
and Yakovlev 1995, 1996; Baiko et al. 1998; Potekhin
et al. 1999; Chugunov and Yakovlev 2005), when the
electron–phonon scattering is efficient on the entire
Fermi surface and the electrons may be considered to
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be almost free. In this case, the so-called electron–
phonon Umklapp processes make a major contribu-
tion to the scattering. In these processes, the recip-
rocal lattice vector is present in the quasi-momentum
conservation law (see, e.g., Ziman 1960), which leads
to a significant change in the direction of the electron
velocity during scattering. At low temperatures T ,
only the short-wavelength acoustic photons with
fairly low frequencies ω ∼ kBT/�, where � is the
Planck constant and kB is the Boltzmann constant,
have nonexponentially small occupation numbers.
Therefore, the electron quasi-momentum changes in
Umklapp processes almost exactly by the reciprocal
lattice vector g. Together with the energy conser-
vation law, this restricts the scattering region to
the neighborhoods of the boundaries of the Brillouin
zones, where the electron states are significantly
distorted by the interaction with the crystal lattice and
gaps appear in the dispersion relation for electrons
at the boundaries themselves (see, e.g., Raikh and
Yakovlev 1982; Ziman 1960). Such a distortion leads
to reduction of the electron scattering in Umklapp
processes that has been previously taken into account
only approximately—an exponential reduction of the
scattering rate at low temperature leading to an
exponential growth of the electrical conductivity was
introduced on the basis of a simplified model (see,
e.g., Gnedin et al. 2001). Such freezing actually takes
place in many terrestrial conductors in which the
Fermi surface does not intersect with the boundaries
of the Brillouin zones and, hence, there exists a
minimum wave vector of the phonon that can be
involved in the Umklapp process (see, e.g., Fig. 117
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in the book by Ziman (1960)). In contrast, the
Fermi surface in a neutron star crust intersects with
the boundaries of the Brillouin zones. This is due
to the large number of free electrons per atomic
nucleus. Accordingly, phonons with an arbitrarily low
momentum can be involved in the electron scattering
(see Section 4), which, in turn, leads to a power-law
temperature dependence of the electrical conductivity.
In this paper, we calculate the electrical conductivity
by properly taking into account the distortion of the
electron states by the crystal lattice.

The paper is structured as follows. In Section 2,
we describe the composition of the neutron star crust
and introduce basic parameters. In Section 3, we
describe the electron states near the boundaries of the
Brillouin zones that are used in Section 4 to derive
an expression for the electrical conductivity in the
neutron star crust at low temperatures. In Section 5,
we show that the derived expression in the high-
temperature limit reproduces the well-known elec-
trical conductivity calculated in the approximation of
free electrons (see, e.g., Flowers and Itoh 1976; Raikh
and Yakovlev 1982; Baiko and Yakovlev 1995). The
low-temperature asymptotics of the electrical con-
ductivity is derived in Section 6. In Section 7, we
propose the interpolation formula (39) that smoothly
joins the low-temperature asymptotics derived here
with the most accurate calculations of the electri-
cal conductivity at higher temperatures (Potekhin
et al. 1999; Gnedin et al. 2001), when the influence
of the gaps may be neglected. In the same section,
the electrical conductivity of a neutron star crust with
a smooth equilibrium nuclear composition (see the
Appendix in the monograph by Haensel et al. (2007))
is used an example to illustrate the results. In the final
section 8, we formulate our conclusions and describe
the plans for further studies.

2. PARAMETERS OF THE MATTER

The neutron star crust is separated into the outer
one composed of atomic nuclei (ions) and degenerate
electrons and the inner one (ρ � 4 × 1011 g cm−3)
where degenerate neutrons not localized in atomic
nuclei are additionally present (see, e.g., Haensel
et al. 2007). For simplicity, we will assume that
all atomic nuclei at a given density ρ are identical.
We will denote the number of nucleons bound in an
atomic nucleus by Anuc. In the inner crust, this
number should be distinguished from A—the total
number of nucleons per nucleus. At densities ρ �
1014 g cm−3, all protons are bound in atomic nu-
clei and determine the nuclear charge Ze. Since
the binding energy of the nucleons in the neutron
star crust is low compared to their rest energy, the
number density of atomic nuclei can be estimated

as ni = ρ/(Amu), where mu = 1.6605 × 10−24 g is
the atomic mass unit. The quasi-neutrality condition
specifies the electron number density ne = niZ.

It is convenient to describe the state of degenerate
electrons by the Fermi momentum pF or Fermi wave
number kF:

pF ≡ �kF = �
(
3π2ne

)1/3 = mecxr, (1)

where me is the electron mass, xr ≈ 100.9 (ρ12Z/A)1/3

is the electron relativity parameter, and ρ12 is the
density in units of 1012 g cm−3. In this paper, we
will assume that the electrons are ultrarelativistic
(xr � 1). This approximation is valid at the densities
of interest to us, ρ � 1010 g cm−3. The degeneracy
temperature for such electrons is

TF =
(
εF − mec

2
)
/kB ≈ 5.93 × 109xr К, (2)

where we introduced the electron Fermi energy

εF ≡ mec
2
√

1 + x2
r ≈ mexrc

2. (3)

In this paper, we investigate matter at T � TF.
The crystallization of ions with the formation of

a body-centered cubic (bcc) lattice is commonly
assumed to be energetically most favorable in the
neutron star crust. However, a face-centered cubic
(fcc) lattice has almost the same energy (see, e.g.,
Baiko 2002). Below, we will consider the lattices of
both types and will show that the electrical conduc-
tivity at low temperatures is weakly sensitive to the
type of crystal lattice. Note that a similar conclusion
for the case of high temperatures was reached by
Potekhin et al. (1999). We will consider matter
at temperatures T � 108 K that are lower than the
melting temperature, which allows the dynamics of
ions to be described in the language of phonons in a
crystal. It is convenient to measure the phonon wave
numbers in radii of a sphere (in k space) equivalent to

the first Brillouin zone qBZ =
(
6π2ni

)1/3. Note that in
the neutron star crust, there are many free electrons
per nucleus (Z � 1) and qBZ is small compared to
the diameter of the Fermi sphere 2kF: 2kF/qBZ =
(4Z)1/3 � 1. For example, at typical charges of
atomic nuclei in the neutron star crust Z ∼ 30, the
ratio 2kF/qBZ ∼ 5.

The quantum effects in the system of ions become
important at T � Tp/3, where

Tp =
�ωp

kB
≈ 7.832 × 109

(
Z2

AAnuc

)1/2

ρ
1/2
12 K (4)

is the ion plasma temperature, ωp =
(
4πZ2e2ni/mi

)1/2

is the ion plasma frequency. The density dependence
of Tp (dotted line) for the inner neutron star crust with
a smooth nuclear composition (see Appendix B in
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the book by Haensel et al. (2007)) is presented in
Fig. 1. The melting temperature Tm exceeds Tp for
the parameters shown in the figure. The quantities
Egap/2, TU, and T̃U are described in Section 3.

3. ELECTRONS NEAR THE BOUNDARIES
OF THE BRILLOUIN ZONES

Since the temperatures T � 108 K considered here
are more than an order of magnitude lower than Tp,
only low-frequency phonons (ω ∼ kBT/� � ωp) are
excited in the crystal. These phonons have small
wave numbers and efficiently interact only with the
electrons whose states can be significantly distorted
by the interaction with the static crystal lattice. All of
the preceding papers (see, e.g., Potekhin et al. 1999)
devoted to the transport in the dense matter of neu-
tron star crusts were restricted to the approximation
of free electrons. In this paper, we go beyond this ap-
proximation for the first time (as applied to the trans-
port coefficients in dense matter). Therefore, before
considering the electrical conductivity, the electron
states should be described in detail, which is done in
this section. For brevity, � = 1 here.

We will describe the electron states following
Pethick and Thorsson (1997) and use the extended
and periodic zone schemes. The periodic zone
scheme is convenient when the scattering is consid-
ered, because we can eliminate the reciprocal lattice
vector g in the quasi-momentum conservation law
and consider the scattering of electrons with close
quasi-momenta. On the other hand, the electrons
in the neutron star crust are almost free. Therefore,
the Fermi surface in the extended zone scheme is
nearly spherical (we will call the corresponding sphere
of radius pF in momentum space the Fermi sphere),
which is convenient, for example, in the calculations
of transport coefficients at high temperatures. In con-
trast to most of the problems in solid-state physics
under terrestrial conditions, using the reduced zone
scheme seems unjustified. The point is that the large
number of free electrons per atomic nucleus gives
rise to a large number of conduction bands (partially
filled bands) in each of which the Fermi surface has a
complex shape. In this case, each empty band makes
its nontrivial contribution to the conductivity, while
their number depends significantly on the matter
composition. Therefore, in the reduced zone scheme,
an independent calculation of the electrical conduc-
tivity is actually required for each nuclear charge Z,
which extremely complicates its investigation. At the
same time, in the extended zone scheme, the shape
of the Fermi surface does not depend qualitatively on
the nuclear charge (a weakly distorted sphere), which
allows a unified description at all Z.
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Fig. 1. Temperature–density diagram for the inner crust
in the smooth composition model. The quantities Tp,
Egap, TU, and T̃U are described in the text. The vertical
dotted line indicates the neutronization density at which
the composition of the matter changes sharply, causing a
weak jump in all of the parameters indicated in the figure.

The electron energy spectrum in the neutron star
crust is slightly distorted by the interaction with the
lattice. This interaction is strongest when the states
of free electrons with momenta p = �k and p − g
have close energies. Here, g is a reciprocal lattice
vector. We are interested in the electron states near
the Fermi surface. Therefore, we will associate a set
of vectors p0 of length pF for which the condition
for the energies of free electrons with momenta p0

and p0 − g being equal is met with each reciprocal
lattice vector g that does not exceed the diameter of
the Fermi sphere (g ≤ 2kF). These vectors form a
circumference on the Fermi surface and are specified
by the condition p0 · g = g2/2 (see Fig. 2). The set
of these circumferences for all vectors g ≤ 2kF forms
the region of intersections between the boundaries
of the Brillouin zones and the Fermi sphere. Their
projections onto the plane of the faces of a bcc lattice
are shown in Fig. 3. As an example, we chose matter
composed of atoms with nuclear charges Z = 2, 10,
30, and 50. The thickness of the lines corresponds (on
the scale of the figure) to twice the width of the region
of efficient mixing of the ultrarelativistic electron wave
functions 2Δkmix calculated in the pointlike nucleus
approximation by neglecting the Debye–Waller fac-
tor. The boundary of the Fermi sphere is indicated by
the thick circumference; its center is marked by the
point. The quantity qBZ is indicated by the segment
in the lower left corner of each figure. The bulk of
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Fig. 2. Diagram showing the positions of the momenta
p, p − g, p0 and the reciprocal lattice vector g near the
Fermi sphere in the extended zone scheme. The latter
is indicated in the figure by an arc of a circumference.
The thick dashed line indicates the Fermi surface with
allowance made for the interaction with the lattice (it
undergoes a discontinuity near the vector p0; for clarity,
the gap width was increased by more than an order of
magnitude compared to the typical values in the neutron
star crust). The thick and thin hatching correspond,
respectively, to the “+” and “−” states in the periodic
zone scheme. The vertical dotted line passes through the
center of the Fermi sphere marked by the point and is
parallel to the vector g.

the Fermi surface is not subjected to any significant
interaction with the static lattice and remains white
in Fig. 3. The electrons in these regions may be
considered free with a good accuracy. Since the
Brillouin zones are polyhedrons, there are points on
the Fermi surface that belong to their edges. Several
circumferences corresponding to different reciprocal
lattice vectors g intersect at these points and, hence,
more than two free electron wave functions are mixed
in their neighborhood. However, the corresponding
regions occupy a very small part of the Fermi surface
and should not enhance significantly the scattering.
We will neglect them when considering the electron
states and will take into account only the pair mixing
of the wave functions described by the momenta p
and p− g.

Consider the electron state described in the ex-
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Fig. 3. Projections of the lines of intersection between the
boundaries of the Brillouin zones and the Fermi sphere
(large circumferences) onto the face of a bcc lattice (the
(x, y) plane) for charges Z = 2, 10, 30, and 50. The
thickness of the lines corresponds to twice the width of
the region of the greatest distortion of the electron wave
functions 2Δkmix. The quantity qBZ is shown in the lower
left corner of each figure; the point indicates the center of
the Fermi sphere.

tended zone scheme by a quasi-momentum p close
to one of the vectors p0 and lying in the same plane
with it and the corresponding vector g. The energy
of this state unperturbed by the interaction with the
lattice is specified by the expression

εk ≈ εF + C||cΔp|| + C⊥cΔp⊥, (5)

where

C|| =
g

2kF
; C⊥ =

√
1 − C2

||. (6)

Here, the vector Δp = p− p0. The quantities Δp||
and Δp⊥ are the coordinates of the vector Δp in a
Cartesian coordinate system with such unit vectors
e|| and e⊥ that p0 = pF(C||e|| + C⊥e⊥) (see Fig. 2).
The projection of Δp onto the eϕ =

[
e|| × e⊥

]
axis is

equal to zero in view of the choice of vector p0.
Since we consider the state with a quasi-momentum

p close to p0, it will be mixed most strongly with the
state p− g, while we will neglect the mixing with
other states. Therefore, in the periodic zone scheme,
from a generally infinite set of states corresponding to
each quasi-momentum p, we will choose two states
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that correspond to the quasi-momenta p and p− g in
the extended zone scheme. We will denote the states
with higher and lower energies, respectively, by the
indices “+” and “−.” The ions in the neutron star
crust are completely ionized; therefore, the electron–
atomic nucleus interaction potential U(r) may be
considered to be known. Since the electron Fermi
energy is great compared to the interaction energy of
electrons with atomic nuclei, the energy of the chosen
pair of electron states can be calculated using the
perturbation theory (see, e.g., Ziman 1960):

E±
k =

εk + εk−g

2
±

√(
εk − εk−g

2

)2

+ E2
g (7)

= εF + C⊥cΔp⊥ ±
√(

C||cΔp||
)2 + E2

g,

where

Eg = niUg = 4πniZe2φ(g) (8)

is the gap half-width, Ug = 4πZe2φ(g) is the Fourier
component of the potential U(r), and

εk−g = εF − C||Δp|| + C⊥Δp⊥ (9)

is the unperturbed energy of the state with momen-
tum p − g (see Fig. 2). The quantity φ(g) = φ(g)
does not depend on the direction of g, because the
potential U(r) is isotropic. It can be represented as
(see, e.g., Gnedin et al. 2001)

φ(q) = e−W (q) F (q)
q2ε(q)

. (10)

Here,

F (q) =
1
Z

∫
enp(r) exp (ır · q) d3r (11)

is the form factor of the atomic nuclei that describes
the electric charge (proton) distribution over the nu-
cleus, W (q) is the Debye–Waller factor that allows
for the ion vibrations about the equilibrium position,
and ε(q) is the static longitudinal dielectric function
of the electron plasma. In the pointlike nucleus ap-
proximation [np = Zδ(r)] used in Fig. 3, F (q) = 1.
To calculate the dielectric function, we will use the
simplest Thomas–Fermi model

ε(q) = 1 +
k2

TF

q2
, (12)

in which the screening of the test charge potential
by electrons is characterized by one parameter—the
Thomas–Fermi wave number

k2
TF = 4π2e2 ∂ne

∂μe
≈ αf

π
(2kF)2 . (13)

Here, μe ≈ εF is the electron chemical potential and
αf ≡ e2/(�c) ≈ 1/137 is the fine-structure constant.

This model is applicable at q � kTF. However, we
will also be interested in the regions corresponding
to wave numbers q ∼ kF, in which, strictly speaking,
a more accurate theory should be used. For the
case of free degenerate electrons, the dielectric func-
tion was calculated by Jancovici (1962). However,
he disregarded the distortion of the electron energy
spectrum by the interaction with the lattice.1 It can
be important for screening at wave vectors q close
to the reciprocal lattice vectors and can lead to an
anisotropy of the dielectric function. Allowance for
the latter effect seems an interesting subject matter
for a separate study that, to the best of my knowledge,
has not yet been carried out for the case of neutron
star crusts. Nevertheless, at large transferred mo-
menta q ∼ kF, the screening is weak (ε ≈ 1). There-
fore, when calculating the electrical conductivity, ap-
plying an accurate screening model should not lead to
qualitatively new effects compared to the Thomas–
Fermi model. This allows us to restrict ourselves to
using the latter in this paper. In the periodic zone
scheme, the wave function with allowance made for
the interaction with the static crystal lattice can be
written as

Ψ+
σ,p = ukΨfree

σ (p) + vkΨfree
σ (p− �g), (14)

Ψ−
σ,p = vkΨfree

σ (p) − ukΨfree
σ (p − �g),

where Ψfree
σ (p) is the wave function of a free elec-

tron with momentum p and helicity σ (Berestetskii
et al. 1982) and the expansion coefficients uk =
Eg/ [2εk (εk − ξk)]1/2 and vk = (εk − ξk)1/2/(2εk)1/2.
Here, ξk = C||cΔp|| and εk =

=
√(

C||cΔp||
)2 + E2

g.

The correspondence between the state indices and
quasi-momenta in the extended and periodic zone
schemes is given in the table (see also Fig. 2). For ex-
ample, at Δp|| < 0, the state with quasi-momentum
p and the “+” index in the periodic zone scheme
corresponds to the state with quasi-momentum p− g
in the extended zone scheme.

Following Gnedin et al. (2001), let us estimate
the temperatures at which the distortion of the wave
functions and the electron dispersion relation by the
interaction with the static lattice becomes significant
for the consideration of electron–phonon scattering.
We will estimate the characteristic gap width at
g ∼ kF:

Egap = 2Eg=kF ∼ 4e2

3π
F (kF)e−W (kF)

ε(kF)
kF. (15)

1 Taking an opportunity, I express may gratitude to one of the
anonymous referees who drew may attention to this effect.
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Table of correspondence between the state parameters in
the periodic and extended zone schemes

Parameter “+” State “−” State

Δp|| > 0 p p− g

Δp|| < 0 p− g p

Note. The quasi-momentum describing the state in the ex-
tended Brillouin zone scheme that corresponds to a given quasi-
momentum p and state index (“+” or “−”) in the periodic zone
scheme is specified. The rows correspond to the opposite signs of
the components Δp||.

The numerical value of the gap half-width (in tem-
perature units) is indicated in Fig. 1 by the solid line.
Because of the difference between the phonon and
electron velocities, the presence of gaps begins to
affect significantly the electron–phonon scattering
at an order of magnitude lower temperatures, T �
� TU. Indeed, the interaction of electrons with
the static lattice distorts their dispersion relation in
regions with a characteristic size Δkmix ∼ Egap/Ve,
where Ve ≈ c is the electron velocity, whereas at
kBT ∼ Egap the electrons are efficiently scattered by
phonons with wave numbers q ∼ kBT/Vph, where
Vph ∼ ωp/qBZ is a typical velocity of acoustic phonons
(Vph � c). Accordingly, electrons with momenta
lying in the region with a characteristic size q ∼
(c/Vph)Δkmix � Δkmix are involved in the scattering.
In the bulk of this region, the electron states are
distorted only slightly. Therefore, at kBT ∼ Egap, the
bulk of the phonon–electron scattering events may
be considered in the approximation of free electrons,
as was done by Potekhin et al. (1999). However, as
the temperature decreases, the characteristic phonon
wave number q becomes comparable to Δkmix and the
approximation of free electrons becomes inapplicable
for the consideration of electron–phonon scattering.
A more detailed description of the electron states is
required. This occurs at temperatures

T � TU =
Vph

Ve

Egap

kB
(16)

∼ αfTp
Z1/3

3
e−W (kF)F (kF).

In this estimate, we neglected the electron screening
(because kTF � kF). We will call the characteristic
temperature TU the freezing temperature of Umk-
lapp processes. By the standards of neutron stars,
it is low (see the dash–dotted line in Fig. 1) but is
reached, for example, in isolated neutron stars with
an age t � 106 yr (see, e.g., Gusakov et al. 2005;

Yakovlev et al. 2011; Shternin et al. 2011), which
can manifest themselves as pulsars (Lorimer 2010;
Popov et al. 2010; Boldin and Popov 2010). Note that
Gnedin et al. (2001) estimated the freezing temper-
ature of Umklapp processes in the approximation of
F (q) = 1: T̃U = αfTpZ

1/3/3. However, F (kF) ∼ 0.3
near the boundary with the stellar core. For this
reason, the temperature TU differs from T̃U, which is
indicated in Fig. 1 by the dashed line.

4. ELECTRICAL CONDUCTIVITY. GENERAL
FORMULAS

Once the matter parameters and the electron
states in the neutron star crust have been described,
we can turn to calculating the electrical conductivity.
Directly solving the kinetic equation by taking into
account all scattering processes is a very complex
problem. We will restrict ourselves to an estimation
using the variational method (see, e.g., Ziman 1960)
and will calculate the electrical conductivity as the
maximum of the functional

σ = |I1|2 /I2, (17)

when varying the trial function Φk that describes the
deviation of the electron distribution function from the
equilibrium one. Here, the integral

I2 =
1

kBT

∑

ν

∫ ∫ ∫
(Φk − Φk′)2 Pp′

p,q,ν (18)

× d3k

(2π)3
d3k′

(2π)3
d3q

(2π)3

specifies twice the entropy generation rate during the
absorption of phonons (which is equal to the total
entropy generation rate in the phonon absorption
and production processes). The integration is over
the electron quasi-momenta (in the extended zone
scheme) before and after scattering (p = �k and p′ =
�k′) as well as over the wave vector of the scattering
(absorbed) phonon q. The corresponding scattering
probability Pp′

p,q,ν in the limit p′ ≈ p− g of interest
to us is calculated in Appendix A. The summation
is over the branches of phonon modes ν. Since the
electron scattering occurs with the conservation of
helicity (see Appendix A), the corresponding indices
do not affect the result and are omitted here. The
normalization integral I1 in (17) is given by the ex-
pression

I1 =
∫

eVkΦk
∂f

∂Ep

d3k

(2π)3
, (19)

where f = f(p) = 1/[exp((Ep − μe)/kBT ) + 1] is
the equilibrium Fermi electron distribution function.
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Let us choose a simple trial function (for the
properness of this choice, see Appendix B) that does
not contain the variational parameters Φk = Vk · u,
where Vk = ∂Ek/∂p is the electron velocity and u
is a unit vector in the electric field direction. The
“+” or “−” state index is not required here, because
we use the extended zone scheme, where the quasi-
momentum uniquely specifies the electron state. It
can be shown that this trial function gives a better
estimate of the electrical conductivity than the yet
simpler trial function Φk = k · u/k. The integral
I1 can be calculated in the approximation of free
electrons (Vk = nc, where n = k/k), because the
electrons are almost free on the bulk of the Fermi
surface (see Fig. 3). Simple integration gives |I1| =
eck2

F/(6π2
�). After the substitution of the scattering

probability Pp′
p,q,ν (Eq. (A6)), the integration over k′ is

performed easily using a delta function of the quasi-
momentum. Recall that we consider the electrical
conductivity at low temperatures, when the states
with quasi-momenta p lying near the vectors p0

make a major contribution to the electron–phonon
scattering (see Fig. 2). Describing these states in the
periodic zone scheme, we will write the integral over
the electron states in (18) as the sum of integrals over
the two-dimensional vectors Δk = Δp/� = (p −
p0)/� and the azimuthal angle ϕk of the vector k:

I2 =
ni

4(2π)5mikBT

∑

(j)

∑

(j′)

∑

g

∑

ν

(20)

×
∫

[(Vk − Vk′) · u]2
nq,ν

ωq,ν
fp(1 − fp′)

× {(eq,ν · g)UgC⊥F g
uv}2

× δ (Ek + �ωq,ν − Ek′)C⊥kFdϕkd2Δkd3q.

The summation is over the vectors g and the electron
state indices (j), (j′) = “+,” “−.” In the integrand,
the mode indices (j) and (j′) are omitted to save
space. The factors F g

uv are determined in Appendix A.
The additional coefficient 1/2 in (20) is necessary,
because during the summation over the index (j),
each electron state before scattering is taken into
account twice due to the redundancy of the periodic
zone scheme.

Note that for the vectors g, which can be obtained
from each other by the lattice symmetry transforma-
tions, the integral in (20) will differ only by the factor
[(Vk − Vk′) · u]2 that does not satisfy this symmetry
due to the presence of vector u. Since the summation
in (20) is over the reciprocal lattice vectors, for each
of them we can perform averaging under the integral
over, in general, 48 reciprocal lattice vectors ge that
are obtained from a given vector g by the cubic lat-
tice symmetry transformations (the permutation and

reversal of coordinates)
1
48

∑

ge

[(Vk − Vk′) · u]2 =
1
3

(Vk − Vk′)2 . (21)

This assertion is proven in Appendix C.
The vector Δk in the local Cartesian coordinate

system (e||, e⊥) can be written as (Δk||,Δk⊥). The
velocity difference Vk − Vk′ = ∂ΔE/∂p, where the
energy difference

ΔE = E
(j)
k − E

(j′)
k′ = −C⊥c�q⊥ (22)

±
√(

C||c�Δk||
)2 + E2

g

∓
√[

C||c�(Δk|| + q||)
]2 + E2

g.

Here, the first “+” or “−” sign corresponds to the
index (j), while the second “−” or “+” sign cor-
responds to the index (j′) taken with the opposite
sign. It is easy to verify that the velocity difference
Vk − Vk′ does not depend on Δk⊥ and is directed
along the vector g. This allowed the integration to be
performed over the component Δk⊥:

∫
f(E) [1 − f(E + �ωq,ν)] dΔk⊥ (23)

=
ωq,ν

C⊥�c

1
1 − e−zν

,

where zν = �ωq,ν/(kBT ) and the relation dE
(j)
k =

C⊥�cdΔk⊥ (see Eq. (7)) is used. After the change of
variables dΔE = d (Ek − Ek′) = �|Vk − Vk′ |dΔk||,
the integration over dΔE is performed easily using a
delta function of the energy. As a result, the integral
I2 can be written as

I2 =
ni

12(2π)5
pF

�2mikBT

∑

g

U2(g)
∑

ν

Ig,ν
3 , (24)

where we introduced a new integral

Ig
3 =

C2
⊥
c

∑

(j)

∑

(j′)

∑

ν

∫
|Vk − Vk′ | (25)

× nq,ν

1 − e−zν
(F g

uv)
2 (eq,ν · g)2dϕkd3q.

The electrical conductivity can now be easily repre-
sented via the effective electron relaxation time τ :

σ =
e2neτ

xrme
, τ =

pF
2vF

4πZ2e4niΛσ
, (26)

where

Λσ =
pF

8π2

�

kBTmi

∑

g

φ(g)2Ig
3 (27)
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p||
~

p⊥
~

Fig. 4. Phonon wave functions corresponding to different
types of scattering processes. The thick hatching indi-
cates the “++” and “−−” processes; the thin hatching
indicates the “+−” and “−+” processes. The integration
in (30) is over all hatched regions.

may be considered as a “generalized” Coulomb loga-
rithm. Since the phonon velocities are low compared
to the electron ones, we may neglect the phonon
energy in the energy conservation law and write the
quasi-momenta of the electrons capable of being in-
volved in the scattering by a phonon with a wave
number q as

Δp|| = −
p̃||
2

± p̃⊥
2

√

1 + 4
p̃2
g

Δp̃2
, (28)

Δp′|| =
p̃||
2

± p̃⊥
2

√

1 + 4
p̃2
g

Δp̃2
. (29)

Here, we use the notation p̃g = Eg/(c C||), p̃⊥ =
�q⊥C⊥/C||, p̃|| = �q||, Δp̃2 = p̃2

|| − p̃2
⊥. Substituting

the explicit form of the functions F g
uv for electrons

with quasi-momenta (28) and (29), we will make
analytical transformations and write a general expres-
sion for the integral

Ig
3 = 2C||C

2
⊥ (30)

×
∑

ν

∫ (
Δp̃2

)7/2 (
Δp̃2 + 4p̃2

g

)1/2

(
4p̃2

||p̃
2
g + (Δp̃2)2

)2

× e−zν

(1 − e−zν )2
(eq,ν · g)2dϕkd3q.

Here, the integration is over the region where ei-
ther Δp̃2 > 0 or Δp̃2 < −4p̃2

g (the hatched region
in Fig. 4) in which the conservation laws admit
scattering.

In Eq. (30), the summation over the electron
state indices (j) and (j′) has already been per-
formed. However, to understand the electron–
phonon scattering physics at low temperatures, it
is important to know the transitions between what
electron states are realized at a given value of the
vector q. We will denote the types of scattering
processes by indices of the form “±±,” where the
first and second signs are specified by the initial, (j),
and final, (j′), electron state indices, respectively.
For example, the “++” process is the transition
from state Ψ+

σ,p to Ψ+
σ,p′ (recall that the helicity σ

is conserved during scattering). It can be shown
that the “++” and “−−” processes take place at∣
∣p̃||

∣
∣ > |p̃⊥| (the thick hatching in Fig. 4), while

the “+−” and “−+” processes take place at p̃2
⊥ >

> p̃2
|| + 4p̃2

g (the thin hatching in Fig. 4). No phonons

with a wave vector lying in the region p̃2
|| < p̃2

⊥ <

< p̃2
|| + 4p̃2

g (the unhatched region in Fig. 4) are
involved in the electron scattering processes corre-
sponding to the vector g, because this scattering
cannot satisfy the energy and quasi-momentum con-
servation laws (see Eqs. (28) and (29)). Nevertheless,
they can be involved in the scattering for a different
orientation of the reciprocal lattice vector and in the
normal electron scattering processes considered by
Raikh and Yakovlev (1982) and occurring on the
entire Fermi surface. However, the latter do not
contribute significantly to the electrical conductivity
(see Section 7).

As we see from Fig. 4, phonons with an arbi-
trarily small wave number q can be involved in the
electron scattering in the “++” and “−−” processes.
However, following Raikh and Yakovlev (1982) and
by analogy with many terrestrial materials (see, e.g.,
Ziman 1960), Gnedin et al. (2001) suggested that
for a phonon to be involved in the Umklapp process,
it must have a wave number no smaller than some
critical value qmin. This value was estimated as the
width of the regions perturbed by the interaction with
the lattice, qmin ∼ kmin ∼ Eg/(�c). It was on the
basis of this erroneous estimate that the model of
exponential reduction of the electron scattering rate
in Umklapp processes at low temperatures T � TU
(see Eq. (40)) was proposed. In reality, qmin is de-
termined by the minimum distance from the Fermi
surface to the boundary of the Brillouin zone. For
many terrestrial conductors, it can be nonzero due
to the small number of free electrons per atom (see,
e.g., Ziman 1960). Accordingly, such materials will
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Fig. 5. Diagram showing the positions of the electron momentum on the Fermi surface before and after scattering.

be subjected to exponential freezing of Umklapp pro-
cesses at low temperatures. However, as has already
been noted above, there are many electrons per crystal
lattice site in the neutron star crust and the Fermi
surface intersects with the boundaries of the Brillouin
zones. As a result, phonons with arbitrarily small
wave numbers can be involved in Umklapp processes
and, hence, the exponential freezing model is inappli-
cable to the scattering rates. A more detailed analysis
performed here is required.

Note that the “+−” and “−+” processes actually
require the involvement of phonons with wave num-
bers q � qmin ≈ kmin (see Fig. 4). Therefore, this type
of scattering is subjected to exponential freezing (of
the scattering rate ∝ exp(−TU/T ) at T � TU) and is
insignificant at low temperatures.

5. THE HIGH-TEMPERATURE LIMIT

Let us show that in the case of high tempera-
tures T � TU where the electron–phonon scattering
is efficient far from the boundaries of the Brillouin
zones and the distortion of the electron spectrum
by the interaction with the static lattice may be ne-
glected, our result (Eqs. (27) and (30)) coincides with
the well-known Coulomb logarithm obtained in the
approximation of free electrons (see, e.g., Flowers

and Itoh 1976; Raikh and Yakovlev 1982; Baiko and
Yakovlev 1995). Let us set p̃g = 0 in (30). The
integral Ig,ν

3 can then be rewritten as

Ig
3 = 2C||C

2
⊥

∑

ν

∫
e−zν (eq,ν · g)2

(1 − e−zν )2
dϕkd3q. (31)

Now, it will suffice to pass from the integration
over the phonon wave vectors q to the integration over
the positions of the electron quasi-momentum before
and after scattering on the Fermi surface, which is
commonly used in calculations in the approximation
of free electrons. For this purpose, in accordance
with Eqs. (28) and (29), we will write the longitudinal
electron quasi-momentum components before and
after scattering as Δp|| = −p̃||/2 + p̃⊥/2 and Δp′|| =
p̃||/2 + p̃⊥/2 and will take Δp⊥ = C||Δp||/C⊥ and
Δp′⊥ = −C||Δp′||/C⊥ as the transverse components.
Obviously, the states with such quasi-momenta lie
on the Fermi surface (to be more precise, on the
plane tangential to it, see Fig. 5). Note that dqϕ =
C⊥kF (dϕk′ − dϕk), where ϕk′ is the azimuthal angle
of the vector k′. We can now pass to the integration
in (31) over dΩ and dΩ′, the elements of the spherical
angles in the directions of the vectors k and k′, and
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Fig. 6. Diagram showing the positions the angles in the
spherical coordinate system specifying the vector q.

white the Coulomb logarithm as

Λσ =
2pF

2

kBTmi

∑

g

φ(g)2g2 (32)

×
∑

ν

∫
e−zν

(1 − e−zν )2
(eq,ν · g)2

(
1 − g2

4k2
F

)
dΩ
4π

dΩ′

4π
.

It is easy to verify that the scattering rate defined
by Eq. (32) coincides with the low-temperature
asymptotics of Eqs. (3) and (4) from Raikh and
Yakovlev (1982) obtained in the approximation of free
electrons.

6. THE LOW-TEMPERATURE LIMIT

Consider the low-temperature limit the calcula-
tion in which is the goal of this paper. By low
temperatures we mean T � TU, when the states of
the electrons involved in the scattering are signifi-
cantly distorted by the interaction with the crystal
lattice. The “+−” and “−+” processes require the
involvement of a phonon with a wave number q �
Eg/(�c) (see Fig. 4). The energies of such photons
are �ω ∼ �qVph ∼ kBTU and exceed significantly the
thermal energy for the conditions under considera-
tion. Therefore, the “+−” and “−+” scattering may
be neglected due to the exponentially small phonon
mode occupation numbers nq,ν . For the “++” and
“−−” processes at T � TU, the wave numbers of the
phonons making the largest contribution to the scat-
tering are small compared to Eg/(c�). The integral
Ig,ν
3 can then be written as

Ig
3 =

�
3C2

⊥c3

4C4
||E

3
g

∑

ν

∫
(
C2
||q||

2 − C2
⊥q⊥

2
)7/2

q||4
(33)

× e−zν

(1 − e−zν )2
(eq,ν · g)2dϕkd3q.

90° 
� Θ

g

q

eq, ν

Θ

Fig. 7. Diagram showing the positions of the polarization
vector and the vectors q and g.

The integration is over the region C||
∣∣q||

∣∣ >

> C⊥ |q⊥| corresponding to the “++” and “−−”
processes.

For simplicity, we use a simplified model of the
phonon spectrum: ω1 = ω2 = Vphq, ω3 = ωp. The
ν = 1 and 2 modes correspond to the transverse
polarization, while the third mode corresponds to the
longitudinal one. The isotropy of the phonon spec-
trum in this model reduces the integration over dϕk

in (33) to the multiplication by 2π. Only the phonons
of the first two modes can have frequencies ω ∼
kBT/�, while the contribution to the integral Ig

3 from
the third mode is exponentially small ∝ exp(−Tp/T ).

Let us introduce a spherical coordinate system for
the vector q with the polar angle θ measured from
eϕ =

[
e|| × e⊥

]
and the azimuthal angle ϕ measured

from the vector e|| (see Fig. 6). Here, e||, e⊥, and
eϕ are the unit vectors of the local Cartesian coor-
dinate system introduced in Section 3. The cosine
of the angle Θ between q and g is cos(Θ) = q||/q =
sin(θ) cos(ϕ). Since the transverse phonons are de-
generate in our case, their polarization vectors can
be chosen arbitrarily in a plane perpendicular to the
vector q. For simplicity, let us choose the polarization
vector of the first acoustic mode to be perpendicular
to the vector g. The polarization vector of the second
acoustic mode then lies in the (g,q) plane. Ac-
cordingly (see Fig. 7), (eq,ν · g)2 = sin2(Θ)g2. Only
this mode contributes to the integral Ig,ν

3 . After the
passage to the variables q, θ, and ϕ, the latter can be
taken analytically and the Coulomb logarithm can be
written as

Λσ =
135π2ζ(5)

α3
f

pF
2

2mikBT

(
kBT

VphpF

)6

(34)

×
∑

g

eW (g) V(C||)
F (g)

(
1 +

k2
TF

g2

)
.
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Here, ζ(5) ≈ 1.037 is the value of the Riemann zeta
function and we introduced the function

V(C||) (35)

= C2
⊥

[(
54C6

⊥ + 92C4
⊥ − 2C2

⊥
)
K(C2

||)

−
(
3C6

⊥ + 118C4
⊥ − 27C2

⊥ + 4
)
E(C2

||)
]
,

in which K(x) ≡
∫ π/2
0

[
1 − x sin2(t)

]−1/2 dt and

E(x) ≡
∫ π/2
0

[
1 − x sin2(t)

]1/2 dt are complete ellip-
tic integrals of the first and second kinds.

Note that the final expression for the Coulomb
logarithm (34) is inversely proportional to the Fourier
transform of the scattering potential φ(g) (therefore,
for example, the form factor of the atomic nuclei
F (q) turns out to be in the denominator of Eq. (34))
rather than to φ2(g), just as in the approximation
of free electrons (32). This is true only in the low-
temperature limit but also remains valid without us-
ing the model phonon spectrum, because the coeffi-
cient 1/E3

g is taken outside the integral sign before
using any assumptions about the phonon spectrum
(see Eq. (33)). It can be shown that during the scat-
tering by phonons with a small wave vector q, the fac-
tors F g

uv for the most significant (at low temperatures)
“++” and “−−” processes turn out to be proportional
to ∝1/φ(g) (see Appendix A). This cancels out with
the explicit dependence of the scattering matrix ele-
ments on φ(g), while the remaining dependence of the
Coulomb logarithm ∝1/φ(g) comes from the velocity
difference |Vk − Vk′ |.

According to Eq. (34), the electron–phonon scat-
tering rate due to Umklapp processes at low temper-
atures turns out to be proportional to T 5 rather than
freezes exponentially, as was suggested by Gnedin
et al. (2001). At low temperatures, the Coulomb log-
arithm determined by the normal electron–phonon
processes is also proportional to T 5 (see Eq. (41)
and Raikh and Yakovlev 1982). However, since the
normal processes lead only to slow momentum diffu-
sion over the Fermi surface, the Umklapp processes
considered here also dominate at low temperatures.
The results are compared in detail in Section 7.

For the subsequent investigation, we will approxi-
mate the function V(C||) by the expression

V(C||) ≈ 4
(
1 − C2

||

)
exp

[
12(C|| − 1)

]
. (36)

The accuracy of approximation (36) is illustrated in
Fig. 8. It shows the exact values of the functions

V(C||), C2
||V(C||), and V(C||)

[
20

(
1 − C2

||

)]
(sym-

bols) and the values corresponding to the approxima-
tion (lines). We see that all functions have a maxi-
mum in a fairly narrow region, 0.7 � C|| � 1, where

0.5
0

0.6 0.7 0.8 0.9 1.0
C||
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�
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Calculation �
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||)
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||2 �
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[20(1 − C ||

2 )]

Fig. 8. Function V(C||) (squares) and its approxima-
tion (36) (solid line). The functions C2

||V(C||) and

V(C||)
[
20

(
1 − C2

||
)]

(symbols) are also shown on the
plot. The corresponding quantities obtained using ap-
proximation (36) are indicated by the lines.

approximation (36) allows the exact values of the
corresponding functions to be well reproduced. This
region corresponds to g � kF and makes a major con-
tribution to the electron scattering. Since k2

TF/g2 ∼
4αf/π � 1 in it, the electron screening may be ne-
glected. Following Chugunov and Haensel (2007),
we will represent the form factor of the atomic nuclei

as F (g) = exp
(
−wformC2

||/2
)

, where the parameter

wform = 43r2
p/a2 depends on the density. Here, rp

is the equivalent radius of the proton distribution in
the atomic nucleus (the radius of a nucleus with a
uniform proton density in which the same root-mean-
square radius of the charge distribution as that in real
atomic nuclei at a given mass density ρ is reached).
The approximation of the density dependence of rp
for the smooth composition model is given in Ap-
pendix B in the monograph by Haensel et al. (2007)).
We will write the Debye–Waller factor as W (g) =
wDWC2

||/2. In the low-temperature limit under con-

sideration, wDW ≈ 2.4 (AnucZ/xr)
−1/2.

Equation (34) can be simplified by taking into
account the fact that many terms enter into the sum
over g (because qBZ

3 � (2kF)3) and the summation
can be approximately replaced by the integration over
the vectors g by assuming them to be distributed
uniformly in k space with a constant concentration
ng = (8π3ni)−1. The corresponding integral can be
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Fig. 9. Electrical conductivity σ versus temperature in
a neutron star crust with a smooth nuclear composition
at densities ρ = 1012, 1013, and 1014 g cm−3. The
solid line indicates interpolation (39); the long and short
dashes indicate the high- and low-temperature asymp-
totics Λhigh

σ and Λlow
σ (37). The dash–dotted and dotted

lines indicate the calculations in the exponential freezing
model without and with allowance made for the influence
of the form factor of atomic nuclei on the temperature TU

(Λexp
σ and Λ̃exp

σ ). The regions T ≤ TU are hatched.

taken analytically (using approximation (36)), but the
integration result is too cumbersome. Nevertheless, it
is well approximated by the expression

Λσ = 5α2
f
Z2/3

C6

pF
2

mikBTp

(
T

T̃U

)5

e0.4w, (37)

where w = wform + wDW and C = VphqBZ/ωp. In the
low-temperature limit under consideration, the influ-
ence of the Debye–Waller factor is negligible (wDW �
0.15), whereas the form factor of the atomic nuclei
near the boundary of a crust with a neutron star
core corresponds to wform � 8, which increases sig-
nificantly the Coulomb logarithm.

As the effective phonon velocity Vph, we will take
the phase velocity ων/q for q → 0 averaged over the
directions of the wave vector q and the polarizations
of the acoustic phonons ν = 1, 2:

Vph = lim
q→0

[
1
2

∑

ν

∫
dΩq

4π

(
ων

q

)−5
]−1/5

. (38)

The corresponding constant C ≈ 0.36 (Chugunov
and Haensel 2007). This quantity and, hence, the
electrical conductivity is virtually independent of
the type of crystal lattice of atomic nuclei (bcc or
fcc). Note that this conclusion is valid owing to the
simplifying assumptions made in this section. A more
accurate calculation with allowance made for the true
phonon spectrum and with direct summation over
the reciprocal lattice vectors can reveal a dependence
on the type of lattice, but it is unlikely that this
dependence will be significant for applications.

7. ANALYSIS OF RESULTS

Figure 9 shows the temperature dependence of
the electrical conductivity for matter with a smooth
equilibrium nuclear composition at ρ = 1012, 1013,
and 1014 g cm−3. The regions T ≤ TU ≈ 1.25 × 107,
1.8 × 107, and 6.2 × 106 K, respectively, are shaded.
Outside these regions, the electrical conductivity may
be considered in the approximation of almost free
electrons. The currently most accurate calculation
of the Coulomb logarithm Λhigh

σ for matter in the
outer neutron star crust in this approximation was
made by Potekhin et al. (1999); they also proposed an
approximation of the results of their calculation. The
Coulomb logarithms in the inner neutron star crust
were calculated and approximated in Appendix A to
the succeeding paper by Gnedin et al. (2001). These
results were realized in the form of a publicly acces-
sible code in Fortran2 . In Fig. 9, they are indicated

2 http://www.ioffe.ru/astro/conduct/
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by the line with long dashes. At temperatures T �
TU, the Coulomb logarithm was calculated here (see
Eq. (37)). We will denote the Coulomb logarithm for-
mally calculated from this formula at all temperatures
by Λlow

σ . The corresponding electrical conductivity is
indicated in Fig. 9 by the short dashes. In the in-
termediate range of temperatures, the Coulomb loga-
rithm should be calculated numerically in accordance
with Eqs. (27) and (30) and by taking into account
the exact spectrum and polarization of phonon modes
(see, e.g., Baiko et al. 2001; Baiko 2002). However,
the Coulomb logarithm at intermediate temperatures
can be estimated on the basis of a simple interpola-
tion:

Λint
σ ≈

[
1

Λhigh
σ

+
1

Λlow
σ

]−1

. (39)

This interpolation reproduces the limits of high (T �
TU) and low (T � TU) temperatures and describes
the smooth dependence of the Coulomb logarithm
on parameters indicated in Fig. 9 by the solid line in
the intermediate range. We see that the asymptotics
Λhigh

σ and Λlow
σ (the long and short dashes, respec-

tively) limit the electrical conductivity quite reliably at
intermediate temperatures. It is hoped that the inter-
polation is valid at all temperatures, at least in order
of magnitude. Note that the transition from Λhigh

σ

to Λlow
σ occurs at temperatures well below TU. This

is because the reciprocal lattice vectors g ∼ 1.8kF
(Fig. 8) to which smaller gap widths than Egap used in
estimate (16) correspond make a major contribution
to the scattering at low temperatures.

The dash–dotted line in Fig. 9 indicates the elec-
trical conductivity calculated within the model of ex-
ponential freezing of the scattering processes pro-
posed by Gnedin et al. (2001) for the description
of low temperatures T � TU. The corresponding
Coulomb logarithm can be written as

Λexp
σ = Λhigh

σ exp
(
−TU

T

)
(40)

+ Λnorm
σ

[
1 − exp

(
−TU

T

)]
,

where

Λnorm
σ =

360ζ(5)
Zxr

kBT

mec2

(
T

Tp

)4

(41)

is the Coulomb logarithm determined by the normal
electron–phonon scattering processes (Raikh and
Yakovlev 1982). In reality, the numerical value of
Λnorm

σ turns out to be very low:

Λnorm
σ

Λlow
σ

≈ 2.4 × 10−11 Z

30

(
C

0.36

)6

e−0.4w (42)

and does not affect the result.

Note that Gnedin et al. (2001) disregarded the
influence of the form factor of atomic nuclei on the
temperature TU and we should set TU = T̃U in our
calculation using Eq. (40) for strict correspondence
to their results. The electrical conductivity corre-
sponding to this Coulomb logarithm Λ̃exp

σ is indi-
cated by the dotted line. According to Fig. 9, using
the model of exponential reduction of the scattering
processes leads to an overestimation of the electrical
conductivity at low temperatures by several orders
of magnitude, especially when using the Coulomb
logarithm Λ̃exp

σ .

The Coulomb logarithm Λnorm
σ is determined by

the normal processes occurring at all temperatures
on the entire Fermi surface rather than concentrating
near the boundaries of the Brillouin zones. This
scattering mechanism was not considered here. In
the approximation of uncorrelated scattering, the cor-
responding electron relaxation rate should be added to
the calculated one. This is equivalent to the addition
of the corresponding Coulomb logarithms. However,
the numerical value of Λnorm

σ turns out to be lower
than Λlow

σ by ten orders of magnitude (see Eq. (42)),
because the distribution function is relaxed through
slow momentum diffusion due to the large number
of small-angle scatterings. Therefore, the normal
processes, just as at high temperatures (see, e.g.,
Potekhin et al. 1999), have no effect on the electrical
conductivity.

Figure 10 presents the density dependence of the
electrical conductivity for matter with a smooth equi-
librium nuclear composition. As an example, we
chose the temperatures T = 3 × 107, 107, and 3 ×
106 K. Just as in Fig. 9, the long and short dashes
correspond to the high- and low-temperature asymp-
totics of the Coulomb logarithm, Λhigh

σ and Λlow
σ ,

while the solid line indicates interpolation (39). The
dash–dotted line indicates the electrical conductiv-
ity in the model of exponential freezing of Umklapp
processes Λexp

σ (Gnedin et al. 2001). At T = 3 ×
106 K and ρ ∼ 1013 g cm−3, this model leads to
an overestimation of the electrical conductivity by
more than two orders of magnitude. However, the
electrical conductivities in the exponential model (40)
and interpolation (39) differ by only an order of mag-
nitude already at T ∼ 107 K and by no more than
several times at T ∼ 3 × 107 K. Finally, at T ∼ 108 K
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Fig. 10. Electrical conductivity σ versus density ρ in
a neutron star crust with a smooth equilibrium nuclear
composition at temperatures T = 3 × 107, 107, and 3 ×
106 K. The solid line indicates interpolation (39); the
short dashes, long dashes, the dotted and dash–dotted
lines indicate the electrical conductivities corresponding
to the Coulomb logarithms Λhigh

σ , Λlow
σ and Λ̃exp

σ , Λexp
σ .

The regions of densities at which T < TU (for 3 × 107 K,
there is no such region) are hatched. The vertical dot-
ted line indicates the neutronization density ρd = 4.3 ×
1011 g cm−3.

(not shown in Fig. 10) exceeding considerably the
maximum value of TU ∼ 1.8 × 107 K (see Fig. 1),
the electrical conductivity is determined by the high-

temperature asymptotics Λhigh
σ derived in the approxi-

mation of free electrons (Potekhin et al. 1999; Gnedin
et al. 2001). In this case, the model of exponential
reduction of Umklapp processes (40) and interpola-
tion (39) yield virtually the same result.

The dotted line corresponding to the Coulomb
logarithm Λ̃exp

σ demonstrates an even greater overes-
timation of the electrical conductivity relative to the
calculation based on interpolation (39).

In Fig. 10, the regions corresponding to T < TU
are hatched. As has already been discussed above, the
widely used approximation of free electrons outside
these regions is justified and interpolation (39) pro-
posed here coincides with the result obtained in this
approximation by Potekhin et al. (1999) and Gnedin
et al. (2001). However, already at T = TU, using the
model of exponential freezing of scattering leads to a
noticeable (by a factor of 2.7) overestimation of the
electrical conductivity.

The thin vertical dotted line in Fig. 10 indicates
the neutronization density ρd = 4.3 × 1011 g cm−3.
When passing through it, the composition of the mat-
ter changes abruptly (free neutrons appear), which
is accompanied by a jump in electrical conductivity
and other transport coefficients (see, e.g., Gnedin
et al. 2001).

8. CONCLUSIONS

Using the variational method, we calculated the
electrical conductivity of the neutron star crust in the
low-temperature limit, T � TU (Section 6). In our
calculation, we took into account the influence of the
static lattice of atomic nuclei on the electron wave
functions (Section 3). We showed that the electrical
conductivity does not depend on the type of crystal
lattice. We proposed the interpolation formula (39)
that allows the electrical conductivity to be calculated
at any temperatures. We demonstrated that the pre-
viously existed model of exponential reduction of the
scattering rate (Gnedin et al. 2001) could overesti-
mate the electrical conductivity by several orders of
magnitude (Section 7); the causes of the imperfection
of this model are pointed out (Section 4).
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The results obtained are important for investigat-
ing the magnetic field decay in neutron stars with
internal temperatures T � 107 K that can manifest
themselves as pulsars. In addition, the crustal electri-
cal conductivity is important for constructing models
for the spread of the currents flowing along the pulsar
tube over the neutron star crust. Analysis of the
constraints on the sizes of the mountains maintained
by the crustal conductivity in accreting millisecond
pulsars (Vegelius and Melatos 2010) can become
another application of the electrical conductivity cal-
culation presented here.

In future, we are planning to generalize our results
to other transport coefficients (thermal conductivity
and shear viscosity) that have been previously calcu-
lated in the approximation of free electrons (Potekhin
et al. 1999; Chugunov and Yakovlev 2005) or using
the model of exponential freezing of the electron–
phonon scattering (Gnedin et al. 2001). Just as for
the electrical conductivity, this model can lead to an
overestimation of the transport coefficients by several
orders of magnitude. In addition, we are planning to
consider the influence of the electron–phonon Umk-
lapp processes that have not been considered previ-
ously in investigating the electron–electron collisions
in a neutron star crust (Shternin and Yakovlev 2006;
Shternin 2008), but can be important at low temper-
atures (see, e.g., Landau and Pomeranchuk 1937).

APPENDIX A

THE MATRIX ELEMENT
AND THE TRANSITION PROBABILITY

We use the periodic zone scheme and consider
the scattering by a phonon with a small wave vector
q. In this case, electrons with close quasi-momenta
are involved in the scattering and the relation p +
�q = p′ is valid (in the case of phonon absorption).
The electron–phonon scattering probability can be
represented as

Pp′
p,q,ν =

2π
�

∣∣
∣M (i)(i′)

q

(
p,p′)

∣∣
∣
2

(А1)

× fp(1 − fp′)δ
(
Ep + �ωq,ν − Ep′

)
,

where the electron state indices before and after scat-
tering (i) and (i′) in Pp′

p,q,ν are omitted for brevity and
the transition matrix element is (Ziman 1960)

M
(i)(i′)
q

(
p,p′) =

nin
1/2
q,ν

2εk

(
�

miniV ωq,ν

)1/2

(А2)

× J
(i)(i′)
q,ν

(
p,p′)(2π)4δk−k′+q.

Here, V is the normalization volume, ωq,ν and eq,ν

are the phonon frequency and polarization vector, and

J
(i)(i′)
q,ν

(
p,p′) = −eq,ν

〈
Ψ(i)

σ,p

∣
∣∣∇Ua

∣
∣∣Ψ(i′)

σ′,p′

〉
. (А3)

Here, σ and σ′ are the helicities before and after
scattering. After the substitution of the electron wave
functions (14) in the initial and final states, we obtain

∣
∣J++

q,ν

(
p,p′)∣∣2 ≈

∣
∣J−−

q,ν

(
p,p′)∣∣2 (А4)

≈ 4ε2(eq,ν · g)2U2
g C2

⊥(vkuk′ − ukvk′)2δσ,σ′ ,
∣
∣J+−

q,ν

(
p,p′)∣∣2 ≈

∣
∣J−+

q,ν

(
p,p′)∣∣2 (А5)

≈ 4ε2(eq,ν · g)2U2
g C2

⊥(vkvk′ + ukuk′)2δσ,σ′ .

Thus, the helicity is conserved during scattering.
In Eqs. (A4), we neglect the terms containing
Uq(eq,ν · q). For low-frequency transverse phonons,
they are small due to the transverse polarization
(eq,ν · q) ∝ q2/qBZ (see, e.g., Baiko 2000). Indeed,
for T � TU, the typical phonon wave numbers q �
kTF. Therefore, owing to the electron screening,
Uq ∝ 1/k2

TF and Uq(eq,ν · q) ∝ q2/(k2
TFqBZ), which

is much smaller than the main term Ug(eq,ν · g) ∝
g−1 ∼ qBZ

−1 we included. For longitudinal phonons,

(eq,ν · q) ≈ q and the contributions to
∣∣
∣J (i)(i′)

q (p,p′)
∣∣
∣
2

from the terms proportional to U2
qq2 and

qUqUg(eq,ν · g) should be considered separately. The
first of them U2

qq2 describes the normal scattering
processes that can occur on the entire Fermi surface
(and not only in the regions of its intersection with the
boundaries of the Brillouin zones). Their contribution
to the scattering at low temperatures was calculated
by Raikh and Yakovlev (1982) and, as was shown in
Section 7, is negligible. It can be shown that the
cross-term ∝qUqUg(eq,ν · g) at T � TU also makes
a negligible contribution, because the phase velocity
of the longitudinal phonons ∼ ωp/kTF is much higher
than that of the transverse ones.

Since the matrix element (A4) contains the re-
ciprocal lattice vector, we will call the corresponding
processes “Umklapp processes”. Strictly speaking,
this name is not always precise—the reciprocal lattice
vector can be absent in the quasi-momentum con-
servation law written in the extended Brillouin zone
scheme. However, as was shown in Section 5, the
Coulomb logarithm calculated using the matrix ele-
ments (A4) in the high-temperature limit reproduces
the expression derived by Raikh and Yakovlev (1982)
for the Umklapp processes in the approximation of
free electrons.
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For brevity, we will denote the corresponding func-
tions of uk, uk′ , vk, vk′ in Eqs. (A4) by F g

uv. For
example, for the “++” processes, [(j) = (j′) =“+”]
F g

uv = vkuk′ − ukvk′ . The transition probability can
ultimately be written as

Pp′
p,q,ν = (2π)4

ninq,ν

2miωq,ν
(eq,ν · g)2 (А6)

× (F g
uv)

2 U2
g fp(1 − fp′)δ

(
Ep + �ωq,ν − Ep′

)

× δ(k′ − k − q)δσ,σ′ .

APPENDIX B

ON THE CHOICE
OF A TRIAL FUNCTION Φk

The electron–phonon Umklapp processes con-
sidered here at low temperatures are inefficient for
electrons with momenta far from the boundaries of
the Brillouin zones (in the white parts of the Fermi
surface in Figs. 3 and 12). Such electrons initially
must bring their momentum closer to the region of
efficient electron–phonon scattering (localized near
the boundaries of the Brillouin zones) through a series
of small-angle scatterings on the entire Fermi sur-
face. Only then can they be subjected to the more
powerful electron–phonon Umklapp processes that

changes significantly the electron velocity and quasi-
momentum in the extended zone scheme. Both the
electrons themselves and the electron–phonon nor-
mal processes can be small-angle electron scatterers
in the neutron star crust. However, these processes
turn out to be less efficient. Therefore, below we will
consider only the electron–electron scattering.

As a result of the two-step scattering mechanism,
the deviation of the electron distribution function from
the equilibrium one will increase with distance from
the boundaries of the Brillouin zones. In the vari-
ational formalism, this manifests itself in the fact
that the value of the trial function Φk at the points
farthest from the boundaries can be much higher
than that near the boundaries. This, in turn, will
lead to an increase in the integral I1 in Eq. (17)
and, hence, to an increase in the electrical conduc-
tivity. Moreover, if we choose a trial function that
is equal to zero at distances from the boundaries of
the Brillouin zones smaller than some value km, then
only the phonons with a wave number q > km can
be involved in the relaxation of the corresponding
distribution function through the electron–phonon
Umklapp processes. Accordingly, the integral I2

in the low-temperature limit, T � Vphkm/kB, will
become exponentially small ∝ exp(−Vphkm/(kBT )),
while the electrical conductivity will become expo-
nentially large. However, if we calculate the integral
I2 describing the generation of entropy by taking into
account the electron–electron scattering, then its
value, on the contrary, will be large (while the electri-
cal conductivity will be small) due to the rapid change
in the trial function Φk. The true electrical conduc-
tivity corresponds to the maximum of functional (17)
when all scattering (entropy generation) mechanisms
are taken into account. This maximum is reached
for a trial function that, on the one hand, is smooth
enough for the generation of entropy in electron–
electron collisions to be not too large and, on the other
hand, minimizes the generation of entropy during the
electron–phonon scattering considered here. Such a
situation can take place when considering the electri-
cal conductivity in semiconductors, where electron–
electron collisions determine the shape of the dis-
tribution function but do not impede the electrical
conductivity determined by the slower scattering by
impurities or phonons (see, e.g., Gantmakher and
Levinson 1984). In addition, a similar phenomenon
also emerges when considering the thermal conduc-
tivity of a lattice attributable to the scattering by
impurities (see Section 6, Chapter 8, in the book by
Ziman (1960)).
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Fig. 12. Lines of intersection between the boundaries of the Brillouin zones and the Fermi sphere oriented in such a way that
the wave vector farthest from the boundaries of the Brillouin zones is perpendicular to the plane of the figure. The solid lines
correspond to the part of the Fermi surface facing us; the dotted lines run over its far side. As an example, we took the charges
Z = 2, 10, 30, and 50. For Z = 2 and 10, the dotted lines coincide with the solid ones, because the crystal symmetry plane
coincides with the plane of the figure. The coordinate axes corresponding to the edges of a bcc lattice are shown in the lower
left corner of each figure. The thickness of the lines on the scale of the figure is equal to twice the width of the region of the
greatest distortion of the electron wave functions 2Δkmix. The quantity qBZ is shown in the lower left corner of each figure; the
point indicates the center of the Fermi sphere. The dashed circumference at the center has the radius Δkmax.

When choosing a smooth trial function Φk in Sec-
tion 4, we implicitly assume that for all points on
the Fermi surface, the nearest boundary of the Bril-
louin zone is close enough for the electron–electron
scattering to prevent a significant change in the trial
function on this scale. In other words, the electron–
electron scattering must have time to smooth the
distribution function. This assumption is justified in a
wide range of parameters, because the Fermi surface
is often intersected by the numerous boundaries of
high Brillouin zones owing to the large number of
electrons Z ∼ 30 per crystal lattice site (atomic nu-
cleus) in the neutron star crust. Let us show this more
rigorously.

Since the electron–electron scattering is small-
angle one, the time it takes for the electron quasi-
momentum to change by Δk can be estimated as
τΔk ∼ τdiff

e [Δk/(πkF)]2. Here, τdiff
e is the time it

takes for the electron momentum to rotate through π
under the action of electron–electron collisions. As
the latter, we will take the electron momentum
relaxation time that determines the shear viscosity.
Shternin (2008) calculated this quantity by taking

into account the Landau damping of transverse
plasmons. If the diffusion time τΔk is less than the
momentum relaxation time τ , then our calculation
with a smooth trial function Φk will be justified,
because electron–electron collisions for trial func-
tions differing significantly near the boundaries of
the Brillouin zones and at the points farthest from
them will lead to an increase in the integral I2 and,
hence, to a poorer variational estimate of the electrical
conductivity.

To obtain an upper limit for τΔk, let us associate
the distance to the nearest boundary of the Brillouin
zone with each point on the Fermi sphere. We will
designate the maximum distance as Δkmax. For
atomic nuclei with charges Z = 2−100, the distance
Δkmax was determined by the Monte Carlo method
for bcc and fcc lattices and was approximated by the
expression

Δkmax ∼ 0.6qBZZ−1/3. (В1)

The approximation accuracy is illustrated in Fig. 11.
Despite the differences between the exact calculation
and the approximation by up to a factor of 1.5, we will
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Fig. 13. Temperatures Tee (dotted line) and Tph (short
dashed line) versus density for a neutron star crust
with a smooth equilibrium nuclear composition. In the
region T > Tph hatched by thick lines, the electron–
phonon scattering is fairly efficient on the entire Fermi
surface. The thin hatching corresponds to the region
T < Tph, where the electron–electron scattering has time
to smooth the electron distribution function. In the gray
region, the electron–electron scattering rate can limit the
electron scattering in some parts of the Fermi surface.
The long dashes indicate the temperature TU. The dash–
dotted lines indicate the temperatures TB corresponding
to magnetic fields B = 1010, 1011, and 1012 G. The ver-
tical dotted line indicates the neutronization density.

restrict ourselves to using the simple formula (B1) for
the subsequent estimations. Note that the distance to
the nearest boundary of the Brillouin zone is typically
much smaller than Δkmax. This is shown in Fig. 12,
which is analogous to Fig. 3 but is oriented so that
the wave vector farthest from the boundaries of the
Brillouin zones is perpendicular to the plane of the
figure. The dashed circumference of radius Δkmax
indicates the region where there are no boundaries of
the Brillouin zones. We see that many lines corre-
sponding to the boundaries of the Brillouin zone will
fall within the circumference of this radius at most
other points on the Fermi surface, i.e., most other
points on the Fermi surface are much closer to the
boundaries of the Brillouin zones. Therefore, on the
bulk of the Fermi surface, the diffusion time to such a
boundary τΔk will be much smaller than our estimate
under the assumption of Δk = Δkmax. Consequently,
the deviation of the electron distribution function from
the equilibrium one (and, hence, the best trial function
Φk) will be a smoother function.

Next, we will calculate the time τ using the in-
terpolation of the Coulomb logarithm (39). If the
condition τΔk = τ is met at some temperature Tee,
then the relation τΔk < τ will be valid at temperatures
T < Tee due to the sharper temperature dependence
of the time τ (τΔk ∝ T 5/3). Therefore, in the region
T < Tee indicated by the thin hatching in Fig. 13,
using a smooth trial function Φk is justified.

At fairly high temperatures (the thick hatching in
Fig. 13)

T � Tph =
�

kB
VphΔkmax ≈ 0.6CTpZ

−1/3 (В2)

the phonon modes with wave numbers q ∼ Δkmax
have nonexponentially small occupation numbers
and, hence, the electron–phonon scattering is effi-
cient on the entire Fermi surface. Therefore, even
without allowance for the electron–electron colli-
sions, the maximum of the functional (17) defining
the electrical conductivity will be reached for smooth
trial functions Φk. The characteristic temperature Tph
is indicated by the line with short dashes in Fig. 13.

At intermediate temperatures indicated by the
gray color in Fig. 13, regions where the quasi-
momentum diffusion time to the regions of efficient
electron–phonon scattering can be larger than the
time τ appear on the Fermi surface. Therefore, the
momentum relaxation time in these regions will be
determined by the diffusion time to the boundary of
the Brillouin zone and not by the Fermi-surface-
averaged scattering time τ . This can lead to an
increase in the electrical conductivity. However, this
increase cannot be too large, because the effective
diffusion time in the range of temperatures Tee �
T � Tph cannot exceed the time τΔk, which at ρ �
1011 g cm−3 in this temperature range differs from τ
by no more than several times. At ρ � 1010 g cm−3,
the difference can be an order of magnitude. Note that
this value seems overestimated, because the diffusion
time for most of the points on the Fermi surface is
much shorter and the actual electrical conductivity
difference must be less significant.

In the range T � TU we considered (the temper-
ature TU is indicated in Fig. 13 by the line with long
dashes), the momentum diffusion through electron–
electron collisions turns out to be rapid at all densi-
ties.

In addition, we disregarded the presence of a mag-
netic field in the neutron star crust. In the absence
of scattering, a magnetic field leads to the rotation
of the electron momentum component perpendicular
to the magnetic field and, hence, the momentum will
regularly approach the lines of intersection between
the Fermi sphere and the boundaries of the Brillouin
zones. Thus, the deviation of the electron distribution
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function from the equilibrium one will be smoothed
out at a sufficient rotation rate:

τ � τB = ω−1
g Δk/kF (В3)

≈ 4.3 × 1018A−1/3Z−1/3 ρ12

B12
s,

where ωg = eB/(xrmec) is the electron gyrofre-
quency and B12 is the magnetic field in units of
1012 G. Note that since the ratio Δk/kF is small,
condition (B3) is consistent with the condition for
an isotropic electrical conductivity τωg � 1, which is
valid for fields B � 1012 G almost in the entire domain
of parameters shown in Fig. 13. In the case of τωg �
1, the electrical conductivity becomes anisotropic
(Urpin and Yakovlev 1980; Potekhin 1999). Let TB
be the temperature at which τ = τB. The condition
τ � τB is then met at T � TB, because the relaxation
time increases with decreasing temperature. The
characteristic temperatures TB for magnetic fields
B = 1010, 1011, and 1012 G are indicated in Fig. 13
by the dash–dotted lines. At B = 1012 G, almost in
the entire domain of parameters shown in the figure,
the rotation rate of the electron momentum in the
magnetic field turns out to be rapid enough for it to
cross the boundary of the Brillouin zone at least once
in the characteristic electron relaxation time τ . A
field of 1011 G leads to a fairly rapid smoothing of
the distribution function almost in the entire range
Tee � T � Tph. The relatively weak (for neutron
stars) field of 1010 G also reduces considerably the
region in which the electron–electron collision rate
can limit the momentum relaxation time.

Thus, using a smooth trial function Φk seems
justified, at least in the presence of a magnetic field
B � 1011 G. For weak fields in the range Tee � T �
Tph, the calculation of the electrical conductivity for
matter with equilibrium nuclear composition when
using a smooth trial function can underestimate the
electrical conductivity, but by no more than an order
of magnitude.

We considered the influence of scattering nonuni-
formity on the Fermi surface with a scale ∼Δkmax.
According to Fig. 12, the density of the lines of inter-
section between the Fermi sphere and the boundaries
of the Brillouin zones (and, hence, the scattering rate)
is also nonuniform on a large scale ∼qBZ. However,
this nonuniformity is not so strong and should not
affect significantly the electrical conductivity. Never-
theless, this conclusion requires an additional verifi-
cation.

APPENDIX C

AVERAGING[(Vk − Vk′) · u]2 OVER THE
DIRECTIONS OF THE RECIPROCAL

LATTICE VECTORS

The velocity difference (Vk − Vk′) = V(q) is di-
rected along the vector g (see Section 4), while its
magnitude is determined by the coordinates of the
phonon wave vector q||, q⊥, and qϕ. Therefore, at
fixed q||, q⊥, and qϕ, the summation over the vec-
tors ge derived from g by the cubic lattice symmetry
transformation (by the reversals and permutations of
coordinates) is equivalent to the summation over the
vectors derived from V(q) by the same transforma-
tions. Thus,

1
48

∑

ge

[(Vk − Vk′) · u]2

=
1
48

{
(Vxux + Vyuy + Vzuz)

2

+ (Vyux + Vxuy + Vzuz)
2

+ (−Vxux + Vzuz + Vzuz)
2

+ (−Vyux + Vxuy + Vzuz)
2 + . . .

}

=
1
3

(Vk − Vk′)2 u2 =
1
3

(Vk − Vk′)2 .
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