
 

Dissipative relativistic magnetohydrodynamics of a multicomponent
mixture and its application to neutron stars

V. A. Dommes ,* M. E. Gusakov , and P. S. Shternin
Ioffe Institute, Politekhnicheskaya 26, 194021 St. Petersburg, Russia

(Received 29 November 2019; accepted 30 April 2020; published 15 May 2020)

We formulate hydrodynamic equations for nonsuperfluid multicomponent magnetized charged
relativistic mixtures, taking into account chemical reactions as well as viscosity, diffusion, thermodiffusion,
and thermal conductivity effects. The resulting equations have a rather simple form and can be readily
applied, e.g., for studying magnetothermal evolution of neutron stars. We also establish a link between our
formalism and the results known in the literature and express the phenomenological diffusion coefficients
through momentum transfer rates which are calculated from microscopic theory.
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I. INTRODUCTION

Observations of neutron stars (NSs) contain a wealth of
potentially important information about the properties of
superdense matter in their interiors [1–7]. In order to extract
this information, however, one has to build realistic models,
allowing the theoretical study of the NS dynamics. Such
models should account for various particle species in the
core (neutrons, protons, electrons with an admixture of
muons, and, possibly, hyperons and/or quarks), magnetic
field, baryon superfluidity, and effects of the general theory
of relativity. Clearly, the construction of such models is a
complex theoretical problem, which is under intensive
development now (e.g., Refs. [8–18]).
For example, in studies of magnetothermal evolution, one

has to account for the fact that the magnetic field in super-
conducting NS cores can be confined to Abrikosov vortices.
Then the problem of magnetic field evolution reduces to the
analysis of motion of vortices under the action of various
forces exerted on them by different particle species (neutrons,
protons, electrons, muons, etc.), which move with different
velocities and interact with one another. Smooth-averaged
relativistic magnetohydrodynamic (MHD) equations, suitable
for describing the evolution of such a system at finite
temperatures, were formulated in Ref. [16], neglecting dif-
fusion of normal (nonsuperfluid and nonsuperconducting)
particles (see also a number of related works [8,11,19] in this
direction). However, diffusion is known to play an important
role, affecting not only dissipation of the magnetic field, but
also its nondissipative evolutionary timescales [10,17,20–28].
Therefore, initially, our main goal was to generalize the

equations obtained in Ref. [16] to allow for diffusion. During
this work, it quickly became clear that even in the absence of
baryon superfluidity and superconductivity there are certain

gaps in the literature devoted to magnetized relativistic
mixtures, which become especially apparent in the NS
context. First of all, a majority of works on relativistic
dissipative MHD (see, e.g., Refs. [29–32]) postulate a
simplified version of Ohm’s law, which includes the electric
field but ignores gradients of thermodynamic functions
(chemical potentials and temperature). The latter terms are
generally present even in the single-fluid MHD, not to
mention its multifluid extensions [33,34], and can be impor-
tant for NS conditions [20,21]. There are only a few papers in
which the generalized Ohm’s law for relativistic MHD is
derived simultaneously with the basic dynamic equations
(see, e.g., Ref. [35] and a recent series of papers byAndersson
et al. [12–15]). In our opinion, the main shortcoming of these
works (if we talk about applications to neutron stars) is their
excessive complexity and lack of transparency of the resulting
equations which precludes their practical applications. At
least partly, this is because formulations of Refs. [12–15,35]
do not make a full use of simplifications arising for a system,
for which the hydrodynamic approximation is valid, i.e.,
when the typical mean-free path l and collision time τ are
much smaller than, respectively, the typical length scaleL and
timescale T of the problem. Because the hydrodynamic
approximation should work very well for typical NS con-
ditions, it seems interesting and useful to formulate MHD
where this approximation is fully implemented.
Thus, the aim of the present study is to present a ready-

to-use formulation of a dissipative relativistic MHD for
multicomponent nonsuperfluid mixtures. To this aim, we
also express the phenomenological coefficients appearing
in this hydrodynamics through the parameters calculated
from the microscopic theory. We follow the textbook
phenomenological approach of Landau and Lifshitz [36]
and Eckart [37]; namely, we build a first-order dissipative
hydrodynamics which includes only the linear terms in the
thermodynamic fluxes. Notice that, theoretically speaking,*vasdommes@gmail.com
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the standard first-order hydrodynamics has some issueswith
causality (thermal fluctuations propagate at infinite speed)
and stability [38,39]. These issues can be avoided at the cost
of using much more complicated hydrodynamic theories,
such as various second-order theories [40–42] or hydro-
dynamics obtained within Carter’s variational approach
[12,15,43] (see, e.g., Refs. [44,45] for the reviews).1

However, the first-order theory is sufficient (and, in fact,
follows from the kinetic equation approach; see, e.g.,
Ref. [49]) as long as the hydrodynamic description is
applicable, that is, T ≫ τ and L ≫ l. These conditions
ensure that the space-time gradients of the deviations from
the equilibrium, e.g., heat flux and viscous stress, are
negligible on the scale of mean-free path or mean-free time.
Bearing in mind that these conditions hold for almost all
situations of practical interest, such as magnetothermal
evolution or hydrodynamic oscillations of NSs, we restrict
ourselves to the first-order hydrodynamics.2 Another attrac-
tive feature of this hydrodynamics is that it allows one to
easily connect all the phenomenological kinetic coefficients
with the quantities calculated from the microscopic theory.
Finally, the dissipative hydrodynamics presented below,
combined with the results of Ref. [16], is readily extendable
to the superfluid and superconducting charged mixtures
with vortices [51].
This paper is organized as follows. In Sec. II, we

formulate general hydrodynamics equations for charged
relativistic mixtures in the absence of bound charges and
bound currents. In Sec. III, we derive the entropy gen-
eration equation, and, in Sec. IV, we use it together with the
Onsager relations to derive the most general form of
dissipative corrections for particle currents and energy-
momentum tensor. In Sec. V, we explicitly write out the
MHD equations for a general relativistic nonrotating NS.
Section VI contains a number of applications and special
cases that highlight the connection between the generalized
diffusion coefficients, introduced here, and kinetic coef-
ficients known from the literature: electrical conductivity,
thermal conductivity, and momentum transfer rates, as well
as nonrelativistic diffusion, thermodiffusion, and thermal
conductivity coefficients. Section VII contains the ready-
to-use expressions for the momentum transfer rates in npeμ
matter of NS cores. We compare our results to other works
in Sec. VIII and sum up in Sec. IX. Some technical details
elucidating derivations in the main text are presented in

Appendixes A and B. Finally, Appendix C shows how to
express generalized diffusion coefficients through the
momentum transfer rates in the low-temperature limit.
Unless otherwise stated, in what follows, the speed of

light c and the Boltzmann constant kB are set to unity:
c ¼ kB ¼ 1.

II. GENERAL EQUATIONS

In this section, we present hydrodynamic equations
that describe charged relativistic mixtures in the absence
of bound charges and bound currents. For the sake of
simplicity, here we assume that the space-time metric
is flat: gμν ¼ diagð−1; 1; 1; 1Þ; the straightforward gener-
alization of our results to arbitrary gμν is discussed in
Sec. V. The hydrodynamic equations include the energy-
momentum conservation law

∂μTμν ¼ Gν ð1Þ

and continuity equations for particle species j

∂μj
μ
ðjÞ ¼ ΔΓj; ð2Þ

where ∂μ ≡ ∂=∂xμ; Tμν is the energy-momentum tensor
(which must be symmetric); Gν is the radiation four-force
density3; jμðjÞ is the particle four-current density for the

particle species j; ΔΓj is the reaction rate for species j due
to nonequilibrium processes of particle mutual transforma-
tion. Here and below, unless otherwise stated, μ, ν, and
other Greek letters are space-time indices running over
0, 1, 2, and 3; Latin letters i; j; k… are particle species
indices, and summation over repeated space-time and
particle indices is assumed. Generally, Tμν and jμðjÞ can

be presented as

Tμν ¼ ðPþ εÞuμuν þ Pgμν þ ΔTμν
ðEMÞ þ Δτμν; ð3Þ

jμðjÞ ¼ njuμ þ ΔjμðjÞ; ð4Þ

where P is the pressure given by Eq. (20) below; ε is the
energy density; nj is the number density for species j;
ΔTμν

ðEMÞ is the electromagnetic contribution to the energy-

momentum tensor given by Eq. (22) below; Δτμν and ΔjμðjÞ
are dissipative corrections to the energy-momentum tensor
and particle currents, respectively. Finally, uμ is the four-
velocity vector, normalized by the condition

uμuμ ¼ −1: ð5Þ

1As has been shown recently, some first-order theories (which
are more general than Landau-Lifshitz or Eckart hydrodynamics
and contain additional kinetic coefficients) can also be stable and
causal, at least in some cases [46–48].

2Note that the instabilities of the first-order hydrodynamics
found, e.g., in Ref. [39] develop for the modes (Fourier
components), which evolve on a timescale T much shorter than
τ. Such modes are not within the range of applicability of the first-
order theory and should be discarded (e.g., [47,50]) or filtered
out, if we talk about numerical implementation of this theory.

3Gν describes the exchange of energy and momentum between
matter and radiation. In the simplest case of isotropic emission,
Gν ¼ −Quν, where Q is the total emissivity (e.g., neutrino
emissivity due to beta processes in the NS cores).
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The thermodynamic quantities introduced in Eqs. (3) and
(4) do not have any direct physical meaning unless a frame
where they are measured (defined) is specified. In what
follows, we measure all thermodynamic quantities in the
comoving frame given by the condition uμ ¼ ð1; 0; 0; 0Þ.
By definition, the energy and number densities are the
components T00 and j0ðjÞ in that frame, T00 ¼ ε and

j0ðjÞ ¼ nj, which, in an arbitrary frame, translate into

uμuνTμν ¼ ε; ð6Þ
uμj

μ
ðjÞ ¼ −nj: ð7Þ

These relations in view of the expressions (3), (4), and
(22)–(24) impose the following restrictions on the dissi-
pative corrections:

uμuνΔτμν ¼ 0; ð8Þ

uμΔj
μ
ðjÞ ¼ 0: ð9Þ

The definition of uμ is still somewhat ambiguous.
Following Landau and Lifshitz [36], we specify uμ by
the condition that the total momentum of the fluid vanishes
in the comoving frame (the so-called Landau-Lifshitz, or
transverse, frame). Then the dissipative correction to the
energy-momentum in this frame obeys the additional
restriction

uνΔτμν ¼ 0: ð10Þ

In the system without bound charges and currents, the
electromagnetic field is described by Maxwell’s equations

∂μFνλ þ ∂νFλμ þ ∂λFμν ¼ 0; ð11Þ

∂νFμν ¼ 4πJμ; ð12Þ

where Fμν ¼ −Fνμ is the electromagnetic tensor and

Jμ ≡ ejj
μ
ðjÞ ¼ ejnjuμ þ ejΔj

μ
ðjÞ ð13Þ

is the electric current (ej is the electric charge for particle
species j). Since ΔjμðjÞ depends on the electric four-vector

Eμ and various gradients of chemical potentials and
temperature [see Eq. (55) below], Eq. (13) is simply the
generalized Ohm’s law, whose form is specified in Sec. IV.
Note that in the majority of situations the term ejnjuμ in
Eq. (13) is very small in comparison to ejΔj

μ
ðjÞ due to

quasineutrality condition ejnj ≈ 0 and can be neglected
[33]. The electric field E and the magnetic induction B are
defined, respectively, as

E≡ ðF01; F02; F03Þ; ð14Þ

B≡ ðF23; F31; F12Þ: ð15Þ

Eqs. (1)–(3), (6), and (7) are key equations that will be
used below. They should be supplemented by the second
law of thermodynamics,

dε ¼ μjdnj þ TdSþ dεadd; ð16Þ
where μj is the relativistic chemical potential for particle
species j, T is the temperature, S is the entropy per unit
volume, and dεadd is the electromagnetic contribution. In
the absence of bound charges and currents, the latter reads

dεadd ¼
1

4π
EαdEα þ 1

4π
BαdBα; ð17Þ

where Eα and Bα are the “electric” and “magnetic” four-
vectors, respectively [16,29], defined as

Eμ ≡ uνFμν; ð18Þ

Bμ ≡ 1

2
ϵμναβuνFαβ; ð19Þ

and ϵμναβ is the Levi-Civita tensor, normalized by ϵ0123 ¼ 1.
In the comoving frame, uμ ¼ ð1; 0; 0; 0Þ, four-vectors Eμ

and Bμ are expressed through the electric field E and the
magnetic induction B, respectively: Eμ ¼ ð0;EÞ and
Bμ ¼ ð0;BÞ.
The pressure P is defined as a partial derivative of the full

system energy εV with respect to volume V at a constant
total number of particles, total entropy, and electromagnetic
scalars EαEα and BαBα:

P≡ −
∂ðεVÞ
∂V ¼ −εþ μjnj þ TS: ð20Þ

Using Eqs. (16)–(20), one arrives at the following Gibbs-
Duhem equation:

dP ¼ njdμj þ SdT −
1

4π
EαdEα −

1

4π
BαdBα: ð21Þ

The term ΔTμν
ðEMÞ in Eq. (3) has the form

ΔTμν
ðEMÞ ¼ Tμν

ðEÞ þ Tμν
ðMÞ; ð22Þ

where Tμν
ðEÞ and Tμν

ðMÞ are given, respectively, by [see, e.g.,

Eqs. (48) and (49) in Ref. [16]]

Tμν
ðEÞ ¼ −

1

4π
ðEμEν −⊥μνEαEαÞ; ð23Þ

Tμν
ðMÞ ¼

1

4π
ð⊥δαFμδFνα − uμuνuγuβFαβFαγÞ; ð24Þ

where ⊥μν ≡ gμν þ uμuν is the projection tensor.
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III. ENTROPY GENERATION RATE

The entropy generation equation follows naturally from
the conservation laws and the second law of thermody-
namics. Consider the combination uν∂μTμν − uνGν, which
vanishes in view of Eq. (1). Using Eqs. (2)–(4), (16), and
(20), as well as the identities uν∂μuν ¼ 0 and ∂μgμν ¼ 0, we
arrive at

∂μðSuμÞ ¼
μj
T
∂μΔj

μ
ðjÞ −

μj
T
ΔΓj −

uμ

T
∂μεadd

þ uν
T
∂μðΔTμν

ðEMÞ þ ΔτμνÞ −Q
T
; ð25Þ

where Q≡ uνGν. Now let us transform the “electromag-
netic” term uμ∂μεadd=T in Eq. (25). Using Eqs. (63) and
(68) from Ref. [16], we can write

−uμ∂μεadd ¼ uνFμνJμ − ∂μ½uνðTμ
ðEÞν þ Tμ

ðMÞνÞ�
þ ∂μuνðTμ

ðEÞν þ Tμ
ðMÞνÞ: ð26Þ

Notice that uνFμνJμ ¼ ejEμΔj
μ
ðjÞ due to antisymmetry of

the tensor Fμν [remember also the definition (18) for Eμ].
Substituting now relations (22) and (26) into Eq. (25), we
obtain

∂μðSuμÞ ¼
μj
T
∂μΔj

μ
ðjÞ −

μj
T
ΔΓj þ

ejEμ

T
ΔjμðjÞ

þ uν
T
∂μΔτμν −

Q
T

ð27Þ

or, equivalently,

∂μ

�
Suμ −

μj
T
ΔjμðjÞ −

uν
T
Δτμν

�

¼ −ΔjμðjÞ

�
∂μ

�
μj
T

�
−
ejEμ

T

�
− Δτμν∂μ

�
uν
T

�

−
μj
T
ΔΓj −

Q
T
: ð28Þ

The left-hand side of this equation is the four-divergence of
the entropy four-current Sμ ¼ Suμ − μj

T Δj
μ
ðjÞ −

uν
T Δτμν,

while the right-hand side represents the entropy generation
due to dissipative processes. Note also that dissipative
corrections to the currents ΔjμðjÞ and the energy-momentum

tensor Δτμν must be expressed as linear combinations of
gradients of uμ and thermodynamic variables [52].4 Except
for the last term, which can be arbitrary, the right-hand side
of Eq. (28) must be non-negative for all possible fluid
configurations.

In the Landau-Lifshitz frame defined by Eq. (10),
Eq. (28) reduces to

∂μSμ¼−ΔjμðjÞ

�
∂μ

�
μj
T

�
−
ejEμ

T

�
−Δτμν

∂μuν
T

−
μj
T
ΔΓj−

Q
T
;

Sμ¼Suμ−
μj
T
ΔjμðjÞ: ð29Þ

Using the conditions (9) and (10), one can rewrite
Eq. (29) as

∂μSμ ¼ −ΔjμðjÞdðjÞμ − Δτμν
⊥∇μuν

T
−
μj
T
ΔΓj −

Q
T
; ð30Þ

where we introduced the orthogonal part of the four-
gradient

⊥∇μ ≡⊥μν∂ν; ð31Þ

and the vector dðjÞμ,

dðjÞμ ≡ ⊥∇μ

�
μj
T

�
−
ejEμ

T
: ð32Þ

Both the vector dðjÞμ and the tensor ⊥∇μuν are orthogonal to
the four-velocity uμ.
The term − μj

T ΔΓj in Eq. (30) can be rewritten in the form
(see Appendix A)

−
μj
T
ΔΓj ¼

1

T
λXðΔμXÞ2; ð33Þ

where ΔμX is the chemical potential imbalance for a given
reaction X (for example, for the direct or modified Urca
processes [53], the chemical potential imbalance equals
ΔμX ≡ μn − μp − μe) and λX > 0 is a corresponding reac-
tion coefficient.

IV. EXPRESSIONS FOR ΔjμðjÞ AND Δτμν

In the linear approximation in small gradients, the
quantities ΔjμðjÞ and ΔTμν can generally be presented as

ΔjμðjÞ ¼ −Aμν
jkdðkÞν − Bμνλ

j

⊥∇νuλ
T

; ð34Þ

Δτμν ¼ −Cμνλ
k dðkÞλ −Dμνλσ⊥∇λuσ; ð35Þ

respectively, where the kinetic coefficients Aμν
jk , B

μνλ
j , Cμνλ

k ,
and Dμνλσ are discussed in what follows.

A. No magnetic field

Let us first analyze expressions for ΔjμðjÞ and Δτμν in a

homogeneous matter in the absence of a preferred direction
4We remind the reader that we restrict ourselves to the first-

order dissipative hydrodynamics.
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(e.g., the magnetic field). In this case, the kinetic coef-
ficients Aμν

jk , B
μνλ
j , Cμνλ

k , and Dμνλσ in Eqs. (34) and (35)
depend only on uμ, gμν, and (scalar) equilibrium thermo-
dynamic functions. These coefficients meet a number of
conditions. First, application of the Onsager symmetry
principle gives

Aμν
jk ¼ Aνμ

kj ; ð36Þ

Dμνλσ ¼ Dλσμν; ð37Þ

Cμνλ
k ¼ −Bλμν

k : ð38Þ

Second, the symmetry of Δτμν implies that

Dμνλσ ¼ Dνμλσ; ð39Þ

Cμνλ
k ¼ Cνμλ

k : ð40Þ

Third, the conditions (9) and (10) lead to the following
constraints:

uμA
μν
jkdðkÞν ¼ 0; ð41Þ

uμB
μνλ
k

⊥∇νuλ ¼ 0; ð42Þ

uμC
μνλ
k dðkÞλ ¼ 0; ð43Þ

uμDμνλσ⊥∇λuσ ¼ 0; ð44Þ

which must hold for arbitrary dðkÞν and ⊥∇νuλ. Finally, one
should require that the matrices of kinetic coefficients
should be such that the entropy production rate would be
non-negative.
Unless the isotropic system has no center of inversion,

the Curie principle requires that the perturbations of
different tensor structure (i.e., viscosity and diffusion) do
not interfere and Bμνλ

k ¼ Cμνλ
k ¼ 0 (see also Appendix B).

Then the most general expressions for ΔjμðjÞ and Δτμν take
the form [see Eqs. (B6) and (B18)]

ΔjμðjÞ ¼ −Djkd
μ
ðkÞ; ð45Þ

Δτμν ¼ −ηð⊥∇μuν þ ⊥∇νuμÞ −
�
ζ −

2

3
η

�
⊥μν⊥∇λuλ;

ð46Þ

respectively. Here, the matrix of generalized diffusion
coefficients Djk must be positive definite, and the coef-
ficients η (shear viscosity) and ζ (bulk viscosity) [36] must
be non-negative.

B. Accounting for the magnetic field

Now let us consider a homogeneous matter, in which the
only preferred direction is specified, in the comoving
frame, by the magnetic induction vector B.5 In what
follows, in addition to the magnetic four-vector Bμ it will
be convenient to use also the tensor ⊥Fμν ≡⊥μα⊥νβFαβ

(see Ref. [16], Appendix A), which in the comoving frame
is given by

⊥Fμν ¼

0
BBB@

0 0 0 0

0 0 B3 −B2

0 −B3 0 B1

0 B2 −B1 0

1
CCCA ð47Þ

and satisfies the identity

uν⊥Fμν ¼ 0: ð48Þ

In the presence of a magnetic field, the Onsager principle
(36)–(38) is modified (see, e.g., [56], Sec. 120):

Aμν
jkðBÞ ¼ Aνμ

kjð−BÞ; ð49Þ

DμνλσðBÞ ¼ Dλσμνð−BÞ; ð50Þ

Cμνλ
k ðBÞ ¼ −Bλμν

k ð−BÞ; ð51Þ

while Eqs. (34) and (35) and the conditions (39)–(44)
remain unaffected. The kinetic coefficients now depend on
uμ, gμν, Bμ, ⊥Fμν, and (scalar) equilibrium thermodynamic
functions.
One can check (see Appendix B) that, as in the system

without the magnetic field, Bμνλ
k ¼ Cμνλ

k ¼ 0; i.e., diffusion
and viscosity do not interfere. Thus, ΔjμðjÞ depends only on
the vectors dðkÞν. In the comoving frame dμðkÞ ¼ ð0; dðkÞÞ,
ΔjμðjÞ ¼ ð0;ΔjðjÞÞ [see condition (9)]; thus, ΔjðjÞ can be

generally presented as (see Appendix B)

ΔjðjÞ ¼ −Dk
jkdðkÞk −D⊥

jkdðkÞ⊥ −DH
jk½dðkÞ⊥ × b�: ð52Þ

Here Dk
jk, D⊥

jk, and DH
jk are the diffusion coefficients;

b≡ B=jBj is the unit vector in the direction of the magnetic
field; and the vectors dðkÞk and dðkÞ⊥ are defined, respec-
tively, as

dðkÞk ≡ ðdðkÞbÞb; ð53Þ

5As in the ordinary MHD (see, e.g., Ref. [54], Sec. 66, and
Ref. [55], Sec. 58), the electric field in that frame is assumed to be
sufficiently small, of the order of gradients of thermodynamic
functions, and does not provide an additional preferred direction
in the system.
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dðkÞ⊥ ≡ dðkÞ − ðdðkÞbÞb ¼ b × ½dðkÞ × b�: ð54Þ

In an arbitrary frame, Eq. (52) can be rewritten as

ΔjμðjÞ ¼ −Dk
jkb

μbνdðkÞν −D⊥
jkð⊥μν − bμbνÞdðkÞν

−DH
jkb

μνdðkÞν; ð55Þ

where we introduced6

bμ ≡ Bμffiffiffiffiffiffiffiffiffiffiffi
BαBα

p ; ð56Þ

bμν ≡
⊥Fμνffiffiffiffiffiffiffiffiffiffiffi
BαBα

p : ð57Þ

In the absence of viscosity, chemical reactions, and
energy losses (Q ¼ 0), the entropy generation equation (30)
reduces to

∂μSμ ¼ Dk
jkdðjÞkdðkÞk þD⊥

jkdðjÞ⊥dðkÞ⊥

¼ Dk
jkdðjÞkμd

μ
ðkÞk þD⊥

jkdðjÞ⊥μd
μ
ðkÞ⊥; ð58Þ

where

dμðkÞk ≡ bμbνdðkÞν; dμðkÞ⊥ ≡ ð⊥μν − bμbνÞdðkÞν: ð59Þ

As follows from the Onsager principle (49), matrices Dk
jk,

D⊥
jk, and DH

jk must be symmetric. In addition, Dk
jk and D⊥

jk

must also be positive definite in order to ensure that the
entropy of the system does not decrease. In the limit B → 0,

one has Dk
jk ¼ D⊥

jk ¼ Djk, and DH
jk ¼ 0 [see Eq. (45)].

Since the coefficient Cμνλ
j vanishes, the general expres-

sion for Δτμν reads [see Eq. (B16)]

Δτμν ¼ −
1

3
η0½ΞμνΞλσ − 2Ξμνbλbσ − 2Ξλσbμbν þ 4bμbνbλbσ�⊥∇λuσ − η1½ΞμλΞνσ þ ΞμσΞνλ − ΞμνΞλσ�⊥∇λuσ

− η2½Ξμλbνbσ þ Ξμσbνbλ þ Ξνλbμbσ þ Ξνσbμbλ�⊥∇λuσ −
1

2
η3½Ξμλbνσ þ Ξμσbνλ þ Ξνλbμσ þ Ξνσbμλ�⊥∇λuσ

− η4½bμbλbνσ þ bμbσbνλ þ bνbλbμσ þ bνbσbμλ�⊥∇λuσ − ζ⊥μν⊥λσ⊥∇λuσ − ζ1½⊥μνbλbσ þ⊥λσbμbν�⊥∇λuσ; ð60Þ

where Ξμν ≡⊥μν − bμbν. The quantities η0…η4 are five
shear viscosity coefficients, and ζ and ζ1 are two bulk
viscosity coefficients [57]. In the case of a vanishing
external magnetic field, B → 0, ζ1 ¼ 0, η0 ¼ η1 ¼ η2 ¼
η, and η3 ¼ η4 ¼ 0. Equation (60) is a relativistic gener-
alization of the nonrelativistic expression for the stress
tensor in the magnetic field, which contains the same
number of shear and bulk viscosity coefficients [57].
Phenomenological Eqs. (55) and (60) are also compatible
with the results of the relativistic kinetic theory [34,58,59].

V. ACCOUNTING FOR GENERAL RELATIVITY

In the previous sections, we assumed that the metric is
flat: gμν ¼ diagð−1; 1; 1; 1Þ. Generalization of our results to
arbitrary gμν is straightforward provided that all relevant
length scales in the problem (e.g., particle mean-free paths)
are small enough compared with the characteristic gravi-
tational length scale (e.g., NS radius) [60]. In the latter case,
the general relativity effects can be easily incorporated into
hydrodynamics by replacing ordinary derivatives in all
equations with their covariant analogs and by replacing the
Levi-Civita tensor ϵμνλσ with ημνλσ ≡ ffiffiffiffiffiffiffiffiffiffiffiffi

−detg
p

ϵμνλσ .

In this section, we explicitly write out a set of general
relativistic MHD equations for a spherically symmetric star,
with the metric

ds2 ¼ −eνdt2 þ eλdr2 þ r2dθ2 þ r2sin2θdϕ2: ð61Þ

We ignore metric perturbations caused by the magnetic
field and fluid motions and work in the linear order in
dissipative terms and velocities; in particular, we neglect
the terms like juj2, uΔjðjÞ, and ½u × E�. We also ignore
effects of viscosity, which can be easily incorporated when
needed. For definiteness, we present the hydrodynamic
equations for an NS core consisting of neutrons (n), protons
(p), electrons (e), and muons (μ). We take into account
nonequilibrium direct and modified Urca processes [53], as
well as energy losses due to isotropic neutrino emission
with the emissivity Q.
In what follows, all three-vector components are mea-

sured by a static local observer, in a locally flat frame
(denoted by a hat)7

6Note that dðkÞν⊥Fμν ¼ ð0; ½dðkÞ × B�Þ in the comoving frame.

7In other words, X ≡ ðXr̂; Xθ̂; Xϕ̂Þ ¼ ðeλ=2Xr; Xθ; XϕÞ, where
X is an arbitrary three-vector and ðXr; Xθ; XϕÞ are its components
measured by a distant observer.
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dx̂μ ¼ ðdt̂; dr̂; dθ̂; dϕ̂Þ ¼ ðeν=2dt; eλ=2dr; rdθ; r sin θdϕÞ:
ð62Þ

In other words, we introduce an orthonormal tetrad carried
by the observer and describe physical quantities by their
projections on this tetrad (see, e.g., Refs. [61,62]).
The three-vector u is composed of spatial components of

the four-velocity uμ, u ¼ ður̂; uθ̂; uϕ̂Þ. In the linear approxi-
mation, it can be expressed through the ordinary three-
dimensional velocity v ¼ ðdrdt ; r dθ

dt ; r sin θ
dϕ
dtÞ, measured by

a distant observer, as

u ¼ ðeλ=2−ν=2vr; e−ν=2vθ; e−ν=2vϕÞ: ð63Þ

In the following equations, we also introduce time and
space derivatives taken by the local observer:

∂
∂ t̂≡ e−ν=2

∂
∂t ; ð64Þ

∇̂≡
�
e−λ=2

∂
∂r ;

1

r
∂
∂θ ;

1

r sin θ
∂
∂ϕ

�
: ð65Þ

Using the above definitions, Maxwell equations (11) and
(12) can be rewritten in terms of the electric field E (14) and
the magnetic induction B (15) as follows8:

∇̂ · B ¼ 0; ð66Þ

∂B
∂ t̂ ¼ −e−ν=2∇̂ × ðE eν=2Þ; ð67Þ

∇̂ · E ¼ 4πejnj; ð68Þ

e−ν=2∇̂ × ðBeν=2Þ ¼ 4πJ −
∂E
∂ t̂ ; ð69Þ

where J≡ ejjðjÞ ¼ eðnp − ne − nμÞuþ eðΔjp −Δje −ΔjμÞ
is the electric current.
Continuity equation (2) for particle species j reads

∂nj
∂ t̂ þ e−ν=2∇̂½ðnjuþ ΔjðjÞÞeν=2� ¼ ΔΓj; ð70Þ

where the reaction rates ΔΓj are expressed through
chemical potential imbalances Δμe ≡ μn − μp − μe and
Δμμ ≡ μn − μp − μμ as

ΔΓn ¼ −λeΔμe − λμΔμμ;

ΔΓp ¼ λeΔμe þ λμΔμμ;

ΔΓe ¼ λeΔμe; ΔΓμ ¼ λμΔμμ; ð71Þ

and the reaction coefficients λe and λμ for direct and/or
modified Urca processes can be found, e.g., in Ref. [53].
Energy and momentum conservation laws (1), with the

help of thermodynamic relations (16) and (21), as well as
Maxwell equations, can be presented as

�
μj

∂nj
∂ t̂ þ T

∂S
∂ t̂

�
− EJ þ e−ν∇̂½eνðμjnj þ TSÞu� ¼ −Q;

ð72Þ

∂
∂ t̂ ½ðμjnj þ TSÞu� þ nje−ν=2∇̂ðμjeν=2Þ

þ Se−ν=2∇̂ðTeν=2Þ − ejnjE − ½J × B� ¼ 0: ð73Þ

In the case of hydrostatic equilibrium, Eq. (73) reduces to

∇̂Pþ ðPþ εÞ∇̂ ν

2
¼ 0: ð74Þ

One can also write the energy conservation law (72) in a
form of entropy generation equation (30), which, with the
help of relations (33) and (52), yields

∂S
∂ t̂ þ e−ν=2∇̂

��
Su −

μj
T
ΔjðjÞ

�
eν=2

�

¼ Dk
jkdðjÞkdðkÞk þD⊥

jkdðjÞ⊥dðkÞ⊥

þ λeðΔμeÞ2
T

þ λμðΔμμÞ2
T

−
Q
T
: ð75Þ

Diffusion currents are expressed algebraically through
the vectors dðjÞ [see Eq. (55)]:

ΔjðjÞ ¼ −Dk
jkdðkÞk −D⊥

jkdðkÞ⊥ −DH
jk½dðkÞ⊥ × b�; ð76Þ

where

dðjÞ ≡ ∇̂
�
μj
T

�
−
ejEþ ej½u × B�

T
: ð77Þ

To sum up, the MHD equations contain three unknown
vector functions (u, E, B) and five unknown scalars, e.g.,
nn, np, ne, nμ, and S (all thermodynamic quantities can be
expressed as functions of nn, np, ne, nμ, S, jBj2, and jEj2,
provided the equation of state is specified).

VI. APPLICATIONS AND SPECIAL CASES

In this section, we apply the general hydrodynamic
equations presented above to a number of special cases

8Similar equations can be found, e.g., in Ref. [63] [see
Eqs. (30)–(37) there with ω ¼ 0].
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and provide relations between our generalized diffusion
coefficients Djk and various kinetic coefficients commonly
used in the literature, such as electrical conductivity,
thermal conductivity, and momentum transfer rates.

A. Electrical conductivity

In this section, we provide relations between the elec-
trical conductivity and generalized diffusion coefficients
Djk. Let us consider the quasineutral (ejnj ¼ 0) homo-
geneous (∇ μj

T ¼ 0) matter. Substituting Eqs. (32) and (52)
into Eq. (13), one obtains the following expression for
Ohm’s law in the comoving frame:

J ¼ ejΔjðjÞ ¼
ejekD

k
jk

T
Ek þ

ejekD⊥
jk

T
E⊥ þ ejekDH

jk

T
½E× b�;

ð78Þ

where Ek ≡ ðEbÞb and E⊥ ≡ E − ðEbÞb.
Now, introducing conductivities σk, σ⊥, and σH (describ-

ing the conductivity along B, conductivity in the direction
perpendicular to B, and the Hall effect, respectively) as

σk ¼ ejekD
k
jk

T
; σ⊥ ¼ ejekD⊥

jk

T
; σH ¼ ejekDH

jk

T
ð79Þ

and choosing a coordinate frame with the z axis along b,
one can easily rewrite Ohm’s law (78) in the following
standard form (e.g., Ref. [64]):

0
B@

Jx

Jy

Jz

1
CA ¼

0
B@

σ⊥ σH 0

−σH σ⊥ 0

0 0 σk

1
CA
0
B@

Ex

Ey

Ez

1
CA: ð80Þ

In the absence of a magnetic field, σ⊥ ¼ σk ≡ σ and
σH ¼ 0, so that Ohm’s law takes the simple form J ¼ σE.

B. Thermal conductivity

Let us consider heat conduction in a one-component
neutral liquid without the magnetic field. In this case, the
dissipative correction Δjμð1Þ (45) takes the form

Δjμð1Þ ¼ −D11
⊥∇μ μ1

T
: ð81Þ

Using Eq. (20), the Gibbs-Duhem relation (21) is
presented as

dP ¼ n1Td
μ1
T
þ ðPþ εÞ dT

T
: ð82Þ

Using this relation and introducing the thermal conductivity
coefficient9

κ ≡D11

�
Pþ ε

n1T

�
2

; ð83Þ

Eq. (81) yields (see Ref. [36], Sec. 139)

Δjμð1Þ ¼ κ
n1

Pþ ε

�
⊥∇μT −

T
Pþ ε

⊥∇μP

�
: ð84Þ

Now let us define the particle four-velocity Vμ:

Vμ ≡ jμð1Þ=n1 ¼ uμ þ 1

n1
Δjμð1Þ; ð85Þ

normalized by the condition VμVμ ¼ −1, valid to linear
order in small dissipative corrections [see Eq. (9)]. In the
“particle frame,” defined by condition Vμ ¼ ð1; 0; 0; 0Þ, the
energy density four-current reads10

−VνTμν ¼ εVμ − κ

�
⊥∇μT −

T
Pþ ε

⊥∇μP

�
: ð86Þ

The entropy four-current [see Eq. (29)] can be expressed,
with the help of Eqs. (84) and (85), as

Sμ ¼ SVμ −
κ

T

�
⊥∇μT −

T
Pþ ε

⊥∇μP

�
: ð87Þ

Note that the same consideration remains valid, e.g., for
multicomponent nonsuperfluid npeμ matter in NS cores, if
one assumes that beta processes are frozen and all particles
move with the same velocity Vμ, so that the system can be
treated as the single-component one. Let us consider
thermal evolution of a spherically symmetric NS under
this assumption, ignoring particle currents [Vμ¼ð1;0;0;0Þ
in the laboratory frame], the magnetic field, and non-
equilibrium reactions but taking into account effects of
general relativity, described in Sec. V. Using the hydrostatic
equilibrium condition (74), one can rewrite the combina-
tion ∇̂T − T

Pþε ∇̂P as

∇̂T −
T

Pþ ε
∇̂P ¼ e−ν=2∇̂ðTeν=2Þ: ð88Þ

In view of Eqs. (83), (84), (87), and (88), the entropy
generation equation (75) reduces to

9In the presence of a magnetic field, one can introduce, in analogy
with the electrical conductivity, the quantities κk≡Dk

11ðPþε
n1T

Þ2,
κ⊥ ≡D⊥

11ðPþε
n1T

Þ2, and κH ≡DH
11ðPþε

n1T
Þ2.

10We omit the quadratically small term −VνΔτμν ¼
Δjð1ÞνΔτμν=n1.
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∂S
∂ t̂ − e−ν=2∇̂

�
κ

T
∇̂ðTeν=2Þ

�
¼ κ

���� ∇̂ðTe
ν=2Þ

Teν=2

����
2

−
Q
T

ð89Þ

or, equivalently,

Cv
∂T
∂ t̂ − e−ν∇̂½κeν=2∇̂ðTeν=2Þ� ¼ −Q; ð90Þ

where Cv ≡ T∂S=∂T is the heat capacity per unit volume.
Using the definitions of ∂

∂ t̂ (64) and ∇̂ (65), one finally
represents Eq. (90) in the following standard form (see,
e.g., Ref. [53]):

e−ν−λ=2
1

4πr2
∂
∂r ðe

νLrÞ ¼ −Q − Cve−ν=2
∂T
∂t ; ð91Þ

Lr

4πr2
¼ −κe−ðνþλÞ=2 ∂

∂r ðTe
ν=2Þ; ð92Þ

where the “local luminosity” Lr is the (not related to
neutrinos) heat flux transported through a sphere of
radius r.
We remind the reader that Eqs. (91) and (92) are valid

only in the absence of particle currents and deviations from
beta equilibrium; to study thermal evolution under more
realistic assumptions, one has to use a more general
equation (75).

C. Diffusion, thermodiffusion, and thermal conductivity
in the nonrelativistic limit

In this section, we derive a relation between our diffusion
coefficients and standard coefficients of diffusion, thermo-
diffusion, and thermal conductivity, arising in the non-
relativistic hydrodynamics. In the nonrelativistic limit, the
relativistic chemical potential μj for particle species j
approximately coincides with its rest mass energy mjc2,
so that generally j∇μj=Tj ≪ jμj∇ð1=TÞj ≈ jmjc2∇ð1=TÞj,
and, thus, at arbitraryDjk the terms depending on gradients
of temperature will be dominant in the expressions (45) and
(55) for ΔjμðjÞ. However, we know that in the nonrelativistic

hydrodynamics both “chemical potential” and “temper-
ature” terms can be equally important. To resolve the
seeming contradiction, as we show below, one has to
impose additional constraints on the coefficients in the
nonrelativistic expansion of Djk. For the sake of simplicity,
we consider a neutral binary mixture. We also ignore
viscosity and chemical reactions, since these effects do
not interfere with diffusion. In this section (as well as in
Secs. VI D and VII and in Appendix C), we do not set
c ¼ 1 to make the transition to the nonrelativistic limit
more transparent.
Let us expand μj and Djk in small parameter δ ¼ v2=c2,

where v is a typical microscopic particle velocity in the
mixture:

μj ¼ mjc2 þ μð1Þj δþ μð2Þj δ2 þOðδ3Þ; ð93Þ

Djk ¼ Dð0Þ
jk þDð1Þ

jk δþDð2Þ
jk δ

2 þOðδ3Þ: ð94Þ

In view of Eqs. (32), (93), and (94), the dissipative
corrections to particle currents [Eq. (45)] can be expanded
in the comoving frame [ΔjμðjÞ ¼ ð0;ΔjðjÞÞ] as

ΔjðjÞ ¼ −Dð0Þ
jk mkc2∇

1

T
−
�
Dð0Þ

jk ∇
μð1Þk

T
þDð1Þ

jk mkc2∇
1

T

�
δ

−
�
Dð0Þ

jk ∇
μð2Þk

T
þDð1Þ

jk ∇
μð1Þk

T
þDð2Þ

jk mkc2∇
1

T

�
δ2

þOðδ3Þ: ð95Þ

In the nonrelativistic theory (see, e.g., Sec. 59 in
Ref. [36]), the effects of diffusion, thermodiffusion, and
thermal conductivity in a binary mixture are described in
terms of the heat current q and the diffusion current i, which
can be expressed in terms of ΔjðjÞ as

11

i ¼ m1n1m2n2
m1n1 þm2n2

�Δjð1Þ
n1

−
Δjð2Þ
n2

�
; ð96Þ

q ¼ −m1c2Δjð1Þ −m2c2Δjð2Þ; ð97Þ

respectively, where we label the components of the mixture
by indices 1 and 2.
The currents i and q depend on gradients of temperature

T and chemical potential μLL ≡ μ1=m1 − μ2=m2 ¼
ðμð1Þ1 =m1 − μð1Þ2 =m2ÞδþOðδ2Þ through the nonrelativistic
kinetic coefficients α, β, and γ [36]:

i ¼ −α∇μLL − β∇T; ð98Þ

q ¼ −βT∇μLL − γ∇T þ μLLi: ð99Þ

In order to relate α, β, and γ with the generalized
diffusion coefficients Djk, one has to substitute the expan-
sion (95) into relations (96) and (97), retaining the lowest-
order terms in δ. In order to reproduce the nonrelativistic

11To obtain the expression for q, one should express the
components of the energy-momentum tensor T0i (i ¼ 1; 2; 3)
through ΔjμðjÞ and the center-of-mass velocity Vμ ≡ uμ þ
mjcΔj

μ
ðjÞ=ρ (ρ is the total mass density measured in the laboratory

frame) and compare the result with the nonrelativistic expression
for T0i [36].
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results, where ∇T and ∇μj enter the expressions for i and q
on an equal footing, we require the first term in Eq. (95) to
vanish or, equivalently,12

mkD
ð0Þ
jk ¼ 0: ð100Þ

Using this relation and calculating the heat current q to the
first order in δ, we find

q ¼ ½m2
1D

ð1Þ
11 þ 2m1m2D

ð1Þ
12 þm2

2D
ð1Þ
22 �c4∇

�
1

T

�
δþOðδ2Þ:

ð101Þ

This means that q is, generally, independent of gradients of
chemical potentials in the limit δ → 0. Thus, to reproduce
the nonrelativistic results, one has to require, additionally,

m2
1D

ð1Þ
11 þ 2m1m2D

ð1Þ
12 þm2

2D
ð1Þ
22 ¼ 0; ð102Þ

so that q ¼ Oðδ2Þ [but bothΔjðjÞ and i areOðδÞ]. Excluding
Dð0Þ

11 , D
ð0Þ
22 , and Dð1Þ

12 via relations (100) and (102), one
finally arrives at the following expressions for the non-
relativistic coefficients:

α ¼ −
m1m2D

ð0Þ
12

T
; ð103Þ

β ¼ 1

2T2
½2m2m1D

ð0Þ
12 μLL −m2

1c
2Dð1Þ

11 δþm2
2c

2Dð1Þ
22 δ�;

ð104Þ

γ ¼ 1

T2
½m1m2ð2c4Dð2Þ

12 δ
2 −Dð0Þ

12 μ
2
LLÞ

þm2
1c

2ðc2Dð2Þ
11 δ

2 þDð1Þ
11 μLLδÞ

þm2
2c

2ðc2Dð2Þ
22 δ

2 −Dð1Þ
22 μLLδÞ�: ð105Þ

To sum up, we expressed the nonrelativistic kinetic
coefficients α, β, and γ, which describe diffusion, thermo-
diffusion, and thermal conductivity, through coefficients in
the nonrelativistic expansion of Djk (94). In addition, we
obtained two constraints on these expansion coefficients in
the zeroth (100) and first (102) order in the expansion
parameter δ.

D. Momentum transfer rates and diffusion
in the low-temperature limit

In this section, we compare our approach with the micro-
scopic formalism used, e.g., in Refs. [17,20,25,26,64] in the

limit T → 0 and assuming that ∇T ¼ 0. We express our

generalized diffusion coefficients Dk
jk, D

⊥
jk, and D

H
jk through

the momentum transfer rates Jik introduced in the micro-
scopic theory.
The general multicomponent equations describing non-

superfluid liquid are similar to those used in Ref. [20] (see
also [64] for analogous equations). Let us assume that the
liquid constituents move with the nonrelativistic velocities
uj (the equation of state for the liquid can be nevertheless
relativistic). In the hydrodynamic regime investigated
throughout the paper, the velocities uj almost coincide
due to frequent collisions (e.g., [33]), and it is always
possible to choose the frame where uj ≪ c. In this case, the
Euler equation for particle species j reads (hereafter in this
section no summation over particle indices j; k;… is
assumed)

nj

� ∂
∂tþ ðuj∇Þ

��
μj
c2

uj

�
¼ ejnj

�
Eþ 1

c
½uj × B�

�

− nj∇μj −
μjnj
c2

∇ϕ

−
X
k≠j

Jjkðuj − ukÞ; ð106Þ

where uj is the velocity for particle species j; c is the speed
of light; ϕ is the gravitational potential; and Jjk ¼ Jkj is the
momentum transfer rate between particle species j and k
per unit volume, which is related to the effective relaxation
time τjk by the formula Jjk ¼ μjnj=ðc2τjkÞ.
In the hydrodynamic regime, when collision timescales

are much smaller than the typical hydrodynamic timescale,
velocities uj are very close to one another [33] and one can
replace in lhs of Eq. (106) uj with the average mass velocity
U, defined as13 [64]

U
X
j

μjnj ≡
X
j

μjnjuj: ð107Þ

After the replacement, Eq. (106) becomes

nj

� ∂
∂tþ ðU∇Þ

��
μj
c2

U

�
¼ ejnj

�
Eþ 1

c
½uj × B�

�

− nj∇μj −
μjnj
c2

∇ϕ

−
X
k≠j

Jjkðuj − ukÞ: ð108Þ

One needs one more equation to specify the frame in
which Eq. (108) is written; as in Ref. [64], we define it by

12Note that a similar condition (114) holds also for degenerate
(even relativistic) matter, if we expand Djk in powers of
δ ¼ OðT=μjÞ.

13For example, the term nj∂=∂t½μjðuj − UÞ=c2� ∼ μjnjðuj−
UÞ=ðT c2Þ, where T is a typical timescale of the problem, can be
neglected in comparison to the term

P
k≠j Jjkðuj − ukÞ∼P

k≠j μjnjðuj − ukÞ=ðc2τjkÞ, because T ≫ τjk.
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the condition U ¼ 0 (at a given moment of time) or,
equivalently,

X
j

μjnjuj ¼ 0: ð109Þ

In this frame Eq. (108) reduces to

μjnj
c2

∂U
∂t ¼ ejnj

�
Eþ 1

c
½uj × B�

�
− nj∇μj

−
μjnj
c2

∇ϕ −
X
k≠j

Jjkðuj − ukÞ: ð110Þ

Excluding plasma acceleration from Eq. (110), one obtains,
with the aid of Eq. (109), the velocities uj for each particle
species as algebraic functions of thermodynamic forces.
The total energy current density in the microscopic

formalism [20,64] reads

q ¼
X
j

μjnjuj þ
c
4π

½E × B�: ð111Þ

In view of Eq. (109), the first term in (111) vanishes in the
U ¼ 0 frame.
Let us now consider the same situation in our formalism.

The total energy current density q, determined by the
components of the energy-momentum tensor as qi ¼ cT0i

(i ¼ 1; 2; 3), in the comoving frame reads

qi ¼ cΔT0i
ðEMÞ ¼

c
4π

½E × B�i: ð112Þ

Clearly, comparing Eqs. (112) and (111), one can see that
the comoving frame uμ ¼ ð1; 0; 0; 0Þ coincides with the
frame defined by the condition (109).
Solving the system (109) and (110), one can express

velocities uj or, equivalently, particle currents ΔjðjÞ ¼
njuj=c through the vectors dðjÞ ¼ ∇μj−ejE

T [cf. definition
(32) with ∇T ¼ 0], magnetic field B, momentum transfer
rates Jjk, and the equilibrium thermodynamic quantities.
Comparing the result with Eq. (52), one can translate one

formalism into another and find diffusion coefficients Dk
jk,

D⊥
jk, and DH

jk. The general algorithm is presented in
Appendix C. In the simplest case of a binary mixture in
the absence of a magnetic field, one obtains

D12 ¼ D21 ¼ −
n21n

2
2Tμ1μ2

J12ðμ1n1 þ μ2n2Þ2c
; ð113Þ

D11 ¼ −
μ2
μ1

D12; D22 ¼ −
μ1
μ2

D12: ð114Þ

We present the momentum transfer rates Jik for npeμ
matter in Sec. VII.

VII. MOMENTUM TRANSFER RATES
IN npeμ MATTER

Bearing in mind an application of our results to the
problem of magnetic field evolution in an NS core, here we
present the practical expressions for the momentum transfer
rates Jik, introduced in the previous section, for the simplest
npeμ composition. Here we do not set c ¼ kB ¼ 1. In most
of the present studies, the microscopic calculations under
the “free particle model” from Ref. [65] are adopted (see,
e.g., Refs. [20,25]). However, there are considerable
updates to their results in the past decades; see Ref. [66]
for a review.
The collisions in NS matter are divided in two sectors.

The first one includes collisions between the leptons and
charged baryons, eμ, ep, and μp in the present case, and is
governed by the electromagnetic interactions. The second
sector contains the baryon collisions, np in the present
case, which are mediated by the strong interactions. We
remind the reader that the like-species collisions do not
contribute to the diffusion rates.
The momentum transfer rates for the electromagnetic

collisions should be calculated taking into account the
correct plasma screening [66]. Appropriate expressions
have been derived in Ref. [67]. The momentum transfer
rate is a sum of two terms which have different temperature
dependences reflecting different characters of screening of
“electric” and “magnetic” parts of the interaction:

Jik ¼ Jlik þ Jtik; ð115Þ
where Jlik ∝ T2 describe the interaction via the longitudinal
plasmon exchange and the dominant term Jtik ∝ T5=3

corresponds to the exchange of transverse plasmons. In
the leading order [67],

Jtik ¼
4ξt

3π3
e2i e

2
k
p2
Fip

2
Fk

ℏ6c3
ðkBTÞ5=3
ðℏcqtÞ2=3

; ð116Þ

Jlik ¼
4

9π
e2i e

2
k
m�2

i m�2
k c

ℏ6

ðkBTÞ2
ℏcql

Il2ðqm=qlÞ; ð117Þ

where pFi and pFk are the colliding particles Fermi
momenta; m�

i and m�
k are their effective masses on the

Fermi surface (related to the density of states); for leptons
ml ≡ μl=c2, and ξt ¼ 1.813. Notice that in the npeμ
matter all charged particles have charges ei ¼ �e, where
e is the elementary electron charge. The quantities ql and qt
in Eqs. (116) and (117) are the characteristic screening
momenta in the plasma:

q2l ¼
4

πℏ3

X
i

e2i pFim�
i ; ð118Þ

q2t ¼
4

πℏ3c

X
i

e2i p
2
Fi: ð119Þ
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The summation in Eqs. (118) and (119) is carried over all
charged components of the plasma; in this sense,
the collisions between two particle species are influenced
by all charged species via the plasma mean field. Finally,
the function Il2ðqm=qlÞ in Eq. (117), where ℏqm ¼
2maxðpFk; pFiÞ, is [67]

Il2ðxÞ ¼
1

2
atanðxÞ − 1

2

x
1þ x2

: ð120Þ

If ql ≪ qm, it is enough to take Il2 ¼ π=4; then Eq. (117)
does not depend on qm. The lepton-neutron coupling is
small and usually can be neglected. It arises from magnetic
interaction with the neutron magnetic moment. For com-
pleteness, retaining only the dominant transverse part of the
interaction, one obtains

Jln ¼
8πα2fF

2
nnl

9ℏc2
ðkBTÞ2; ð121Þ

where Fn ¼ 1.91 is the neutron magnetic moment in
nuclear units, l stands for a given lepton (electron or
muon), and αf ¼ 1=137 is the fine structure constant.
Equations (115)–(121) allow one to calculate the rates of

momentum transfer in the electromagnetic sector for any
equation of state, provided the effective masses of all
charged particles (including baryons) are known. Usually,
Eq. (116) is enough when the collisions between light
relativistic particles (leptons) are considered, while for the
massive baryons (protons in our case) both terms in
Eq. (115) need to be preserved due to a large value of
baryon mass. For illustration, in Fig. 1 we plot the
momentum transfer rates JikT−2

8 , where T8 ≡ T=ð108 KÞ,
as functions of a baryon density for a beta-stable matter
with the BSk21 EOS, which is based on the Brussels-
Skyrme nucleon interaction functionals [68]. Solid, dashed,
and dotted lines show the momentum transfer rates for
electron collisions with protons, muons, and neutrons,
respectively. Likewise, dot-dashed and double-dot-dashed
lines are for the muon-proton and muon-neutron collisions,
respectively. In the expressions which depend on the proton
effective mass, the latter is set to m�

p ¼ 0.8mN . Because of
the dynamical character of plasma screening, for the eμ,
ep, and pμ collisions, the combination JikT2 is not
temperature independent. By red, black, and blue lines,
we show in Fig. 1 the momentum transfer rates which
correspond to T ¼ 107, 108, and 109 K, respectively. One
observes that, at high densities, the electron-proton and
muon-proton momentum transfer rates are close to each
other, while the electron-muon momentum transfer rate is

several times smaller. The lepton-neutron rates are, in
general, significantly smaller than all other rates. Never-
theless, they can be important in the core of a neutron star
under the presence of a strong proton superconductivity
(if the neutrons are not in the paired state).
Calculations of the neutron-proton momentum transfer

rate Jnp are more involved, since this rate depends on the
uncertain properties of the nucleon interactions in the dense
asymmetric nuclear matter. Yakovlev and Shalybkov [65]
used the approximation of free-space zero-angle np cross
section (thus neglecting its angular dependence). This
approximation is rather crude and leads to a significant
overestimate of Jnp even in the free-space model for the
neutron-proton scattering. The expression which accurately
takes into account the energy and angular dependence of
the np scattering cross section can be constructed based on
the results of Ref. [69] for the thermal conductivity of NS
cores. One obtains [67]

Jnp ¼ 64m�2
n m�2

p ðkBTÞ2
9π2m2

Nℏ
6

p3
FnSp2; ð122Þ

where mN is the bare nucleon mass and the function Sp2,
having the dimension of a cross section, is defined in
Ref. [69]. In that paper, the function Sp2 is calculated and
fitted employing accurate free-space differential scattering
cross section. The resulting expression is

Sp2 ¼
0.3830k4Fp

k5.5Fn

1þ 102.0kFp þ 53.91kFn
1 − 0.7087kFn þ 0.2537k2Fn þ 9.404k2Fp − 1.589kFnkFp

mb; ð123Þ

FIG. 1. Momentum transfer rates Jik for the electromagnetic
sector in the beta-stable matter with the BSk21 EOS.
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where kFn and kFp are neutron and proton Fermi momenta
in units of fm−1, respectively, and the fit is valid for the
momenta ranges kFn ¼ 1.1–2.6 and kFp ¼ 0.3–1.2.
The expressions (122) and (123) have the advantage that

they can be used for any EOS of the nuclear matter.
However, it is known that the in-medium effects consid-
erably modify both the effective masses and scattering
cross sections, which in turn modify the transport coef-
ficients; see, e.g., Ref. [66], Sec. IV.A.3, and references
therein. Baiko, Haensel, and Yakovlev [69] included in-
medium corrections [their Eq. (30)] employing the results
of particular Dirac-Brueckner calculations for symmetric
nuclear matter (np ¼ nn). It is expected, however, that the
influence of medium effects on the np cross sections in the
asymmetric matter, which is relevant to NS cores, can be
quantitatively different from the symmetric matter case
(see, for instance, Ref. [70]). Unfortunately, it is hard to
employ the in-medium corrections in a definite way. They
depend on the particular model of the nuclear interaction,
the asymmetry of matter, and the many-body theory used.
Even within a selected many-body approach, for instance,
Brueckner-Hartree-Fock, the resulting transport coeffi-
cients can differ by an order of magnitude for different
models of nuclear interaction [71]. We illustrate this
uncertainty in Fig. 2, where the momentum transfer rates
JnpT−2

8 are plotted as a function of the baryon density for
the same BSk21 EOS as used in Fig. 1. The dotted line
shows the result of Ref. [65], while the dot-dashed line
corresponds to Eqs. (122) and (123), where the bare

effective masses are used: m�
n ¼ m�

p ¼ mN . Clearly, the
simplified approach of an angular-independent cross sec-
tion in Ref. [65] leads to overestimated Jnp. The solid
curves marked 1–5 are calculated in the Brueckner-Hartree-
Fock framework employing different nucleon potentials
following Ref. [71]. These potentials include two realistic
two-body potentials, Argonne v18 (Av18) and CD-Bonn
potential, and two models for the effective three-body
forces, Urbana IX (UIX) and the microscopic meson-
exchange force (TBFmic); see Refs. [71,72] for details.
One indeed observes a strong (up to a factor of 10)
difference between the solid curves at higher densities.
In principle, each microscopic potential leads to its own
EOS and, as a consequence, a composition of the beta-
stable matter. In this sense, the transport properties such as
Jnp need to be computed along with the equation of state.
At present, this approach is not practical. In order to be able
to calculate Jnp for an independent EOS, BSk21 in the
present case, it was calculated for each on a grid of baryon
densities and proton fractions and then interpolated to a
desired composition. Notice that, when Jnp is calculated for
a beta-stable matter consistent with the EOS, the discrep-
ancy between the results for different potentials is pre-
served (see Ref. [71] for thermal conductivity and shear
viscosity).
The difference between the results in Fig. 2 is large. This

represents the current uncertainty in the microphysical
understanding of the properties of the dense NS core
matter. Looking at Fig. 2, we can recommend to use
Eqs. (122) and (123) with bare nucleon masses (dash-
dotted curve) in simulations, bearing in mind at least
�0.5 dex uncertainty in Jnp at larger densities. Despite
these uncertainties, the Jnp rate is several orders of
magnitude larger than the momentum transfer rates gov-
erned by the electromagnetic interactions; see Fig. 1.
Finally, we note that curves 1–5 in Fig. 2 are calculated

under a single many-body approach. Calculations within a
different theoretical framework can potentially increase the
uncertainty in the rates. For instance, in the medium-
modified pion exchange model of nuclear interactions
[73], the pion softening in dense matter can increase the
collision cross section by 1–2 orders of magnitude at high
densities, which directly translates into the corresponding
increase of Jnp. For the shear viscosity, this model is
investigated in Ref. [74].

VIII. COMPARISON WITH PREVIOUS WORKS

As the authors believe, the formulation of MHD pro-
vided in this paper is simpler than the analogous formu-
lations (e.g., Refs. [12–15,35]) existing in the literature. To
explain why it is simpler, one should critically analyze
derivations of MHD equations in Refs. [12,15,35]. Below,
we provide such an analysis using, as an example, the
recent series of papers [12,15], which presents the most

FIG. 2. Momentum transfer rates Jnp in the beta-stable matter
with the BSk21 EOS. Solid curves correspond to different
nucleon potentials following Ref. [71]; number codes are
expanded in the legend. The dotted line shows the approximation
from Ref. [65]. The dash-dotted line is calculated following
Ref. [67], where the fit from Ref. [69] was used. See the text for
details.
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advanced MHD developed having in mind applications
to NSs.
(1) The authors of Refs. [12,15] obtain a set of evolution

equations for relativistic magnetized dissipative
mixtures, having in mind their application to NSs.
The corresponding equations are derived, separately
for each particle species, from a variational princi-
ple.14 During the derivation, the authors do not
assume that the relative velocities uμðiÞ − uμðjÞ of

different particles species are small. The validity
of their equations obtained in this way is not
discussed; they are further used to derive MHD in
the approximation of small relative velocities.
A question immediately arises: why should the

variational principle provide correct equations for a
system which is in a highly nonequilibrium kinetic
regime? It is not clear (at least, for us) what is meant
by the generalized pressure, chemical potentials, and
temperature for the system in that case. It is well
known that, generally, the correct description of such
a system can be obtained by using kinetic equations
for each particle species [33,77]. As far as we are
aware, nobody has demonstrated that the variational
principle used in Refs. [12,15] is equivalent to the
kinetic equation approach.

(2) As the second step, the authors analyze the resulting
complicated system of equations, assuming that the
velocity differences uμðiÞ − uμðjÞ are small (linear drift

approximation). They also assume that the friction
force between different particles is proportional to
uμðiÞ − uμðjÞ [see the second term in Eq. (52) in
Ref. [15]]. Note that this assumption is not general,
since in a strong magnetic field the interaction force
between particles i and j may depend on the
magnetic field orientation (e.g., Ref. [33], Sec. IV).
Meanwhile, MHD equations developed in the
present paper will have the same form independently
of whether the magnetic field is strong or not: effects
of a magnetic field on particle collisions lead only to

renormalization of diffusion coefficients Dk
jk, D

⊥
jk,

and DH
jk.

(3) The linearized system of dynamic equations, ob-
tained by the authors [see, e.g., Eqs. (55) in Ref. [15]]
is still rather complex and is not further simplified
(in an essential way). We discussed its nonrelativ-
istic analogue in Sec. VI D [see Eq. (106)]. Mean-
while, it is well known (see, e.g., [26,33], and Sec.VI
D) that in the hydrodynamic regime (T ≫ τ, L ≫ l)
one can significantly simplify these equations by
replacing the derivatives ∂αu

μ
ðjÞ with ∂αuμ in all

equations (uμ can be, e.g., the velocity of center of
momentum frame [15]). This is exactly the simpli-
fication that was made in Sec. VI D; it allowed us to
express the velocities uμðjÞ algebraically through the

gradients of thermodynamic variables and establish a

connection between our diffusion coefficients Dk
jk,

D⊥
jk, and DH

jk and the momentum transfer rates Jik.
(4) Additional complexity of MHD from Refs. [12,15]

is related to numerous entrainment coefficients,
arising naturally in the variational approach.15 While
the entrainment effect between protons and neutrons
is well known in the microscopic theory [79], the
existence of entrainment between the entropy
(treated as a separate fluid) and other particle species
is not confirmed by microphysics, to the best of our
knowledge.16 Setting these coefficients to zero will
also simplify the equations.
It is important to note that, although the entrain-

ment between neutrons and protons could really
affect the dynamic equations written for each par-
ticle species separately, in our approach, where there
is only one velocity field uμ, the entrainment does
not appear explicitly but leads only to renormaliza-

tion of diffusion coefficients Dk
jk, D

⊥
jk, and DH

jk.
(5) From a theoretical point of view, the MHD of

Refs. [12,15] has an advantage that it ensures
causality and stability of the resulting equations.
But how significant are the corresponding correc-
tions to the first-order MHD equations? Recent work
of Lander and Andersson [82] provides a good
example illustrating this point. These authors ana-
lyzed the heat conduction equation in Carter’s
variational framework. They showed that their
causal heat equation reduces to the standard heat
equation, used, e.g., in modeling of NS cooling, if
the following condition is satisfied [see their
Eq. (66)]:

τQ ≫
κ

c2αŝ
; ð124Þ

where τQ is the timescale for variation of the heat
flux; κ is the thermal conductivity; ŝ is the entropy
density; c is the speed of light; and α is the lapse
function (typically, α ∼ 1). Estimating κ ∼ 1022

erg cm−1s−1K−1 (e.g., [66]), ŝ ∼ 1019 erg cm−3K−1

(e.g., [83]), one finds that the inequality τQ ≫ κ
c2αŝ

will reduce to τQ ≫ 10−18 s (these estimates are

14This approach proves to be successful in deriving
correct equations of ordinary and superfluid hydrodynamics
[43,44,75,76].

15In the nondissipative limit, some redundant entrainment
coefficients can be set to zero by choosing the appropriate
“gauge” for the Lagrangian [78].

16In Refs. [80,81], it is argued that entropy entrainment is
needed to restore causality of the heat conduction equation.
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made for the temperature T ¼ 108 K). Since for NS
conditions, τQ ≫ 1 s, it is absolutely safe to use the
standard heat equation in all practical situations.
Note also that, since the thermal conductivity κ ∼
ŝv2τ [57], where v is the average microscopic
velocity (v ∼ c for electrons in NS interiors), the
condition (124) reduces to τQ ≫ τ (i.e., the system
must be in the hydrodynamic regime, which is an
expected result).

To sum up, in light of the above discussion it seems quite
clear why the structure of the MHD equations obtained in
this paper appears to be simpler than the formulations
available in the literature.

IX. CONCLUSION

In the present study, we formulated equations of dissipa-
tive relativistic MHD for nonsuperfluid mixtures. These
equations are rather simple and consist of the energy-
momentum conservation law (1), continuity equations for
each particle species (2), and Maxwell equations (11) and
(12), as well as the second law of thermodynamics (16).
Dissipative corrections for the particle current densitiesΔjμðjÞ
and for the energy-momentum tensor Δτμν are given by
Eqs. (55) and (60), respectively. Ohm’s law (13) follows
automatically from these equations. Dissipative coefficients,
appearing in the proposed MHD, have a clear physical
meaning and can be expressed through the quantities
calculated in the microscopic theory (see Sec. VI D).
How can theseMHD equations be used in practice? Let us

outline some of the possibilities. First of all, one can employ
the dissipativeMHD for studying magnetothermal evolution
in the internal layers of NSs, accounting for diffusion,
macroscopic flows, and the effects of general relativity;
the corresponding equations for a spherically symmetric NS
with npeμ core composition were explicitly written out in
Sec. V. Diffusionmay also play an important role in damping
of NS oscillations [84], although this effect has not been
studied previously, to the best of our knowledge. As for the
development of hydrodynamic theory, the next logical step
would be to generalize the dissipativeMHD to the superfluid
and superconducting mixtures [51], i.e., combine the results
of the present paper with the nondissipative superfluidMHD
of Ref. [16]. This would open up a possibility for realistic
modeling of superfluid and superconducting NS cores at
finite temperatures. Finally, let us note that, while in this
paper we were mainly interested in the NS-related applica-
tions, the obtained MHD equations can, in principle, be
applied to any relativistic mixture, as long as it stays in the
hydrodynamic regime.
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APPENDIX A: ENTROPY PRODUCTION DUE TO
NONEQUILIBRIUM REACTIONS

Here we discuss the entropy production due to non-
equilibrium chemical reactions, which is given by the term
− μj

T ΔΓj in Eqs. (28)–(30).
Assume for a moment that there is only one chemical

reaction between particle species j ¼ A;B; C;D:

Aþ B ↔ CþD: ðA1Þ

In this case, the source terms ΔΓj are constrained by the
relations ΔΓA ¼ ΔΓB ¼ −ΔΓC ¼ −ΔΓD ≡ ΔΓ, where we
introduced the quantity ΔΓ. The reaction is initiated if the
chemical potential imbalance Δμ≡ μA þ μB − μC − μD
differs from zero; thus, in the linear approximation, one
can write

ΔΓ ¼ −λΔμ; ðA2Þ

where the coefficient λmust be positive, so that the reaction
drives the system toward chemical equilibrium. In terms of
λ and Δμ, the entropy production rate corresponding to the
chemical reaction Aþ B ↔ CþD is

−
μj
T
ΔΓj ¼

λ

T
ðμA þ μB − μC − μDÞΔμ ¼ λ

T
ðΔμÞ2: ðA3Þ

Now, let us analyze what happens if the reaction takes
the form

α1A1 þ α2A2 þ � � � ↔ β1B1 þ β2B2 þ � � � ; ðA4Þ

where Aj and Bj are particle species and αj and βj are
integer stoichiometric coefficients. In this case, one can
introduce the reaction rate ΔΓ according to

ΔΓ≡ ΔΓA1

α1
¼ ΔΓA2

α2
¼ � � � ¼ −

ΔΓB1

β1
¼ −

ΔΓB2

β2
¼ � � � ;

ðA5Þ

and the corresponding conjugate thermodynamic quantity
called chemical affinity [85] as

Δμ≡ α1μA1
þ α2μA2

þ � � � − β1μB1
− β2μB2

− � � � : ðA6Þ

When all stoichiometric coefficients are equal to �1,
affinity reduces to the chemical potential imbalance used
above. With these definitions, one obtains the same result
as in the previous case.
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Finally, in the most general case of several chemical
reactions, one should proceed by introducing the quantities
λX > 0, ΔΓX, and ΔμX for each reaction X and, summing
up the contribution from all these reactions, arrive at the
final result

−
μj
T
ΔΓj ¼

λX
T
ðΔμXÞ2: ðA7Þ

In the case of npeμmatter with beta processes turned on,
Eq. (A7) reduces to

−
μj
T
ΔΓj ¼

λe
T
ðΔμeÞ2 þ

λμ
T
ðΔμμÞ2; ðA8Þ

where Δμe ≡ μn − μp − μe and Δμμ ≡ μn − μp − μμ.

APPENDIX B: GENERAL FORM OF KINETIC
COEFFICIENTS

In this Appendix, we derive the most general form of
kinetic coefficients under conditions discussed in Sec. IV B
(homogeneous matter, with the only preferred direction in
the comoving frame described by the magnetic induction
B). The kinetic coefficients in such matter can be expressed
through uμ, ⊥μν, bμν ≡ ⊥Fμν=

ffiffiffiffiffiffiffiffiffiffiffi
BαBα

p
, and (scalar) equilib-

rium thermodynamic quantities.
Let us start with the coefficient Aμν

jk . Generally, it has the
form

Aμν
jk ¼ a1jk⊥μν þ a2jkuμuν þ a3jkbμν þ a4jkbμαbνα: ðB1Þ

Note that the terms containing uαbμα do not appear here,
since they vanish identically in view of Eq. (48). One can
also omit the term a2jkuμuν, since dðkÞν [see Eq. (32)] is
orthogonal to uν and, therefore, this term does not enter the
expression (34) for ΔjμðjÞ. The expression (B1) satisfies

Eq. (41) automatically. The Onsager principle (49) reads

Aμν
jkðBÞ ¼ a1jk⊥μν þ a3jkbμν þ a4jkbμαbνα

¼ Aνμ
kjð−BÞ ¼ a1kj⊥νμ − a3kjbνμ þ a4kjbναb

μ
α:

ðB2Þ

Since this condition must be true for all bμν, one can
conclude that

a1jk ¼ a1kj; a3jk ¼ a3kj; a4jk ¼ a4kj: ðB3Þ

Using the identity

bμαbνα ¼ ⊥μν − bμbν ðB4Þ

and introducing the quantities Dk
jk ≡ a1jk, D⊥

jk ≡ a1jkþ
a4jk, and DH

jk ≡ a3jk, we finally arrive at the following
expression:

Aμν
jk ¼ Dk

jkb
μbν þD⊥

jkð⊥μν − bμbνÞ þDH
jkb

μν: ðB5Þ

Similarly, one can show that, in the absence of a magnetic
field,

Aμν
jk ¼ Djk⊥μν: ðB6Þ

Now, let us consider the coefficients Bμνλ
j and Cμνλ

j . The

general form for Cμνλ
j , satisfying the constraint (40), is

Cμνλ
j ¼ c1juμuνuλ þ c2jðuμ⊥νλ þ uν⊥μλÞ þ c3juλ⊥μν

þ c4jðuμbνλ þ uνbμλÞ þ c5jðuμbναbλα
þ uνbμαbλαÞ þ c6juλbμαbνα: ðB7Þ

The first term can be omitted, since it does not enter the
expressions for ΔjμðjÞ (34) and for Δτμν (35) in view of the

equalities uμdðjÞμ ¼ uμ⊥∇μuν ¼ 0. Substituting Eq. (B7)
into the condition (43), one obtains

uμC
μνλ
j dðjÞλ ¼ −c2jdνðjÞ − c4jbνλdðjÞλ − c5jbναbλαdðjÞλ ¼ 0;

ðB8Þ
which implies

c2j ¼ c4j ¼ c5j ¼ 0: ðB9Þ

Thus, Cμνλ
j takes the form

Cμνλ
j ¼ c3juλ⊥μν þ c6juλbμαbνα: ðB10Þ

Now let us make use of the constraint (42) on Bμνλ
j .

Substituting Eqs. (51) and (B10) into the condition (42),
one finds

uμB
μνλ
k

⊥∇νuλ ¼ c3j⊥∇λuλ þ c6jbναbλα⊥∇νuλ ¼ 0; ðB11Þ

which can be satisfied for arbitrary ⊥∇νuλ and bμν only if
c3j ¼ c6j ¼ 0. As a result, we proved that

Bμνλ
j ¼ Cμνλ

j ¼ 0: ðB12Þ

Finally, let us consider the tensor Dμνλσ. Generally, it can
be expressed in terms of the following rank-4 tensors:
uμuνuλuσ , uμuν⊥λσ , uμuνbλσ, uμuνbλαbσα, gμν⊥λσ , gμνbλσ,
gμνbλαbσα, bμνbλσ , bμνbλαbσα, and bμαbναbλβbσβ. For fur-
ther convenience, we introduce the tensor Ξμν ≡ bμαbνα
and, noting that ⊥μν ¼ Ξμν þ bμbν [see Eq. (B4)], express
Dμνλσ in terms of uμuνuλuσ, uμuνΞλσ, uμuνbλσ, uμuνbλbσ,
ΞμνΞλσ , Ξμνbλσ, Ξμνbλbσ, bμνbλσ , bμνbλbσ , and bμbνbλbσ.
The tensors uμuν, Ξμν, bμν, and bμbν in the comoving
frame, in which the magnetic field is directed along the z
axis, B ¼ Bz, have the following form:
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uμuν ¼

0
BBB@

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; Ξμν ¼

0
BBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

1
CCCA; bμν ¼

0
BBB@

0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

1
CCCA; bμbν ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

1
CCCA:

ðB13Þ

The general form of Dμνλσ , satisfying conditions (39) and (50), reads

Dμνλσ ¼ d1uμuνuλuσ þ d2½uμuνΞλσ þ uλuσΞμν� þ d3½uμuλΞνσ þ uμuσΞνλ þ uνuλΞμσ þ uνuσΞμλ�
þ d4½uμuνbλbσ þ uλuσbμbν� þ d5½uμuλbνbσ þ uμuσbνbλ þ uνuλbμbσ þ uνuσbμbλ�
þ d6ΞμνΞλσ þ d7½ΞμλΞνσ þ ΞμσΞνλ� þ d8½Ξμνbλbσ þ Ξλσbμbν� þ d9½Ξμλbνbσ þ Ξμσbνbλ þ Ξνλbμbσ þ Ξνσbμbλ�
þ d10bμbνbλbσ þ d11½uμbλbνσ þ uμbσbνλ þ uνbλbμσ þ uνbσbμλ� þ d12½Ξμλbνσ þ Ξμσbνλ þ Ξνλbμσ þ Ξνσbμλ�
þ d13½bμbλbνσ þ bμbσbνλ þ bνbλbμσ þ bνbσbμλ�: ðB14Þ

Here, we do not write the term proportional to bμλbνσ þ bμσbνλ, since it can be expressed through other terms [86].
Now, let us note that we should omit all the terms depending on uλ and uσ in the expression (B14) [since

uλ⊥∇λuσ ¼ uσ⊥∇λuσ ¼ 0, they do not enter the expression (35) for Δτμν] and also the terms depending on uμ and uν

[otherwise, the constraint (44) is not satisfied]. As a result, Dμνλσ takes the form

Dμνλσ ¼ d6ΞμνΞλσ þ d7½ΞμλΞνσ þ ΞμσΞνλ� þ d8½Ξμνbλbσ þ Ξλσbμbν� þ d9½Ξμλbνbσ þ Ξμσbνbλ þ Ξνλbμbσ þ Ξνσbμbλ�
þ d10bμbνbλbσ þ d12½Ξμλbνσ þ Ξμσbνλ þ Ξνλbμσ þ Ξνσbμλ� þ d13½bμbλbνσ þ bμbσbνλ þ bνbλbμσ þ bνbσbμλ�:

ðB15Þ

It has seven independent terms and, hence, seven viscosity coefficients. In terms of viscosity coefficients introduced in
Ref. [57], Dμνλσ can be presented as

Dμνλσ ¼
�
1

3
η0 − η1 þ ζ

�
ΞμνΞλσ þ η1½ΞμλΞνσ þ ΞμσΞνλ� þ

�
−
2

3
η0 þ ζ þ ζ1

�
½Ξμνbλbσ þ Ξλσbμbν�

þ η2½Ξμλbνbσ þ Ξμσbνbλ þ Ξνλbμbσ þ Ξνσbμbλ� þ
�
4

3
η0 þ ζ þ 2ζ1

�
bμbνbλbσ

þ 1

2
η3½Ξμλbνσ þ Ξμσbνλ þ Ξνλbμσ þ Ξνσbμλ� þ η4½bμbλbνσ þ bμbσbνλ þ bνbλbμσ þ bνbσbμλ�; ðB16Þ

where η0;…η4 are five shear viscosity coefficients and ζ and ζ1 are two bulk viscosity coefficients, determining the trace of
the tensor Δτμν (60):

Δτμμ ¼ −Dμ
μλσ⊥∇λuσ ¼ −ð3ζ þ ζ1ÞΞλσ⊥∇λuσ − ð3ζ þ 4ζ1Þbλbσ⊥∇λuσ: ðB17Þ

The coefficients η0, η1, η2, ζ, and ζ1 must be non-negative
in order to ensure entropy growth. The terms depending on
η3 and η4 do not contribute to the entropy production, so
these two coefficients can have arbitrary signs. The shear
viscosity coefficients η0…η4 have not been calculated for
magnetized neutron star cores to our knowledge. For a
magnetized NS crust, they were calculated in Ref. [87]
(note that η3 and η4 in that paper have the opposite sign as
compared to our definition).
A similar expression for Dμνλσ was derived in Ref. [86],

where relativistic dissipative MHD of a one-component

liquid was analyzed; note, however, that the authors of
Ref. [86] used different definitions of viscosity coefficients.
One can show that, in the absence of a magnetic field,

Dμνλσ takes the form [36]

Dμνλσ ¼ ηð⊥μλ⊥νσþ⊥νλ⊥μσÞþ
�
ζ−

2

3
η

�
⊥μν⊥λσ ðB18Þ

in order to satisfy the conditions (37) and (39). Here, η and
ζ are (non-negative) shear and bulk viscosity coefficients,
respectively.
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APPENDIX C: DIFFUSION COEFFICIENTS
FOR N-COMPONENT PLASMA

In this Appendix, we describe how to express diffusion

coefficients Dk
jk, D⊥

jk, and DH
jk through the momentum

transfer rates Jjk for the case of N-component plasma in the
low-temperature limit, considered in Sec. VI D. To find
these relations, we rewrite the system (109) and (110) in
terms of particle current perturbations ΔjðjÞ ¼ njuj=c and

vectors dðjÞ ¼ ∇μj−ejE
T , solve it with respect to ΔjðjÞ, and

compare the result with Eq. (52).17 Here, as in Sec. VI D,
we do not set c ¼ 1 and do not assume summation over
repeated indices.
Being expressed in terms ofΔjðjÞ and dðjÞ, Eqs. (109) and

(110) (divided by μjnj) read, respectively,

1

c2
∂U
∂t ¼ −

T
μj

dðjÞ þ
ej
μjnj

½ΔjðjÞ × B�

−
c

μjnj

X
k≠j

Jjk

�ΔjðjÞ
nj

−
ΔjðkÞ
nk

�
; ðC1Þ

X
j

μjΔjðjÞ ¼ 0: ðC2Þ

Substituting ΔjðjÞ from Eq. (52) into the system (C1) and
(C2) and taking into account that vectors dðkÞk and dðkÞ⊥ are

arbitrary, one can express the coefficientsDk
jk,D

⊥
jk, andD

H
jk

through the momentum transfer rates Jjk.
Let us present a step-by-step algorithm for finding the

coefficients Dk
j1, D

⊥
j1, and DH

j1 (all other coefficients can be
determined in a similar way). It is sufficient to consider the
case when dðkÞk ¼ 0 and dðkÞ⊥ ¼ 0 for all k ≠ 1. Then
Eq. (C2) reduces to

X
j

μjðDk
j1dð1Þk þD⊥

j1dð1Þ⊥ þDH
j1½dð1Þ⊥ × b�Þ ¼ 0; ðC3Þ

which implies

X
j

μjD
k
j1 ¼ 0;

X
j

μjD⊥
j1 ¼ 0;

X
j

μjDH
j1 ¼ 0:

ðC4Þ

Equation (C1), after substituting ΔjðjÞ from Eq. (52) and
gathering coefficients at dð1Þk, dð1Þ⊥, and ½dð1Þ⊥ × b�, yields

1

c2
∂U
∂t ¼

�
−
T
μj

δ1j −
c

μjnj

X
k≠j

Jjk

�
−
Dk

j1

nj
þDk

k1

nk

��
dð1Þk þ

�
−
T
μj

δ1j þ
ejB

μjnj
DH

j1 −
c

μjnj

X
k≠j

Jjk

�
−
D⊥

j1

nj
þD⊥

k1

nk

��
dð1Þ⊥

þ
�
−
ejB

μjnj
D⊥

j1 −
c

μjnj

X
k≠j

Jjk

�
−
DH

j1

nj
þDH

k1

nk

��
½dð1Þ⊥ × b�: ðC5Þ

Now let us subtract Eq. (C1) for j ¼ 2; 3;…N from Eq. (C1) for j ¼ 1. Equating coefficients at dð1Þk, dð1Þ⊥, and
½dð1Þ⊥ × b� to zero, we obtain

�
−

c
μ1n1

X
k≠1

J1k

�
−
Dk

11

n1
þDk

k1

nk

��
−
�
−

c
μjnj

X
k≠j

Jjk

�
−
Dk

j1

nj
þDk

k1

nk

��
¼ T

μ1
; j ¼ 2 � � �N; ðC6Þ

�
e1B
μ1n1

DH
11 −

c
μ1n1

X
k≠1

J1k

�
−
D⊥

11

n1
þD⊥

k1

nk

��
−
�
ejB

μjnj
DH

j1 −
c

μjnj

X
k≠j

Jjk

�
−
D⊥

j1

nj
þD⊥

k1

nk

��
¼ T

μ1
; j ¼ 2 � � �N; ðC7Þ

�
−

e1
μ1n1

D⊥
11 −

c
μ1n1

X
k≠1

J1k

�
−
DH

11

n1
þDH

k1

nk

��
−
�
−

ej
μjnj

D⊥
j1 −

c
μjnj

X
k≠j

Jjk

�
−
DH

j1

nj
þDH

k1

nk

��
¼ 0; j ¼ 2 � � �N: ðC8Þ

Equations (C6)–(C8) for j ¼ 2;…N together with the conditions (C4) can be written, in the matrix form, as
2
664
Mkð1Þ 0 0

0 Mkð1Þ MHð1Þ

0 −MHð1Þ Mkð1Þ

3
775
�
Xkð1Þ
X⊥ð1Þ
XHð1Þ

�
¼

�
Yð1Þ
Yð1Þ
0

�
; ðC9Þ

17Note that our definitions for Dk
jk, D

⊥
jk, D

H
jk, and dðjÞ do not coincide with that of Ref. [64] (see Appendix A there).
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where Xkð1Þ, X⊥ð1Þ, XHð1Þ, and Yð1Þ are N-dimensional
vectors:

Xkð1Þ ¼ ðDk
11;D

k
21;…Dk

N1ÞT; ðC10Þ

X⊥ð1Þ ¼ ðD⊥
11;D

⊥
21;…D⊥

N1ÞT; ðC11Þ

XHð1Þ ¼ ðDH
11;D

H
21;…DH

N1ÞT; ðC12Þ

Yð1Þ ¼
�
0;

T
μ1

;
T
μ1

;…
T
μ1

�
T
; ðC13Þ

while Mkð1Þ and MHð1Þ are N × N matrices, whose
elements are determined as (δjk is the Kronecker delta):

Mkð1Þ
1k ¼ μk; k ¼ 1 � � �N; ðC14Þ

Mkð1Þ
j1 ¼ c

μ1n1

P
l≠1J1l
n1

þ c
μjnj

Jj1
n1

; j¼2 � � �N; ðC15Þ

Mkð1Þ
jk ¼ −

c
μ1n1

J1k
nk

þ c
μjnj

Jjk
nk

− δjk
c

μjnj

P
l≠jJjl
nj

;

j; k ¼ 2 � � �N; ðC16Þ

MHð1Þ
jk ¼ e1B

μ1n1
δ1k −

ejB

μjnj
δjk; j; k ¼ 1 � � �N: ðC17Þ

Solving Eq. (C9), one can find the coefficients Dk
j1, D

⊥
j1,

and DH
j1. Matrices Dk

jk, D
⊥
jk, and DH

jk with k ≠ 1 can be
obtained in a similar way. One can also directly check that
these matrices are symmetric; i.e., the Onsager principle is
satisfied (remember that Jjk ¼ Jkj).
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