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Using the results of extensive Monte Carlo simulations we discuss corrections to the linear mixing rule in
strongly coupled binary ionic mixtures. We analyze the plasma screening function at zero separation, Hjk (0),
for two ions (of types j = 1, 2 and k=1,2) in a strongly coupled binary mixture. The function Hjk (0) is
estimated by two methods: (1) from the difference of Helmholtz Coulomb free energies at large and zero
separations; (2) by fitting the Widom expansion of Hjk(x) in powers of interionic distance x to Monte Carlo
data on the radial pair distribution function gjk(x). These methods are shown to be in good agreement. For
illustration, we analyze the plasma screening enhancement of nuclear burning rates in dense stellar matter.

c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

More than 30 years ago [1] the linear mixing rule for multicomponent strongly coupled mixtures was shown to
be highly accurate. However, only recent studies [2,3] have achieved enough accuracy to describe the corrections
to the linear mixing rule for a wide range of plasma parameters; previous attempts, e.g. [4, 5], were restricted at
least by a limited number of data points. We discuss the corrections to the linear mixing rule in application to the
plasma screening of nuclear reactions in strongly coupled mixtures. Following Ref. [6] we apply two approaches
to calculate the screening enhancement: one is based on the thermodynamic relations and the other on fitting the
mean-field potentials. The main advance of the present work is in using a much wider set of numerical data and
most precise thermodynamic results.

2 Plasma screening enhancement of nuclear reaction rates

Let us study a multicomponent mixture of ions j = 1, 2, . . . with atomic mass numbers Aj and charge numbers
Zj . The ions are supposed to be fully ionized. Their total number density is the sum of partial densities, ni =∑

j nj . It is useful to introduce the fractional number xj = nj/ni of ions j. Let us also define the average charge
number 〈Z〉 =

∑
j xjZj and mass number 〈A〉 =

∑
j xjAj of the ions. The charge neutrality implies that the

electron number density is ne = 〈Z〉ni. The electron plasma screening is typically weak and will be neglected.
Thermonuclear reactions in stars take place after the atomic nuclei collide and penetrate through the Coulomb

barrier. For a not too cold and dense stellar matter the tunneling length rt is much smaller than interionic dis-
tances (for recent result of nuclear fusion with large tunneling distances see [7,8]). The interaction of the reacting
ions with neighboring plasma particles creates a potential well which enlarges the number of close encounters
and enhances the reaction rate. Before the tunneling event the reactants j and k behave as classical particles.
Their correlations can be described by the classical radial pair distribution function gjk(r). It can be calcu-
lated by the classical Monte Carlo technique and written as gjk(r) = exp [−Γjk ajk/r +Hjk(r)/T ], where
Γjk = ZjZke2/(ajkT ) is the correponding Coulomb coupling parameter, and T is the temperature. The ion
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sphere radius ajk can be defined as [9] ajk = (aj + ak)/2 and aj = Z
1/3

j ae, where ae = (4πne/3)
−1/3.

The function Hjk(r) is the mean-field plasma potential. The plasma enhancement factor is then given by
Fjk(rt) = gjk(rt)/gid

jk(rt) = exp [Hjk(rt)/T ] ≈ exp [Hjk(0)/T ] . Here, gid
jk(rt) = exp (−Γjk ajk/rt) is

the pair distribution function in the absence of screening. In the last equality we neglect variations of Hjk(r)
over scales ∼ rt which are much lower than scales ∼ ajk of Hjk(r).

Widom expansion. The enhancement factor of nuclear reaction rates can be determined in following way:
one can calculate gjk(r) by classical Monte Carlo, extract Hjk(r) and extrapolate the results to Hjk(0). The
extrapolation is delicate [10] because of poor Monte Carlo statistics at small separations. We expect that the
expansion of Hjk(r) contains only even powers of r/ajk (the Widom expansion, [11]); its quadratic term is
known [12]:

Hjk(r) = H0 −
ZjZke2

2acomp

jk

(
r

acomp

jk

)2

+H4

(
r

ajk

)4

−H6

(
r

ajk

)6

+ . . . (1)

Here, H0 = Hjk(0) and acomp

jk = (Zj + Zk)
1/3ae is the ion-sphere radius of the compound nuclei. Let us also

introduce the dimensionless parameter h0
jk = Hjk(0)/T . We have performed a large number of Monte Carlo

simulations of mean field potentials in binary ionic mixtures. For each simulation, we fit Hjk(r) by Eq. (1) taking
H0, H4 and H6 as free parameters. To estimate error bars we have varied H0 and made additional fits with two
free parameters, H4 and H6. Fig. 1 shows the normalized enhancement parameter h0

jk/Γjk (dots with error bars)
calculated in this way.

Thermodynamic enhancement factors. The second approach to calculate the enhancement factors comes
from thermodynamics. One can estimate Hjk(0) as a difference of the Helmgoltz Coulomb free energies F of
the system before and after the reaction event (e.g., [13]):

h0
jk =

[
F (. . . , Nj , Nk, N comp

jk , . . .)− F (. . . , Nj − 1, Nk − 1, N comp

jk + 1, . . .)
]
/T, (2)

where Nj , Nk, N comp

jk are the numbers of the reacting nuclei and the compound nuclei (Zj + Zk, Aj +Ak).
Usually (see, e.g. [8]) one assumes the linear mixing model and presents the free energy of the Coulomb mix-

ture F as F lin ({Nj}) = T
∑

j Njf0 (Γjj) , where f0(Γ) is the Coulomb free energy (normalized to temperature
T ) per one nucleus in one component plasma. We use the well known approximation of f0(Γ) suggested by
Potekhin & Chabrier [14]. In linear mixing model Eq. (2) can be written in the convenient form:

hlin
jk = f0(Γjj) + f0(Γkk)− f0(Γ

comp

jk ), (3)

where Γcomp

jk = (Zj + Zk)
5/3

Γe is the Coulomb coupling parameter for the compound nucleus. The values of
hlin

jk are shown by the solid line in Fig. 1.
Our aim is to check the accuracy of the linear mixing and analyze deviations from this model. To do this

we apply the best available results for the thermodynamics of multicomponent mixtures [2, 3], which are valid
for any value of the coupling parameter. The values of the corresponding enhancement parameter h0

jk/Γjk are
shown by the long-dash line in Fig. 1.

3 Comparison of different approaches

In Fig. 1 we compare the plasma screening function at zero separation calculated by different methods. Each
of six panels demonstrates the histogram of normalized screening functions h0

jk/Γjk versus simulation number.
Three left panels show simulations with numbers from 1 to 50, and three right panels show simulations from
51 to 100. For each 3-panel block, the lower panel presents h0

11/Γ11, the middle panel shows h0
12/Γ12, and

the upper panel gives h0
22/Γ22. The parameters of simulations (Γ11, Z2/Z1, x1) are also shown on each block

by vertically aligned numbers: Γ11 on the lower panel, Z2/Z1 on the middle and x1 on the upper panel. For
example, the simulation number 1 is done for Γ11 ≈ 0.33, Z2/Z1 = 2, and x1 = 0.7.

www.cpp-journal.org c© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



698 A.I. Chugunov and H.E. DeWitt: Plasma screening and corrections to linear mixing

0.6

0.8

1.0

1.2

5 10 15 20 25 30 35 40 45 50

Simulation number

0.8

0.9

1.0

1.1

0.9

1.0

1.1

1.2

1.0

1.025

1.05

1.075

1.1

1.125

55 60 65 70 75 80 85 90 95 100

Simulation number

1.025

1.05

1.075

1.1

1.05

1.075

1.1

h
0 11

/Γ
11

Γ11

0
.3

3
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

0
1
.0

1
3
.3

6
3
.4

7
4
.4

2
5
.0

0
5
.0

0
6
.1

0
6
.1

0
9
.8

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.0

0
1
0
.8

4
1
5
.0

0
1
5
.0

0
2
0
.0

0
2
0
.0

0
2
0
.0

0
2
0
.0

0
2
0
.0

0
2
0
.0

0
2
0
.0

0
2
0
.0

0

h
0 12

/Γ
12

Z2/Z1

2
.0

0
2
.0

0
2
.0

0
3
.0

0
3
.0

0
5
.0

0
5
.0

0
8
.0

0
2
.0

0
8
.0

0
8
.0

0
8
.0

0
2
.0

0
2
.0

0
8
.0

0
8
.0

0
8
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
3
.0

0
3
.0

0
3
.0

0
5
.0

0
5
.0

0
5
.0

0
5
.0

0
5
.0

0
5
.0

0
5
.0

0
8
.0

0
8
.0

0
5
.0

0
3
.0

0
3
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
3
.0

0

h
0 22

/Γ
22

x1

0
.7

0
0
.9

9
0
.9

5
0
.9

9
0
.9

5
0
.9

9
0
.9

5
0
.9

9
0
.9

5
0
.9

0
0
.8

0
0
.8

5
0
.9

9
0
.9

5
0
.9

0
0
.9

0
0
.9

5
0
.9

9
0
.9

8
0
.9

5
0
.9

0
0
.8

0
0
.6

0
0
.4

0
0
.2

0
0
.1

0
0
.0

5
0
.9

9
0
.9

8
0
.9

5
0
.9

9
0
.9

9
0
.9

5
0
.9

0
0
.9

0
0
.8

0
0
.5

0
0
.9

9
0
.9

9
0
.9

0
0
.9

9
0
.9

5
0
.9

5
0
.9

0
0
.8

0
0
.6

0
0
.4

0
0
.2

0
0
.1

0
0
.9

9

h
0 11

/Γ
11

Γ11

2
0
.0

2
0
.0

2
0
.1

2
0
.1

2
0
.3

2
9
.9

3
0
.0

3
0
.0

3
0
.0

3
0
.0

3
0
.0

3
0
.0

3
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
0
.0

4
8
.0

4
8
.0

4
8
.0

4
8
.0

4
8
.0

4
8
.0

4
8
.0

4
8
.0

5
0
.0

6
0
.0

6
0
.0

8
0
.0

8
0
.0

1
0
0
.0

1
0
0
.0

1
6
3
.6

1
6
3
.6

1
6
3
.6

1
6
3
.6

1
6
3
.6

h
0 12

/Γ
12

Z2/Z1

3
.0

0
3
.0

0
3
.0

0
3
.0

0
5
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
3
.0

0
3
.0

0
3
.0

0
3
.0

0
3
.0

0
3
.0

0
3
.0

0
3
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
2
.0

0
3
.0

0
2
.0

0
3
.0

0
2
.0

0
3
.0

0
1
.3

3
1
.3

3
1
.3

3
1
.3

3
1
.3

3

h
0 22

/Γ
22

x1

0
.9

9
0
.9

5
0
.9

9
0
.9

9
0
.9

9
0
.9

0
0
.9

5
0
.8

0
0
.6

0
0
.4

0
0
.2

0
0
.1

0
0
.0

5
0
.9

5
0
.9

5
0
.9

0
0
.8

0
0
.6

0
0
.4

0
0
.2

0
0
.1

0
0
.0

5
0
.9

5
0
.9

5
0
.9

0
0
.8

0
0
.6

0
0
.4

0
0
.2

0
0
.1

0
0
.9

5
0
.9

0
0
.8

0
0
.6

0
0
.4

0
0
.2

0
0
.1

0
0
.0

5
0
.9

5
0
.9

5
0
.9

5
0
.9

5
0
.9

5
0
.9

5
0
.9

5
0
.5

0
0
.5

0
0
.5

0
0
.5

0
0
.5

0

Fig. 1 Histogram of the enhancement factors extracted from: 1) Widom fitting (dots with error bars); 2) linear mixing
[Eq. (3); solid line]; 3) thermodynamics (long-dash lines); 4) our approximation [Eq. (4); short-dash lines]. (Online colour:
www.cppjournal.org)

Each panel contains a set of dots with error bars, which represent the values of h0
jk/Γjk calculated by fitting

Hjk(r) with the aid of (1). Each panel contains 3 lines: the solid line shows the results of the linear mixing
model, Eq. (3); the long-dash line is calculated with the best available thermodynamics of the multicomponent
plasma (Eq. (2) with the free energy taken from [3]); the short-dash line is our approximation (4). Note, that the
normalized enhancement parameter is approximately constant at large Γjk. This property is well known [15]. The
linear mixing is a highly accurate as long as Γjk � 10. For lower Γjk the relative corrections can be much larger
and well described by both dashed-lines (the accurate thermodynamics and approximation). The most noticeable
difference between dots and the short-dashed lines takes place for h22/Γ22 in simulations 6, 7, 8, and 9 that are
done for low fractions of highly charged ions and large ratio Z2/Z1 ≥ 5. Such a difference is unimportant for
applications — it translates into the correction to the reaction rate within a factor of two.

Also, there are three large Γ simulations (96, 97, and 99), where dots are divergent. They started with lattice
configurations of ions. Thus the corrections to the linear mixing in crystalline phase are larger (as noted in [5]).

4 Approximation of enhancement factors and conclusions

We suggest to use the following approximation for the enhancement factor for all Γ and mixture composition

h0
jk = hlin

jk /
[
1 + Cjk (1− Cjk)

(
hlin

jk /hDH
jk

)2
]
. (4)

Here, hlin
jk is given by (3), hDH

jk = 31/2Zj Zk

〈
Z2

〉1/2
Γ

3/2
e / 〈Z〉1/2 is the well known Debye-Hückel enhance-

ment parameter, and Cjk = 3Zj Zk

〈
Z2

〉1/2
〈Z〉

−1/2
/

[
(Zj + Zk)

5/2
− Z

5/2

j − Z
5/2

k

]
. Eq. (4) reproduces the

Debye-Hückel asymptote at low Γ and the linear mixing at strong coupling.
In Fig. 2 we show the dependence of the approximated enhancement factors h0

jk/Γ
3/2

11 on Γ11. The figure
contains three panels; each for a specific binary ionic mixture. Each panel shows three groups of four lines. They
are (from top to bottom) h0

22/Γ
3/2

1 , h0
12/Γ

3/2

1 and h0
11/Γ

3/2

1 . Two of any four lines (solid and thick dashed lines)
are almost the same in the majority of cases. This couple represents the approximation (4) and the thermody-
namic enhancement factor (2), respectively. The dotted horizontal lines refer to the Debye-Hückel model and
the dash-dot lines are the linear mixing results. One can see that our approximation is in a good agreement with
thermodynamic results for most of cases, especially in panel (a) (for all mixtures with not too large Z2/Z1). If
Z2/Z1 becomes too large [panel (c)], the thermodynamic model of h0

11/Γ1, calculated in accordance with [3],

has a specific feature (h11/Γ
3/2

11 increases at Γ11 ∼ 10−2), while our approximation has not. We expect that this
feature is not real, but results from not too accurate extractions of the enhancement factors from thermodynamic
data. The free energy is almost fully determined by larger charges Z2 which also dominate by number (99%) in
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Fig. 2 Enhancement factors h0

jk/Γ
3/2

11
vs Γ11 for three binary ionic mixtures. (Online colour: www.cppjournal.org)

panel (c). Using Eq. 2 to get h0
11, one should differentiate the free energy with respect to N1, which provides

vanishing contribution to the free energy. Hence this procedure is very delicate and can strongly amplify the
errors of original thermodynamic approximation. We expect that our approximation can be more accurate than
the original thermodynamic result. Another, less probable option is that we still have not enough data to prove
the presence of the feature of h0

11/Γ
3/2

11 .
To conclude, we have calculated the enhancement factors of nuclear reactions in binary ionic mixtures by

two methods and showed good agreement of the results. We have proposed a simple approximation of the
enhancement factors valid for any Coulomb coupling. This approximation is almost the same as thermodynamic
ones for not too specific mixtures. It does not confirm some questionable features of the enhancement factors for
mixtures with large Z2/Z1 and small x1.
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