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Abstract—The realization (on the CUDA platform) of the search for the formal solution to the problem of
radiation transfer in the strongly magnetized plasma in the atmosphere of a neutron star on graphic processors
with the CUDA architecture. The solution is obtained using the Galerkin method with finite elements. The
realization of graphic processors makes it possible to substantially accelerate computations in constructing
models for the atmospheres of neutron stars.
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INTRODUCTION
Neutron stars are born hot as a result of collapse of

massive stars at the last stages of their evolution.
During the first few seconds after their generation,
isolated neutron stars become transparent to neutrinos
that are formed in the inner layers of a star due to var-
ious nuclear transformations. For this reason, during
the next 105 years, neutron stars lose their energy due
to emission of neutrinos and are gradually cooled. The
rate of such cooling depends on the composition,
properties, and equations of state of matter in neutron
stars (see, for example, [1]). Another way for obtaining
information about the superdense matter of neutron
stars lies in the possibility in principle to determine
their radii and masses. The dependence of the mass of
a neutron star on its radius can be obtained from the
solution of hydrostatic balance equations for a preset
equation of state of the matter in the bulk of the star.
Analyzing thermal radiation from a neutron star, it is
possible in principle to determine its mass, radius, and
temperature and therefore to find the limits of the
composition and state of the superdense matter (see,
for example, [2] for the review of the methods for
investigating the superdense matter by observations).

As a rule, thermal radiation of neutron stars is
observed in the soft X-ray range. Thermal radiation is
formed in a thin (about a centimeter) layer on the sur-
face. Accordingly, the thermal radiation spectrum is
determined by such properties of the surface as its
phase composition, the magnetic field magnitude and
direction, chemical composition, and temperature. To
interpret the observed thermal radiation from a neu-

tron star correctly, it is important to take into account
the magnetic field structure. Since the radiation trans-
fer in a magnetic field is anisotropic, the observed
spectrum also depends on the direction to the
observer; since a neutron star rotates, this direction
changes continuously relative to the magnetic field
configuration, and the radiation spectrum changes
together with the phase of rotation even for a uniform
distribution of temperature over the surface (in other
words, radiation pulsates). In addition, the thermal
conductivity in the outer layers of magnetized neutron
stars is anisotropic (thermal conductivity along field
lines is higher); therefore, the temperature distribu-
tion over the surface is also nonuniform (see, for
example, [3]).

The model of a magnetized hydrogen atmosphere
was initially constructed in [4–8]. It was shown in
these publications how the radiation intensity per unit
volume of a small surface element of a neutron star can
be calculated for preset values of the effective tempera-
ture, the magnetic field, and the angle between the
magnetic field direction and the normal to the surface.
For calculating the radiation f lux from the entire sur-
face of a neutron star, which is detected by a distant
observer, the surface can be divided into small ele-
ments so that the temperature and magnetic field can
be assumed to be constant within an element; then the
intensity for each element can be calculated, and the
contributions from each element must be summed
taking into account the bending of light in the gravity
field of the star.
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For interpreting the results of observations cor-
rectly, a multiparametric model of thermal radiation
from the surface of the neutron star is required; using
this model, the observed spectrum can be described
depending on the rotation phase, the shape of the light
curve depending on the photon energy (or dynamic
spectrum), as well as polarization of thermal radiation.
The presumptive model must depend on the following
parameters, which can be varied so as to obtain the
best description of the observed data (magnetic field
strength, temperature, mass, radius, angle between the
magnetic moment and the rotational axis, angle
between the rotational axis and the direction to the
observer, and acceleration due to gravity on the sur-
face. In practice, it is possible to calculate first the
radiation intensity from a surface element on the grid
of various values of the photon energy, the effective
temperature, the magnetic field, and the angle
between the magnetic field and the normal to the sur-
face. Such a grid must obviously be very large. For
example, in the Xspec data analysis package, the nsa
model [6], which actually describes the radiation
emitted by a single element of the surface with a fixed
magnetic field, is specified by a table with intensities
for 14 values of temperature and 1000 values of the
photon energy (14 000 values in all). If the grid also
contains at least 10 values of the magnetic field and
10 values of the angle, it means that we must calculate
radiation from a single element of the surface about a
million times. One of the main obstacles for the reali-
zation of this plan is a huge time expenditure for cal-
culation of thermal radiation from an element of the
surface.

For solving this problem, the realization of the for-
mal solution to transport equations in a strongly mag-
netized plasma on graphic maps has been developed.
The formal solution is a basic and resource consuming
step in calculating thermal radiation from a surface
element. In this paper, radiation transport is consid-
ered in the diffusion approximation [9] because any
practical calculation begins with the diffusion approx-
imation [4]. Radiation transport in the diffusion
approximation is briefly described in Section 1. For
solving corresponding equations, the Galerkin
method with finite elements is used, which is briefly
described in Section 2. The realization of the Galerkin
method on graphic maps is described in Section 3.
The realization is verified for the problem of transport
in an isothermal atmosphere, which has a simple ana-
lytic solution. Further prospects of constructing the
model of radiation from a neutron star are briefly dis-
cussed in Section 4.

1. RADIATION TRANSPORT IN A STRONGLY 
MAGNETIZED PLASMA

Let us consider the system of radiation transport
equations for two normal (ordinary and extraordinary)
modes in the diffusion approximation [9, 10]:
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(1)

Here, dτ = neσTdz is the Thompson optical depth,
(4π/c)Jj is the spectral density of the radiation energy
for the jth mode,  = (T) is the Planck function,
and Dj and kj are the diffusion and absorption coeffi-
cients that depend on frequency and are expressed in
Thompson units (neσT)–1 and neσT. The diffusion coef-
ficient also depends on angle ΘB between the magnetic
field and the normal to the surface:

(2)

Here, μ is the cosine of the angle between the
wavevector n and the magnetic field direction and Kj is
the sum of the absorption and scattering coefficients,

(3)

Integral emissivity  can be expressed as follows:

(4)

The scattering coefficient and the emissivity averaged
over angles have the form

(5)

The system of equations must be solved under the
following boundary conditions [4]:

(6)

System (1) must also be supplemented with the condi-
tions of conservation of the f lux and local thermody-
namic equilibrium. System of equations (1) is solved
by the method of successive approximations [4]. First,
we must specify the temperature profile. Usually, the
profile for the gray atmosphere (or Eddington profile
[11]) is chosen,

(7)

where Teff is the effective temperature, dτR = KRdτ is
the Rosseland optical depth, and KR is the Rosseland
mean of the absorption coefficient (see [11]),

(8)
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Fig. 1. Linear functions ψi(τ) (i = 0–5) for a four-element
grid on segment τ ∈ [0, 1].
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For a given temperature profile, coefficients kj and s,
as well as (T) in Eq. (1) are preset. In such a formu-
lation, this is the problem of determining a formal
solution to transport equations. Solving this problem,
we determine Jj(τ) and calculate the correction to the
temperature profile:

(9)

This gives a new temperature profile T(τ), and we
again solve system of equations (1) until relative error
ΔT/T becomes smaller than the preset value. The
obtaining of the formal solution is the most time con-
suming stage of computations.

Further, we consider the construction of the formal
solution by the Galerkin method with finite elements.

2. GALERKIN METHOD
WITH FINITE ELEMENTS

Let us first consider a particular case of system (1),
in which k0 = k1 = k, s = 0, and D0 = D1 ≡ D. Accord-
ingly, J0 = J1 ≡ J in this case, and the equation for J
assumes the form

(10)

In the Galerkin method with finite elements, the solu-
tion to Eq. (10) on segment [τ0, τN] is sought in the
form (see, for example, [12])

(11)

where  = J(τi) is the value of the sought function at
nodal points of the grid, N is the number of elements,
and ψi(τ) are piecewise smooth polynomials. For sim-
plicity, we first consider linear polynomials. All argu-
ments can easily be generalized for higher-order poly-
nomials. On element [τi, τi + 1], linear polynomials
have the following form in local coordinates of ele-
ment ξ (Fig. 1):

(12)

Further, we denote the operator in Eq. (10) by L(J)
and write the equation in weak form:

(13)

Substituting expansion (11) into this equation, inte-
grating the term with the second derivative by parts,
and transposing summation and integration, we
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It is also convenient to represent coefficients k, D, and
 in form (11). Substituting the expansions for the

coefficients and integrating, we obtain the system of
algebraic equations for :

(15)

where f is a vector with components 1/2 , and 
and  are the values of coefficient k and the Planck
function at the nodal points of the grid. Let us disre-
gard for the time being the boundary conditions and
the extra-integral term in Eq. (14). Then, matrix M for
a four-element grid has the form

(16)

Matrix G can be constructed analogously. Super-
scripts denote the number of the element in the grid on
which the given matrix element is calculated; matrices
Me and Ge for element e have the form
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where  is the value of function D at nodal point e,
and elements of matrices g0, 1, n0, 1, and n can be
expressed in terms of the integrals

(18)

The integrals can be evaluated easily, and the matrices
have the form

(19)

The above expressions were obtained disregarding the
extra-integral term in Eq. (14) and correspond to the
homogeneous Neuman conditions at points τ0 and τN.
Let us now consider boundary conditions (6). In
accordance with the Dirichlet condition on the right
boundary, the value of  is fixed. Accordingly, we
can exclude the last equation as well as the value of the
extra-integral term in expression (14) at point τN. Tak-
ing into account the condition on the left boundary,
we can write the value of the extra-integral term at
point τ0 in the form

(20)

Accordingly, with allowance for the boundary condi-
tions, matrix M and vector g assume the form (for a
four-element grid)

(21)

It is important to note that M is a symmetric and
positive-definite matrix (i.e.,  = M and Mx > 0
for ∀x ≠ 0).

We can now easily write the algebraic system for
Eqs. (1):
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where matrices Lj and S correspond to the following
operators:

(23)

Let us see how the construction and solution of sys-
tem (22) can be realized on graphic maps.

3. REALIZATION ON CUDA PLATFORM

Let us consider the realization of the solution of the
formal problem on the CUDA platform. For this pur-
pose, the CUDA C language was used. The descrip-
tion of the CUDA platform and CUDA C language
can be found in [13]. For developing the application
for graphic maps with the CUDA technology, it is nec-
essary to install the CUDA toolkit package that con-
tains nvcc compiler as well as some utilities for soft-
ware debugging and useful libraries.

System of equations (22) was solved by the conju-
gate-gradient method. This method can be formulated
as the successive approximation method for solving
system Ax = b, where A is a symmetric positive-defi-
nite matrix. Appendix A contains the corresponding
pseudocode.

It can be seen from the algorithm given in Appen-
dix A that at each iteration, matrix A must be multi-
plied by a vector and calculate direct products and
sums of vectors. The multiplication of the matrix by a
vector is the most time-consuming operation.

Let us first see how a matrix of type (21) must be
multiplied to make use of advantages of multicore pro-
cessors of the type of graphic maps. First, we can mul-
tiply each of the 2D matrices Me by the corresponding
2D vector. These operations can be performed inde-
pendently. Further, we must compose the resultant
vector from 2D vectors. The realization of this proce-
dure in the CUDA C language for the matrix appear-
ing when linear elements are used is described in
Appendix B as an example. For operations of the
scalar product and vector addition, the cuBLAS
library was used, which is a part of the CUDA toolkit
package.

For calculating the coefficients of linear system
(22), we must first calculate the vectors of values of
coefficients kj, Dj, s, and  in system of equations (1)
at points [τ0, τN] of the grid. In the simplest case, when
the coefficients are defined by simple expressions, the
coefficients can easily be calculated directly using
CUDA. By way of example, let us consider an isother-
mal atmosphere. The propagation of radiation in such
an atmosphere is described by Eq. (10) with coeffi-
cients D = const and k = κτ. Then, the analytic solu-
tion to Eq. (10) can be expressed in terms of the Airy
function φ(τ) [14, 15]. We assume that κ = 1 and D =
1; taking in account boundary conditions (6), we can
then write

= − + + = −
τ τ
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Fig. 2. Results of calculation for an isothermal atmosphere
in comparison with the analytic solution (solid curves).
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In Fig. 2, analytic solution (24) is compared with the
result of calculation for a grid of 30 points in τ = 10–8

to 106 and 9 points in energy E = 10–2–1. The number
of points was chosen for convenience of the represen-
tation. In actual calculations, it is better to use a larger
number of points. In the general case, it is convenient
to use tables with preliminarily calculated values in a
certain grid in temperature and photon energy and
then to find the required values by interpolation. The
interpolation was also effectively realized on CUDA.

4. CONCLUSIONS
The CUDA-aided realization of the search for the

formal solution to the equations for the radiation
transport in a strongly magnetized plasma makes it
possible to accelerate the computation of radiation
intensity from a small element of the neutron star sur-
face with preset values of temperature, magnetic field,
and the angle between the magnetic field direction and
the normal to the surface. As mentioned in the Intro-
duction, about a million such calculations are
required. Let us briefly consider the procedure that
follows after such calculations. A model of the neutron
star can be specified as a map of distributions of tem-
perature and magnetic field over the surface. For com-
parison with the observation data, it is necessary to
determine the elements of the surface the radiation
from which is detected by a remote observer for the
preset directions (to the observer, of the rotational axis
of the star, of the magnetic moment if we are dealing
with a dipole field) and the phase of rotation. Then,
these directions can be varied so as to describe the

φτ = − τ

= φ − φ

v( ) (1 ( )),
2
(0) 2 '(0).

BJ C

C

observations in the best way. The elements of the sur-
face that are seen by a remote observer can be deter-
mined, for example, by the method of ray tracing,
which can also be effectively realized on graphic maps.
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APPENDICES

A. ALGORITHM FOR CONSTRUCTING
A FORMAL SOLUTION

We describe below the algorithm for solving system
of equations (1) by the Galerkin method with finite
elements. The algorithm for the conjugate-gradient
method used for solving system (22) is also given.

Algorithm 1. Solution of system of equations (1)
on graphic maps

1: Calculation of kj, Dj, s, and  at grid points by interpo-
lation. The values at each point are calculated simultane-
ously.
2: Calculation of Lj, S, and G. Calculations are performed 
independently for each element of the grid.
3: Solution of system (22) by the conjugate-gradient 
method.
Algorithm 2. Conjugate-gradient method 

for solving system Ax = b
1: n ← 0,
2: x0 ← 0,
3: r0 ← b,
4: p0 ← b,

5: δ0 ← r0,

6: while δn > δ0do,

7: αn ← δn – 1/( Apn – 1),
8: xn ← xn – 1 + αnpn – 1,
9: rn ← rn – 1 – αApn – 1,

10: δn ← rn,
11: βn ← δn/δn – 1,
12: pn ← rn + βnpn – 1,
13: n ← n + 1,
14: end while.
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B. REALIZATION OF MULTIPLICATION
OF THE MATRIX APPEARING

IN THE METHOD OF LINEAR ELEMENTS
BY A VECTOR IN THE CUDA C LANGUAGE

The code for multiplication of a matrix of type (21)
by a vector is given in the CUDA C language.

__global__ void multMbyX(float *M, float *X,
float *Y) {

__shared__ float cache [N_elem] [2];
int tid=threadIdx.x+blockIdx.x*blockDim.x;
int cache Index=threadIdx.x;
if (tid<N_elem) {
cache[id][0]=M[tid][0]*X[tid]+M[tid] [1]*X[tid+1];
cache[id] [1] = M[tid] [1]*X[tid]+M[tid] [2]*X[tid+ 1];

}
__syncthreads () ;
int i = N_elem − 1;
while (i > 0) {
Y[i] = cache[i][0] + cache[i − 1] [1];
i = i − 1;

}
}
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