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Dissipative relativistic magnetohydrodynamics of a multicomponent
mixture and its application to neutron stars
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We formulate hydrodynamic equations for nonsuperfluid multicomponent magnetized charged
relativistic mixtures, taking into account chemical reactions as well as viscosity, diffusion, thermodiffusion,
and thermal conductivity effects. The resulting equations have a rather simple form and can be readily
applied, e.g., for studying magnetothermal evolution of neutron stars. We also establish a link between our
formalism and the results known in the literature and express the phenomenological diffusion coefficients
through momentum transfer rates which are calculated from microscopic theory.
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I. INTRODUCTION

Observations of neutron stars (NSs) contain a wealth of
potentially important information about the properties of
superdense matter in their interiors [1-7]. In order to extract
this information, however, one has to build realistic models,
allowing the theoretical study of the NS dynamics. Such
models should account for various particle species in the
core (neutrons, protons, electrons with an admixture of
muons, and, possibly, hyperons and/or quarks), magnetic
field, baryon superfluidity, and effects of the general theory
of relativity. Clearly, the construction of such models is a
complex theoretical problem, which is under intensive
development now (e.g., Refs. [8—18]).

For example, in studies of magnetothermal evolution, one
has to account for the fact that the magnetic field in super-
conducting NS cores can be confined to Abrikosov vortices.
Then the problem of magnetic field evolution reduces to the
analysis of motion of vortices under the action of various
forces exerted on them by different particle species (neutrons,
protons, electrons, muons, etc.), which move with different
velocities and interact with one another. Smooth-averaged
relativistic magnetohydrodynamic (MHD) equations, suitable
for describing the evolution of such a system at finite
temperatures, were formulated in Ref. [16], neglecting dif-
fusion of normal (nonsuperfluid and nonsuperconducting)
particles (see also a number of related works [8,11,19] in this
direction). However, diffusion is known to play an important
role, affecting not only dissipation of the magnetic field, but
also its nondissipative evolutionary timescales [10,17,20-28].

Therefore, initially, our main goal was to generalize the
equations obtained in Ref. [16] to allow for diffusion. During
this work, it quickly became clear that even in the absence of
baryon superfluidity and superconductivity there are certain
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gaps in the literature devoted to magnetized relativistic
mixtures, which become especially apparent in the NS
context. First of all, a majority of works on relativistic
dissipative MHD (see, e.g., Refs. [29-32]) postulate a
simplified version of Ohm’s law, which includes the electric
field but ignores gradients of thermodynamic functions
(chemical potentials and temperature). The latter terms are
generally present even in the single-fluid MHD, not to
mention its multifluid extensions [33,34], and can be impor-
tant for NS conditions [20,21]. There are only a few papers in
which the generalized Ohm’s law for relativistic MHD is
derived simultaneously with the basic dynamic equations
(see, e.g., Ref. [35] and a recent series of papers by Andersson
et al. [12-15]). In our opinion, the main shortcoming of these
works (if we talk about applications to neutron stars) is their
excessive complexity and lack of transparency of the resulting
equations which precludes their practical applications. At
least partly, this is because formulations of Refs. [12—-15,35]
do not make a full use of simplifications arising for a system,
for which the hydrodynamic approximation is valid, i.e.,
when the typical mean-free path / and collision time 7 are
much smaller than, respectively, the typical length scale L and
timescale 7 of the problem. Because the hydrodynamic
approximation should work very well for typical NS con-
ditions, it seems interesting and useful to formulate MHD
where this approximation is fully implemented.

Thus, the aim of the present study is to present a ready-
to-use formulation of a dissipative relativistic MHD for
multicomponent nonsuperfluid mixtures. To this aim, we
also express the phenomenological coefficients appearing
in this hydrodynamics through the parameters calculated
from the microscopic theory. We follow the textbook
phenomenological approach of Landau and Lifshitz [36]
and Eckart [37]; namely, we build a first-order dissipative
hydrodynamics which includes only the linear terms in the
thermodynamic fluxes. Notice that, theoretically speaking,
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the standard first-order hydrodynamics has some issues with
causality (thermal fluctuations propagate at infinite speed)
and stability [38,39]. These issues can be avoided at the cost
of using much more complicated hydrodynamic theories,
such as various second-order theories [40—42] or hydro-
dynamics obtained within Carter’s variational approach
[12,15,43] (see, e.g., Refs. [44,45] for the reviews).]
However, the first-order theory is sufficient (and, in fact,
follows from the kinetic equation approach; see, e.g.,
Ref. [49]) as long as the hydrodynamic description is
applicable, that is, 7 > 7 and L > [. These conditions
ensure that the space-time gradients of the deviations from
the equilibrium, e.g., heat flux and viscous stress, are
negligible on the scale of mean-free path or mean-free time.
Bearing in mind that these conditions hold for almost all
situations of practical interest, such as magnetothermal
evolution or hydrodynamic oscillations of NSs, we restrict
ourselves to the first-order hydrodynamics.” Another attrac-
tive feature of this hydrodynamics is that it allows one to
easily connect all the phenomenological kinetic coefficients
with the quantities calculated from the microscopic theory.
Finally, the dissipative hydrodynamics presented below,
combined with the results of Ref. [16], is readily extendable
to the superfluid and superconducting charged mixtures
with vortices [51].

This paper is organized as follows. In Sec. II, we
formulate general hydrodynamics equations for charged
relativistic mixtures in the absence of bound charges and
bound currents. In Sec. III, we derive the entropy gen-
eration equation, and, in Sec. IV, we use it together with the
Onsager relations to derive the most general form of
dissipative corrections for particle currents and energy-
momentum tensor. In Sec. V, we explicitly write out the
MHD equations for a general relativistic nonrotating NS.
Section VI contains a number of applications and special
cases that highlight the connection between the generalized
diffusion coefficients, introduced here, and kinetic coef-
ficients known from the literature: electrical conductivity,
thermal conductivity, and momentum transfer rates, as well
as nonrelativistic diffusion, thermodiffusion, and thermal
conductivity coefficients. Section VII contains the ready-
to-use expressions for the momentum transfer rates in npep
matter of NS cores. We compare our results to other works
in Sec. VIII and sum up in Sec. IX. Some technical details
elucidating derivations in the main text are presented in

'As has been shown recently, some first-order theories (which
are more general than Landau-Lifshitz or Eckart hydrodynamics
and contain additional kinetic coefficients) can also be stable and
causal, at least in some cases [46—48].

Note that the instabilities of the first-order hydrodynamics
found, e.g., in Ref. [39] develop for the modes (Fourier
components), which evolve on a timescale 7 much shorter than
7. Such modes are not within the range of applicability of the first-
order theory and should be discarded (e.g., [47,50]) or filtered
out, if we talk about numerical implementation of this theory.

Appendixes A and B. Finally, Appendix C shows how to
express generalized diffusion coefficients through the
momentum transfer rates in the low-temperature limit.

Unless otherwise stated, in what follows, the speed of
light ¢ and the Boltzmann constant kg are set to unity:
Cc = kB = 1.

II. GENERAL EQUATIONS

In this section, we present hydrodynamic equations
that describe charged relativistic mixtures in the absence
of bound charges and bound currents. For the sake of
simplicity, here we assume that the space-time metric
is flat: g,, = diag(—1,1,1,1); the straightforward gener-
alization of our results to arbitrary g,, is discussed in
Sec. V. The hydrodynamic equations include the energy-
momentum conservation law

0,T" = G* (1)
and continuity equations for particle species j
8ﬂj’('j) = AL}, (2)

where 0, = 0/0x"; T" is the energy-momentum tensor
(which must be symmetric); G* is the radiation four-force
density’; j’(‘j) is the particle four-current density for the
particle species j; Al'; is the reaction rate for species j due
to nonequilibrium processes of particle mutual transforma-
tion. Here and below, unless otherwise stated, y, v, and
other Greek letters are space-time indices running over
0, 1, 2, and 3; Latin letters i, j, k... are particle species
indices, and summation over repeated space-time and
particle indices is assumed. Generally, 7 and j’(‘j) can
be presented as

T™ = (P + e)uu’ + Pg + AT'gy + Ao, (3)
Jijy = ' + AJ), (4)

where P is the pressure given by Eq. (20) below; ¢ is the
energy density; n; is the number density for species j;

AT’(‘EM) is the electromagnetic contribution to the energy-

momentum tensor given by Eq. (22) below; Az** and A j’(‘j>
are dissipative corrections to the energy-momentum tensor
and particle currents, respectively. Finally, u* is the four-

velocity vector, normalized by the condition

uut = —1. (5)

3GY describes the exchange of energy and momentum between
matter and radiation. In the simplest case of isotropic emission,
GY = —Qu*, where Q is the total emissivity (e.g., neutrino
emissivity due to beta processes in the NS cores).
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The thermodynamic quantities introduced in Egs. (3) and
(4) do not have any direct physical meaning unless a frame
where they are measured (defined) is specified. In what
follows, we measure all thermodynamic quantities in the
comoving frame given by the condition w* = (1,0,0,0).
By definition, the energy and number densities are the
components 7% and j(0j> in that frame, 7% = ¢ and
0

Jiy) = 1o which, in an arbitrary frame, translate into

u,u,TH = e, (6)
uﬂj’(‘j) = —n;. (7)

These relations in view of the expressions (3), (4), and
(22)—(24) impose the following restrictions on the dissi-
pative corrections:

u,u, At = 0, (8)

uﬂAj’(‘j) =0. (9)
The definition of wu* is still somewhat ambiguous.
Following Landau and Lifshitz [36], we specify u” by
the condition that the total momentum of the fluid vanishes
in the comoving frame (the so-called Landau-Lifshitz, or
transverse, frame). Then the dissipative correction to the
energy-momentum in this frame obeys the additional
restriction

U, AT = 0. (10)

In the system without bound charges and currents, the
electromagnetic field is described by Maxwell’s equations

OuF, +0,F,, +0,F, =0, (11)
0, F" = 4rJ¥, (12)

where F,, = —F,, is the electromagnetic tensor and
JH = e;ji; = enju + e;A (13)

is the electric current (e; is the electric charge for particle
species j). Since A j’(‘j) depends on the electric four-vector
E* and various gradients of chemical potentials and
temperature [see Eq. (55) below], Eq. (13) is simply the
generalized Ohm’s law, whose form is specified in Sec. IV.
Note that in the majority of situations the term e;n;u* in
Eq. (13) is very small in comparison to e;A j’(‘j) due to
quasineutrality condition e;n; ~0 and can be neglected
[33]. The electric field E and the magnetic induction B are
defined, respectively, as

E = (FO', F2 F%), (14)

B=(F3,F", F1). (15)

Egs. (1)—(3), (6), and (7) are key equations that will be
used below. They should be supplemented by the second
law of thermodynamics,

de = ﬂjdnj =+ TdS + dgadd, (16)

where u; is the relativistic chemical potential for particle
species j, T is the temperature, S is the entropy per unit
volume, and de,qq is the electromagnetic contribution. In
the absence of bound charges and currents, the latter reads

1 1
deggq = EEadE“ + EBadBa, (17)
where E* and B” are the “electric” and “magnetic” four-
vectors, respectively [16,29], defined as

EV = u, F, (18)

1
Bt = Ee"”"ﬂuuFaﬁ, (19)

and e is the Levi-Civita tensor, normalized by €*1>3 = 1.

In the comoving frame, u* = (1,0,0,0), four-vectors E*
and B* are expressed through the electric field E and the
magnetic induction B, respectively: E* = (0,E) and
B* = (0,B).

The pressure P is defined as a partial derivative of the full
system energy €V with respect to volume V at a constant
total number of particles, total entropy, and electromagnetic
scalars E,E* and B,B*:

d(eV)

P=""

Using Eqgs. (16)—(20), one arrives at the following Gibbs-
Duhem equation:

1 1
dP:njdﬂj‘i—SdT—EEadE —EBadB . (21)

The term AT*

(EM) in Eq. (3) has the form

ATtew) = Tty + Ty (22)

where T’ZE) and T’&) are given, respectively, by [see, e.g.,

Egs. (48) and (49) in Ref. [16]]

1
Ty = =5 (B'EY = LE,E), (23)

1
T = — (L F*F* — w s u ugFPF

M) — Ar (24)

ay) ’

where 1" = ¢" + u”u” is the projection tensor.
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III. ENTROPY GENERATION RATE

The entropy generation equation follows naturally from
the conservation laws and the second law of thermody-
namics. Consider the combination u,0, 7" — u,G", which
vanishes in view of Eq. (1). Using Eqgs. (2)—(4), (16), and
(20), as well as the identities u,0,u* = 0 and 0,¢"* = 0, we
arrive at

K w M u
8ﬂ(SM’u> = ?jaﬂAJ"(l]> — ?JAFJ — 78ﬂ€add
u, v . Q
+2£0,(ATfpy + M) 2, (25)

where Q = u,G". Now let us transform the “electromag-
netic” term u*0,€,q4/T in Eq. (25). Using Egs. (63) and
(68) from Ref. [16], we can write
_uﬂaﬂgadd = MDF/AD‘]M - 8M[MU(T’(IE)D + TI(JM)U)}
+ 01" (T, + Tiypy,)- (26)

Notice that u’F,, J¢' = ¢;E,A j’(‘j) due to antisymmetry of
the tensor F*¥ [remember also the definition (18) for E*].

Substituting now relations (22) and (26) into Eq. (25), we
obtain

H; u M e;E, .
Ou(Su) =L 0,Af(y =2 AT+ =E A,
0

+ 20,0 — 2 (27)

or, equivalently,
'u/ H Uy v
aﬂ (SM” - ?AJU) - 7AT” >

A Hi\ _ ¢iEu va (W
=-aiy () - %] - o (%)

H; 0
—?]AFJ-—?. (28)

The left-hand side of this equation is the four-divergence of
the entropy four-current S* = Sut — '% A j’(’j) - ”—T“ AT,
while the right-hand side represents the entropy generation
due to dissipative processes. Note also that dissipative
corrections to the currents A j’(‘j> and the energy-momentum
tensor A7*¥ must be expressed as linear combinations of
gradients of #* and thermodynamic variables [52].% Except
for the last term, which can be arbitrary, the right-hand side
of Eq. (28) must be non-negative for all possible fluid

configurations.

*We remind the reader that we restrict ourselves to the first-
order dissipative hydrodynamics.

In the Landau-Lifshitz frame defined by Eq. (10),
Eq. (28) reduces to

A E 0 .
9,8 =—Aj" |0, (E) - Sk | — Agw ”””JQAF,.—Q,
(/) T T T T /T

(29)

oo M
SH = Su TAJ(J')'

Using the conditions (9) and (10), one can rewrite
Eq. (29) as

8,5 = —Af,

( )d<./‘)u — A

AT, -2, (30)

Vs #y QO
T T Iore

where we introduced the orthogonal part of the four-
gradient

LVH =1,0", (31)
and the vector d( e
Ui e E
diju ="V, (%) - % (32)

Both the vector d;), and the tensor Lv,, u, are orthogonal to
the four-velocity u.

The term — ”—Tf AT’; in Eq. (30) can be rewritten in the form
(see Appendix A)

Wi 1
— AT = A (Auy)?, (33)

where Auy is the chemical potential imbalance for a given
reaction X (for example, for the direct or modified Urca
processes [53], the chemical potential imbalance equals
Apx = p, — p, — p.) and Ax > 0 is a corresponding reac-
tion coefficient.

IV. EXPRESSIONS FOR Aj’(’i) AND A"
In the linear approximation in small gradients, the
quantities A j’<‘j) and AT" can generally be presented as

J_Vuu/l
A b

. v VA
Afiy = ~Aduwn = B} — (34)
ATV = —C},:Uidac)ﬂ - DMD&GLV)LMO_, (35)

respectively, where the kinetic coefficients A’]‘Z , B’;M, C’,ﬁ” ,
and D"** are discussed in what follows.

A. No magnetic field

Let us first analyze expressions for A j’(‘j) and A7* in a
homogeneous matter in the absence of a preferred direction
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(e.g., the magnetic field). In this case, the kinetic coef-
ficients A’;,':, B, e M, and D** in Egs. (34) and (35)
depend only on u*, ¢**, and (scalar) equilibrium thermo-
dynamic functions. These coefficients meet a number of
conditions. First, application of the Onsager symmetry
principle gives

A = A%, (36)
D,uwla — D/lo';w’ (37)
ct = —B, (38)

Second, the symmetry of Az* implies that

D/w/lo' — Dz/;t/lo', (39)
o =, (40)

Third, the conditions (9) and (10) lead to the following
constraints:

u, A d gy, =0, (41)
u, BN u, = 0, (42)
u, Cd gy, = 0, (43)
u, DNy, = 0, (44)

which must hold for arbitrary d ), and 1V, u;. Finally, one
should require that the matrices of kinetic coefficients
should be such that the entropy production rate would be
non-negative.

Unless the isotropic system has no center of inversion,
the Curie principle requires that the perturbations of
different tensor structure (i.e., viscosity and diffusion) do

not interfere and B/** = C*** = 0 (see also Appendix B).
Then the most general expressions for A j¥ Ji and A7 take
the form [see Eqs. (B6) and (B18)]

Aj' =-D

() i

0 (43)

At = —p(VHFur + VPt — <C - %11) 1P ut,
(46)

respectively. Here, the matrix of generalized diffusion
coefficients Dj; must be positive definite, and the coef-
ficients # (shear viscosity) and ¢ (bulk viscosity) [36] must
be non-negative.

B. Accounting for the magnetic field

Now let us consider a homogeneous matter, in which the
only preferred direction is specified, in the comoving
frame, by the magnetic induction vector B’ In what
follows, in addition to the magnetic four-vector B* it will
be convenient to use also the tensor “F* = 1#7 | YPF
(see Ref. [16], Appendix A), which in the comoving frame
is given by

0 O 0 0
0 O B; -B
L — > (47)
0 -B; O B
0 B, -B 0
and satisfies the identity
u,TF* = 0. (48)

In the presence of a magnetic field, the Onsager principle
(36)—(38) is modified (see, e.g., [56], Sec. 120):

A% (B) = Ai5(-B), (49)
D##9(B) = Diow(~B), (50)
Ci'(B) = —B"(-B). (51)

while Egs. (34) and (35) and the conditions (39)—(44)
remain unaffected. The kinetic coefficients now depend on
ut, ¢, B*, LF* and (scalar) equilibrium thermodynamic
functions.

One can check (see Appendix B) that, as in the system
without the magnetic field, B/ = ’,:"’1

and viscosity do not interfere. Thus Aj Ji

= 0; i.e., diffusion

depends only on
the vectors d(y),. In the comoving frame d( = (0,dy)),
Aj It = (0, Aj;)) [see condition (9)]; thus, Aj; can be
generally presented as (see Appendix B)

AJ( j = —DH d (5] 'DJ‘d ﬁ([d(k)J_ X b] (52)

Here Dyk,
b = B/|B| is the unit vector in the direction of the magnetic
field; and the vectors d() and d(), are defined, respec-

tively, as

D]lk, and Dﬁ( are the diffusion coefficients;

SAs in the ordinary MHD (see, e.g., Ref. [54], Sec. 66, and
Ref. [55], Sec. 58), the electric field in that frame is assumed to be
sufficiently small, of the order of gradients of thermodynamic
functions, and does not provide an additional preferred direction
in the system.
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d(k)i = d(k) - (d(k)b)b = b X [d(k) X b] (54)
In an arbitrary frame, Eq. (52) can be rewritten as

Ajlly = =Dl b b¥d(y, — DE(L#™ = bb*)dy,

— Db d . (55)
where we introduced®

B*

V= (56)
L
v = g . (57)

In the absence of viscosity, chemical reactions, and
energy losses (Q = 0), the entropy generation equation (30)
reduces to
|

_
0,8" = Djyd jy1d ) + Did ) 1dp) 1
_
= Dy + DixdyLudiy - (58)

where

d', = b”bydgc)w d!

0= L= (L = b*b)d . (59)

As follows from the Onsager principle (49), matrices DUk’

DL

jko
must also be positive definite in order to ensure that the
entropy of the system does not decrease. In the limit B — 0,

one has DL!k = Djlk =Dj;, and Dﬁ( =0 [see Eq. (45)].
Since the coefficient C;”M vanishes, the general expres-
sion for A7* reads [see Eq. (B16)]

and Dﬁ( must be symmetric. In addition, Dﬂk and Dij

1
ATt = — o[ EVET — 22D — 2R BIY + ADB DTV g - [EMET + B~ BV,

-1 [E;Mbybo' + THO BV A + VA B O + E”"b/‘bﬂlvlu,, _ %’73 [E/Mbya + SHO pYA + YA o + Evab/d]LvluG

— Ma[DFDBY A BB BB DR+ DB juy — LR LN g — &G [L BB+ LR b . (60)

where Z# = 1# — b*b*. The quantities 7,...n, are five
shear viscosity coefficients, and ¢ and {; are two bulk
viscosity coefficients [57]. In the case of a vanishing
external magnetic field, B -0, {;, =0, no=n, =m =
n, and 3 = n, = 0. Equation (60) is a relativistic gener-
alization of the nonrelativistic expression for the stress
tensor in the magnetic field, which contains the same
number of shear and bulk viscosity coefficients [57].
Phenomenological Eqgs. (55) and (60) are also compatible
with the results of the relativistic kinetic theory [34,58,59].

V. ACCOUNTING FOR GENERAL RELATIVITY

In the previous sections, we assumed that the metric is
flat: g, = diag(—1, 1, 1, 1). Generalization of our results to
arbitrary g, is straightforward provided that all relevant
length scales in the problem (e.g., particle mean-free paths)
are small enough compared with the characteristic gravi-
tational length scale (e.g., NS radius) [60]. In the latter case,
the general relativity effects can be easily incorporated into
hydrodynamics by replacing ordinary derivatives in all
equations with their covariant analogs and by replacing the
Levi-Civita tensor e/ with % = \/—detge"**.

®Note that d oy, F* = (0,[d 1) x B]) in the comoving frame.

In this section, we explicitly write out a set of general
relativistic MHD equations for a spherically symmetric star,
with the metric

ds* = —edt* + e*dr? + r*d®* + r’sin’0d¢?.  (61)

We ignore metric perturbations caused by the magnetic
field and fluid motions and work in the linear order in
dissipative terms and velocities; in particular, we neglect
the terms like |u|?, uAj(;), and [u x E]. We also ignore
effects of viscosity, which can be easily incorporated when
needed. For definiteness, we present the hydrodynamic
equations for an NS core consisting of neutrons (7), protons
(p), electrons (e), and muons (x). We take into account
nonequilibrium direct and modified Urca processes [53], as
well as energy losses due to isotropic neutrino emission
with the emissivity Q.

In what follows, all three-vector components are mea-
sured by a static local observer, in a locally flat frame
(denoted by a hat)7

"In other words, X = (X7, X?, x?) = (e#/2X", X9, X*), where
X is an arbitrary three-vector and (X", X%, X#) are its components
measured by a distant observer.

103020-6
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di* = (di, d?,dO, dp) = (e/>dt, e¥2dr, rd6, rsin 0de).
(62)

In other words, we introduce an orthonormal tetrad carried
by the observer and describe physical quantities by their
projections on this tetrad (see, e.g., Refs. [61,62]).

The three-vector u is composed of spatial components of
the four-velocity u*, u = (u”, u’, u?®). In the linear approxi-

mation, it can be expressed through the ordinary three-

dimensional velocity v = (4, 4 rsin&%), measured by

dr> " dr?
a distant observer, as
u = (eﬁ/Z—v/ZUr’ e—y/ZUH’ e_”/20¢). (63)

In the following equations, we also introduce time and
space derivatives taken by the local observer:

) )
EEC_H/za, (64)
. 919 1 9
= _1/27 S
V= (e ar’rae’rsinaa¢>' (65)

Using the above definitions, Maxwell equations (11) and
(12) can be rewritten in terms of the electric field E (14) and
the magnetic induction B (15) as follows®:

V-B=0, (66)
B .
a—A = -’V x (Ee*?), (67)
ot
V-E = 4ze;n;, (68)
OE

eV x (Be¥/?) = 4x] - (69)

E )

where J=ejj;) = e(n

is the electric current.
Continuity equation (2) for particle species j reads

p —Ne— nﬂ)u + e(Ajp - A.Ie - A.]y)

on; . .
c’)_?J + e 2V[(nu + Ajj))e’?] = AT, (70)

where the reaction rates AI'; are expressed through
chemical potential imbalances Au, =p, —p, —p, and

Apy =p, —pp — M, s

8Similar equations can be found, e.g., in Ref. [63] [see
Egs. (30)—(37) there with @ = 0].

Arn - _AEA,U@ - AMAMM’
Arp — /,{eAﬂe + AﬂAﬂ/p
AT, = 2,Ap,, AL, = A,Mpu, (71)

and the reaction coefficients 4, and 4, for direct and/or
modified Urca processes can be found, e.g., in Ref. [53].

Energy and momentum conservation laws (1), with the
help of thermodynamic relations (16) and (21), as well as
Maxwell equations, can be presented as

Hi“a ot

+ TA) —-EJ + e‘”@[e”(,ujnj +TS)u] =-0,

(72)

8 A
BT [(ﬂjnj +TS)u] + nje-v/Zv(ﬂjeu/z)

+ Se™V2V(Te/?) — e;n,E — [J x B] = 0. (73)
In the case of hydrostatic equilibrium, Eq. (73) reduces to

VP + (P+e)V==0. (74)

NS NI~

One can also write the energy conservation law (72) in a
form of entropy generation equation (30), which, with the
help of relations (33) and (52), yields

95 | e W\
E‘i‘e /2V|:<Su—?]AJ(1))€/2:|
_
= Dyd ) + Pjidj)1d w1

de(Bp)?  Au(Bu)*  Q
Tt Tr T

(75)

Diffusion currents are expressed algebraically through
the vectors d ;) [see Eq. (55)]:

Ajy) = =Dyd | — Didy — Difldgy. x b, (76)

where

Ny eE+eiluxB
d = V(’l%) AR el Tf[ | (77)

To sum up, the MHD equations contain three unknown
vector functions (u, E, B) and five unknown scalars, e.g.,
Ny Ny, N,y 1y, and S (all thermodynamic quantities can be
expressed as functions of n,, n,, n,, n,, S, |B*, and |E|?,
provided the equation of state is specified).

VI. APPLICATIONS AND SPECIAL CASES

In this section, we apply the general hydrodynamic
equations presented above to a number of special cases
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and provide relations between our generalized diffusion
coefficients Dy, and various kinetic coefficients commonly
used in the literature, such as electrical conductivity,
thermal conductivity, and momentum transfer rates.

A. Electrical conductivity

In this section, we provide relations between the elec-
trical conductivity and generalized diffusion coefficients

Dji. Let us consider the quasineutral (e;n; = 0) homo-

geneous (V’% = 0) matter. Substituting Egs. (32) and (52)
into Eq. (13), one obtains the following expression for
Ohm’s law in the comoving frame:

l

ee;/ D, eje D e;e, DI

J=e;Ajj) =" kT KB+ kT E, +- 25 Exb),
(78)

where E = (Eb)b and E, =E — (Eb)b

Now, introducing conductivities ¢/l, 6, and 6" (describ-
ing the conductivity along B, conductwlty in the direction
perpendicular to B, and the Hall effect, respectively) as

[ L H
ejekD ejeijk ejeijk

L H
O'H O = s O =
T T

(79)
and choosing a coordinate frame with the z axis along b,

one can easily rewrite Ohm’s law (78) in the following
standard form (e.g., Ref. [64]):

J* ot o1 0 E*
Pl=1-6" 6t 0 EY |. (80)
J? 0 o0 o4l E?

In the absence of a magnetic field, 6~ =l =6 and
H — 0, so that Ohm’s law takes the simple form J = oE.

B. Thermal conductivity

Let us consider heat conduction in a one-component
neutral liquid without the magnetic field. In this case, the
dissipative correction A/ Ja (45) takes the form

— _D“J_VM&‘

A
J T

(1 (81)

Using Eq. (20),
presented as

the Gibbs-Duhem relation (21) is

ar
dpP = and/%+(P+e)— (82)

7

Using this relation and introducing the thermal conductivity
coefficient’

P+e
k=D , 83
o(5F) (%)

Eq. (81) yields (see Ref. [36], Sec. 139)

, n T
AJfy =K i - (LWT e 8LVﬂP>. (84)

Now let us define the particle four-velocity V*:

V"—J /nl—u”—l— A] (85)

(1)
normalized by the condition V,V¥ = —1, valid to linear
order in small dissipative corrections [see Eq. (9)]. In the
“particle frame,” defined by condition V¥ = (1,0, 0,0), the
energy density four-current reads'”

T
—V, T = eVH — K(J‘V”T - —WﬂP). (86)
P+ e

The entropy four-current [see Eq. (29)] can be expressed,
with the help of Egs. (84) and (85), as

St = SV —; [le - lVMP] . (87)

P+e

Note that the same consideration remains valid, e.g., for
multicomponent nonsuperfluid npeu matter in NS cores, if
one assumes that beta processes are frozen and all particles
move with the same velocity V¥, so that the system can be
treated as the single-component one. Let us consider
thermal evolution of a spherically symmetric NS under
this assumption, ignoring particle currents [V*=(1,0,0,0)
in the laboratory frame], the magnetic field, and non-
equilibrium reactions but taking into account effects of
general relativity, described in Sec. V. Using the hydrostatic
equilibrium condition (74), one can rewrite the combina-
tion VT — %@P as

v

= e7V/2V(Tev/?). (88)

In view of Egs. (83), (84), (87), and (88), the entropy
generation equation (75) reduces to

°In the presence of a magnetic field, one can introduce, in analogy
w1th the electrical conductivity, the quantities «/l= D!l (Be)2,

mT

= Di;(5)%, and & = DY (5)%.
We omit the quadratically small term -V, A7 =

Aj(l)DATMD/nl.
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o8 - [ & V(Te!’?))? 0
— = eV |V (Te"?) | = k| ——2] —= (8
o © [T (Te )} K—er | 7 &
or, equivalently,
or . .
C, 5 e VV[ke!/?V(Te/?)] = —Q, (90)

where C,, = T0OS/0T is the heat capacity per unit volume.
Using the definitions of % (64) and v (65), one finally

represents Eq. (90) in the following standard form (see,
e.g., Ref. [53]):

1 0 oT
-v=A/2 _— 7 V[ Y=—-0—=C. -v/2 7" 91
¢ 47zr? Or (e°L,) 0 v© ot’ (o1)
L 0
T _a—(t2)/2 Tev/2 92
4drr? ke 8r( ), (92)

where the “local luminosity” L, is the (not related to
neutrinos) heat flux transported through a sphere of
radius r.

We remind the reader that Eqgs. (91) and (92) are valid
only in the absence of particle currents and deviations from
beta equilibrium; to study thermal evolution under more
realistic assumptions, one has to use a more general
equation (75).

C. Diffusion, thermodiffusion, and thermal conductivity
in the nonrelativistic limit

In this section, we derive a relation between our diffusion
coefficients and standard coefficients of diffusion, thermo-
diffusion, and thermal conductivity, arising in the non-
relativistic hydrodynamics. In the nonrelativistic limit, the

relativistic chemical potential y; for particle species j

approximately coincides with its rest mass energy m jc2,

so that generally |Vu;/T| < |u;V(1/T)| = |m;c*V(1/T)|,
and, thus, at arbitrary D, the terms depending on gradients
of temperature will be dominant in the expressions (45) and
(55) for A j’('j). However, we know that in the nonrelativistic
hydrodynamics both ‘“chemical potential” and “temper-
ature” terms can be equally important. To resolve the
seeming contradiction, as we show below, one has to
impose additional constraints on the coefficients in the
nonrelativistic expansion of Dj;. For the sake of simplicity,
we consider a neutral binary mixture. We also ignore
viscosity and chemical reactions, since these effects do
not interfere with diffusion. In this section (as well as in
Secs. VID and VII and in Appendix C), we do not set
¢ =1 to make the transition to the nonrelativistic limit
more transparent.

Let us expand y; and Dj; in small parameter § = v?/c?,
where v is a typical microscopic particle velocity in the
mixture:

uj=m;c*+ ﬂ.(1)5 + /4@52 + 0(8), (93)

j j
Dy =Dy + D5+ D&+ 0(5%). (94

In view of Egs. (32), (93), and (94), the dissipative
corrections to particle currents [Eq. (45)] can be expanded
in the comoving frame [A j’(‘j) = (0, 4j;)] as

(1)
. 1 H 1

Okt | ok
_ <Djk VA DpvEL
L 05, (95)

2 1
+ Dg»k)kazV? 52

In the nonrelativistic theory (see, e.g., Sec. 59 in
Ref. [36]), the effects of diffusion, thermodiffusion, and
thermal conductivity in a binary mixture are described in
terms of the heat current ¢ and the diffusion current Z, which
can be expressed in terms of Aj as"!

Aj Aj
j— Miimany < V(i) J(2)>’ (96)
miny + mpny, \ ng N
q= —mlczAjm - mzczAj(z), (97)

respectively, where we label the components of the mixture
by indices 1 and 2.
The currents i and g depend on gradients of temperature

T and HiL = py/my — py/my =

(ygl) /my — ,ué” /m,)é + O(8) through the nonrelativistic
kinetic coefficients a, 3, and y [36]:

chemical potential

i=—aVuy —pVT, (98)

q=—pTVurL —yVT + pypi. (99)

In order to relate «a, f, and y with the generalized
diffusion coefficients D, one has to substitute the expan-
sion (95) into relations (96) and (97), retaining the lowest-
order terms in 0. In order to reproduce the nonrelativistic

""To obtain the expression for g, one should express the
components of the energy-momentum tensor 7% (i =1,2,3)
through A j’(‘j) and the center-of-mass velocity V¥ = u +
m;cA j’(‘j> /p (p is the total mass density measured in the laboratory

frame) and compare the result with the nonrelativistic expression
for 7% [36].
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results, where VT and Vy; enter the expressions for i and ¢
on an equal footing, we require the first term in Eq. (95) to
vanish or, equivalently,12

m DY) = 0. (100)

Using this relation and calculating the heat current g to the
first order in &, we find

q=[m ngl) + 2’"1’7121)(12 + m%Dgz)] 4V( >5+ 0(8%).
(101)

This means that q is, generally, independent of gradients of
chemical potentials in the limit § — 0. Thus, to reproduce
the nonrelativistic results, one has to require, additionally,

m2DY) 4 2mm, DY) + m2D) =0, (102)

so that g = O(6?) [but both Aj(;) and i are O(5)]. Excluding

DY, D5y, and D} via relations (100) and (102), one
finally arrives at the following expressions for the non-
relativistic coefficients:

0)
o= _%, (103)

1
p= 272 [2m2m1D§g),uLL - m%cngll)ﬁ + m%czDgé],

(104)
1 2 0
Y= 72 [m1m2(204p(12)52 - D(lz),“%L)
+ m%c2(C2D(121)52 + D(111)MLL5)
+m3c (DY - Dymys)l.  (105)

To sum up, we expressed the nonrelativistic kinetic
coefficients a, f3, and y, which describe diffusion, thermo-
diffusion, and thermal conductivity, through coefficients in
the nonrelativistic expansion of Dj; (94). In addition, we
obtained two constraints on these expansion coefficients in
the zeroth (100) and first (102) order in the expansion
parameter o.

D. Momentum transfer rates and diffusion
in the low-temperature limit

In this section, we compare our approach with the micro-
scopic formalism used, e.g., in Refs. [17,20,25,26,64] in the

2Note that a similar condition (114) holds also for degenerate
(even relativistic) matter, if we expand Dj. in powers of

6= O(T/#j)-

limit 7 — 0 and assuming that VT' = 0. We express our

generalized diffusion coefficients Dﬂ o Djlk, and DH through
the momentum transfer rates J;;, introduced in the micro-
scopic theory.

The general multicomponent equations describing non-
superfluid liquid are similar to those used in Ref. [20] (see
also [64] for analogous equations). Let us assume that the
liquid constituents move with the nonrelativistic velocities
u; (the equation of state for the liquid can be nevertheless
relativistic). In the hydrodynamic regime investigated
throughout the paper, the velocities u; almost coincide
due to frequent collisions (e.g., [33]), and it is always
possible to choose the frame where u; < c. In this case, the
Euler equation for particle species j reads (hereafter in this

section no summation over particle indices j,k,... is
assumed)
9] i 1
n; [E—l_ (ujV)} <%uj) =e;n; <E+ [ x B})
//t . .
=V ==5" Vo
—Zij(uj —uk), (106)
=y

where u; is the velocity for particle species j; c is the speed
of light; ¢ is the gravitational potential; and J j; = J;; is the
momentum transfer rate between particle species j and k
per unit volume, which is related to the effective relaxation
time 7;; by the formula Jj, = u;n;/(c*;).

In the hydrodynamic regime, when collision timescales
are much smaller than the typical hydrodynamic timescale,
velocities u; are very close to one another [33] and one can
replace in lhs of Eq. (106) u; with the average mass velocity
U, defined as" [64]

UZ:“]' jEZﬂjnj”j- (107)
J J
After the replacement, Eq. (106) becomes
0 Wi 1
Hin;
—njVu; = =5V
= Tiluy —uy). (108)

k#j

One needs one more equation to specify the frame in
which Eq. (108) is written; as in Ref. [64], we define it by

BFor example, the term n 10/ 0tlpu;(u; —U)/c?] ~ pjn;(u;—
U)/(Tc?), where T is a typlcal timescale of the problem, can be
neglected in comparison to the term D, J(u; —up)~

D kwj Hinj(u; — i)/ (P, because T > 7.
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the condition U =0 (at a given moment of time) or,
equivalently,

Z,ujn ;= 0. (109)
In this frame Eq. (108) reduces to
”é—';f%—lt] — e (E i % u; B]) —nVu,
~EEVe =Y Sl ). (110)

=y

Excluding plasma acceleration from Eq. (110), one obtains,
with the aid of Eq. (109), the velocities u; for each particle
species as algebraic functions of thermodynamic forces.

The total energy current density in the microscopic
formalism [20,64] reads

q= Zﬂjn,u,+4 [E x B). (111)

In view of Eq. (109), the first term in (111) vanishes in the
U = 0 frame.

Let us now consider the same situation in our formalism.
The total energy current density ¢, determined by the
components of the energy-momentum tensor as g’ = cT"
(i =1,2,3), in the comoving frame reads

i i C i
q = cAT?EM) =1 [E x B]'. (112)
Clearly, comparing Eqs. (112) and (111), one can see that
the comoving frame u* = (1,0,0,0) coincides with the
frame defined by the condition (109).

Solving the system (109) and (110), one can express

velocities u ; or, equivalently, particle currents Aj( j) =

nju;/c through the vectors d; = M [cf. definition
(32) with VT = 0], magnetic field B, momentum transfer
rates Jj;, and the equilibrium thermodynamic quantities.

Comparing the result with Eq. (52), one can translate one

formalism into another and find diffusion coefficients D‘)k,

fDJ_
Jjk>
Appendix C. In the simplest case of a binary mixture in
the absence of a magnetic field, one obtains

and Dfj. The general algorithm is presented in

nins T py
Jia(uiny + ppny)?c

DIZZDZI == s (113)

H H
Dy, = ——21712, D, = ——1D12' (114)
Hi Ho

We present the momentum transfer rates J;; for npeu
matter in Sec. VIL

VII. MOMENTUM TRANSFER RATES
IN npepy MATTER

Bearing in mind an application of our results to the
problem of magnetic field evolution in an NS core, here we
present the practical expressions for the momentum transfer
rates J;;, introduced in the previous section, for the simplest
npeu composition. Here we do not set ¢ = kg = 1. In most
of the present studies, the microscopic calculations under
the “free particle model” from Ref. [65] are adopted (see,
e.g., Refs. [20,25]). However, there are considerable
updates to their results in the past decades; see Ref. [66]
for a review.

The collisions in NS matter are divided in two sectors.
The first one includes collisions between the leptons and
charged baryons, ey, ep, and up in the present case, and is
governed by the electromagnetic interactions. The second
sector contains the baryon collisions, np in the present
case, which are mediated by the strong interactions. We
remind the reader that the like-species collisions do not
contribute to the diffusion rates.

The momentum transfer rates for the electromagnetic
collisions should be calculated taking into account the
correct plasma screening [66]. Appropriate expressions
have been derived in Ref. [67]. The momentum transfer
rate is a sum of two terms which have different temperature
dependences reflecting different characters of screening of
“electric” and “magnetic” parts of the interaction:

Ju = JL + 1, (115)

where J!, o« T? describe the interaction via the longitudinal
plasmon exchange and the dominant term Ji « T3
corresponds to the exchange of transverse plasmons. In
the leading order [67],

45 p2 (kBT>5/3
Jh = 2 Pribry (787 ) 116
ik — 3 8 ek h6 3 (hcqt)z/:J, ( )
4 m?mZc (kgT)?
Jlo= g2l Mk Bl , 117
ik or e ey fl6 hcql f2(Qm/ql) ( )

where pp; and ppg, are the colliding particles Fermi
momenta; m; and m; are their effective masses on the
Fermi surface (related to the density of states); for leptons
my = py/c?, and & = 1.813. Notice that in the npeu
matter all charged particles have charges e; = +e, where
e is the elementary electron charge. The quantities ¢; and ¢,
in Eqs. (116) and (117) are the characteristic screening
momenta in the plasma:

4
2 2.
q; = o ZeiPFzm
ql ﬂhS Z [pF[

(118)

(119)

103020-11



DOMMES, GUSAKOV, and SHTERNIN

PHYS. REV. D 101, 103020 (2020)

The summation in Egs. (118) and (119) is carried over all
charged components of the plasma; in this sense,
the collisions between two particle species are influenced
by all charged species via the plasma mean field. Finally,
the function 74 (q,/q;) in Eq. (117), where hq,, =

2max(pre, Pri)s is [67]

X
21+ 2%

I (x) = latan(x)

5 (120)

If g, < q,,, it is enough to take I,, = n/4; then Eq. (117)
does not depend on g¢,,. The lepton-neutron coupling is
small and usually can be neglected. It arises from magnetic
interaction with the neutron magnetic moment. For com-
pleteness, retaining only the dominant transverse part of the
interaction, one obtains

B 87ra§-F,21nf

Jon = kgT)?, 121
on =g (k) (121)

where F, = 1.91 is the neutron magnetic moment in
nuclear units, ¢ stands for a given lepton (electron or

muon), and ay = 1/137 is the fine structure constant.
Equations (115)—(121) allow one to calculate the rates of
momentum transfer in the electromagnetic sector for any
equation of state, provided the effective masses of all
charged particles (including baryons) are known. Usually,
Eq. (116) is enough when the collisions between light
relativistic particles (leptons) are considered, while for the
massive baryons (protons in our case) both terms in
Eq. (115) need to be preserved due to a large value of
baryon mass. For illustration, in Fig. 1 we plot the
momentum transfer rates J; 752, where Tg = T/(10% K),
as functions of a baryon density for a beta-stable matter
with the BSk21 EOS, which is based on the Brussels-
Skyrme nucleon interaction functionals [68]. Solid, dashed,
and dotted lines show the momentum transfer rates for
electron collisions with protons, muons, and neutrons,
respectively. Likewise, dot-dashed and double-dot-dashed
lines are for the muon-proton and muon-neutron collisions,
respectively. In the expressions which depend on the proton
effective mass, the latter is set to m}‘, = 0.8my. Because of
the dynamical character of plasma screening, for the ey,
ep, and pu collisions, the combination J; 7> is not
temperature independent. By red, black, and blue lines,
we show in Fig. 1 the momentum transfer rates which
correspond to 7 = 107, 108, and 10° K, respectively. One
observes that, at high densities, the electron-proton and
muon-proton momentum transfer rates are close to each
other, while the electron-muon momentum transfer rate is
|

03830k},

1+ 102.0k, + 53.91kp,

‘TUJ
=
G
2
8
N o [ - 10°K
-, 2510, - —  10°K A
. s :
S D A e ]
o A e
o ! P
24 P .
o” o,’
I -
r’ 4
P
23 Ly 1 ‘. 1 L 1 L 1 L
0.2 0.4 0.6 0.8 1.0
3
ng [fm~]
FIG. 1. Momentum transfer rates J;; for the electromagnetic

sector in the beta-stable matter with the BSk21 EOS.

several times smaller. The lepton-neutron rates are, in
general, significantly smaller than all other rates. Never-
theless, they can be important in the core of a neutron star
under the presence of a strong proton superconductivity
(if the neutrons are not in the paired state).

Calculations of the neutron-proton momentum transfer
rate J,, are more involved, since this rate depends on the
uncertain properties of the nucleon interactions in the dense
asymmetric nuclear matter. Yakovlev and Shalybkov [65]
used the approximation of free-space zero-angle np cross
section (thus neglecting its angular dependence). This
approximation is rather crude and leads to a significant
overestimate of J,, even in the free-space model for the
neutron-proton scattering. The expression which accurately
takes into account the energy and angular dependence of
the np scattering cross section can be constructed based on
the results of Ref. [69] for the thermal conductivity of NS
cores. One obtains [67]

64m;2m*? (kgT)?
Jup = e 576 PiaSp2s (122)
b 97> m3, h® Fnp

where my is the bare nucleon mass and the function S,
having the dimension of a cross section, is defined in
Ref. [69]. In that paper, the function S, is calculated and
fitted employing accurate free-space differential scattering
cross section. The resulting expression is

P2 — 5.5
an

1 = 0.7087kp, + 0.2537k%, + 9.404k%, — 1.58%, k,

mb, (123)
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where kp, and kp, are neutron and proton Fermi momenta
in units of fm~!, respectively, and the fit is valid for the
momenta ranges kp, = 1.1-2.6 and kg, = 0.3-1.2.

The expressions (122) and (123) have the advantage that
they can be used for any EOS of the nuclear matter.
However, it is known that the in-medium effects consid-
erably modify both the effective masses and scattering
cross sections, which in turn modify the transport coef-
ficients; see, e.g., Ref. [66], Sec. IV.A.3, and references
therein. Baiko, Haensel, and Yakovlev [69] included in-
medium corrections [their Eq. (30)] employing the results
of particular Dirac-Brueckner calculations for symmetric
nuclear matter (n, = n,). It is expected, however, that the
influence of medium effects on the np cross sections in the
asymmetric matter, which is relevant to NS cores, can be
quantitatively different from the symmetric matter case
(see, for instance, Ref. [70]). Unfortunately, it is hard to
employ the in-medium corrections in a definite way. They
depend on the particular model of the nuclear interaction,
the asymmetry of matter, and the many-body theory used.
Even within a selected many-body approach, for instance,
Brueckner-Hartree-Fock, the resulting transport coeffi-
cients can differ by an order of magnitude for different
models of nuclear interaction [71]. We illustrate this
uncertainty in Fig. 2, where the momentum transfer rates
J, ,,Tg‘2 are plotted as a function of the baryon density for
the same BSk21 EOS as used in Fig. 1. The dotted line
shows the result of Ref. [65], while the dot-dashed line
corresponds to Egs. (122) and (123), where the bare

31.0 T T T T T T T
— 1:AV18 BSk21
—_— I —— 2:CD-Bonn . 1
‘TU) —— 3: CD-Bonn+UIX R 5
. 305 L 4: Av18+UIX °
= [T —— 5: Av18+TBFmic
5 —-— S08
o L .- vso1
Y@ 300
-
Q.
c
-
=}
8 29.5
29.0 " 1 " 1 " 1 " 1 "
0.1 0.2 0.3 0.4 0.5 0.6
ng [fm™]

FIG. 2. Momentum transfer rates J,, in the beta-stable matter
with the BSk21 EOS. Solid curves correspond to different
nucleon potentials following Ref. [71]; number codes are
expanded in the legend. The dotted line shows the approximation
from Ref. [65]. The dash-dotted line is calculated following
Ref. [67], where the fit from Ref. [69] was used. See the text for
details.

fop—

effective masses are used: m;, = mj, = my. Clearly, the
simplified approach of an angular-independent cross sec-
tion in Ref. [65] leads to overestimated J,,. The solid
curves marked 1-5 are calculated in the Brueckner-Hartree-
Fock framework employing different nucleon potentials
following Ref. [71]. These potentials include two realistic
two-body potentials, Argonne v18 (Av18) and CD-Bonn
potential, and two models for the effective three-body
forces, Urbana IX (UIX) and the microscopic meson-
exchange force (TBFmic); see Refs. [71,72] for details.
One indeed observes a strong (up to a factor of 10)
difference between the solid curves at higher densities.
In principle, each microscopic potential leads to its own
EOS and, as a consequence, a composition of the beta-
stable matter. In this sense, the transport properties such as
J,,, need to be computed along with the equation of state.
At present, this approach is not practical. In order to be able
to calculate J,, for an independent EOS, BSk21 in the
present case, it was calculated for each on a grid of baryon
densities and proton fractions and then interpolated to a
desired composition. Notice that, when J,, , is calculated for
a beta-stable matter consistent with the EOS, the discrep-
ancy between the results for different potentials is pre-
served (see Ref. [71] for thermal conductivity and shear
viscosity).

The difference between the results in Fig. 2 is large. This
represents the current uncertainty in the microphysical
understanding of the properties of the dense NS core
matter. Looking at Fig. 2, we can recommend to use
Egs. (122) and (123) with bare nucleon masses (dash-
dotted curve) in simulations, bearing in mind at least
+0.5 dex uncertainty in J,, at larger densities. Despite
these uncertainties, the J,, rate is several orders of
magnitude larger than the momentum transfer rates gov-
erned by the electromagnetic interactions; see Fig. 1.

Finally, we note that curves 1-5 in Fig. 2 are calculated
under a single many-body approach. Calculations within a
different theoretical framework can potentially increase the
uncertainty in the rates. For instance, in the medium-
modified pion exchange model of nuclear interactions
[73], the pion softening in dense matter can increase the
collision cross section by 1-2 orders of magnitude at high
densities, which directly translates into the corresponding
increase of J,,. For the shear viscosity, this model is
investigated in Ref. [74].

VIII. COMPARISON WITH PREVIOUS WORKS

As the authors believe, the formulation of MHD pro-
vided in this paper is simpler than the analogous formu-
lations (e.g., Refs. [12-15,35]) existing in the literature. To
explain why it is simpler, one should critically analyze
derivations of MHD equations in Refs. [12,15,35]. Below,
we provide such an analysis using, as an example, the
recent series of papers [12,15], which presents the most
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advanced MHD developed having in mind applications
to NSs.

)

(@)

3

The authors of Refs. [12,15] obtain a set of evolution
equations for relativistic magnetized dissipative
mixtures, having in mind their application to NSs.
The corresponding equations are derived, separately
for each particle species, from a variational princi-
ple.14 During the derivation, the authors do not
assume that the relative velocities u’(‘i> - u’(‘j> of
different particles species are small. The validity
of their equations obtained in this way is not
discussed; they are further used to derive MHD in
the approximation of small relative velocities.

A question immediately arises: why should the
variational principle provide correct equations for a
system which is in a highly nonequilibrium kinetic
regime? It is not clear (at least, for us) what is meant
by the generalized pressure, chemical potentials, and
temperature for the system in that case. It is well
known that, generally, the correct description of such
a system can be obtained by using kinetic equations
for each particle species [33,77]. As far as we are
aware, nobody has demonstrated that the variational
principle used in Refs. [12,15] is equivalent to the
kinetic equation approach.

As the second step, the authors analyze the resulting
complicated system of equations, assuming that the
velocity differences u’(’i) - u’(‘j) are small (linear drift
approximation). They also assume that the friction
force between different particles is proportional to
u’(‘i) - ”7,) [see the second term in Eq. (52) in
Ref. [15]]. Note that this assumption is not general,
since in a strong magnetic field the interaction force
between particles i and j may depend on the
magnetic field orientation (e.g., Ref. [33], Sec. IV).
Meanwhile, MHD equations developed in the
present paper will have the same form independently
of whether the magnetic field is strong or not: effects
of a magnetic field on particle collisions lead only to
renormalization of diffusion coefficients D‘)k, Djlk,
and DJj.

The linearized system of dynamic equations, ob-
tained by the authors [see, e.g., Eqs. (55) in Ref. [15]]
is still rather complex and is not further simplified
(in an essential way). We discussed its nonrelativ-
istic analogue in Sec. VID [see Eq. (106)]. Mean-
while, itis well known (see, e.g., [26,33], and Sec. VI
D) that in the hydrodynamic regime (7 > 7, L > [)
one can significantly simplify these equations by
replacing the derivatives 8au’(‘j) with O u# in all

1dry - . ..

This approach proves to be successful in deriving
correct equations of ordinary and superfluid hydrodynamics
[43,44,75,76].
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equations (u#* can be, e.g., the velocity of center of
momentum frame [15]). This is exactly the simpli-
fication that was made in Sec. VI D; it allowed us to
express the velocities u’(‘j) algebraically through the

gradients of thermodynamic variables and establish a
connection between our diffusion coefficients DU -

Dy, and D% and the momentum transfer rates J ;.

Additional complexity of MHD from Refs. [12,15]
is related to numerous entrainment coefficients,
arising naturally in the variational approach.'® While
the entrainment effect between protons and neutrons
is well known in the microscopic theory [79], the
existence of entrainment between the entropy
(treated as a separate fluid) and other particle species
is not confirmed by microphysics, to the best of our
knowledge.' Setting these coefficients to zero will
also simplify the equations.

It is important to note that, although the entrain-
ment between neutrons and protons could really
affect the dynamic equations written for each par-
ticle species separately, in our approach, where there
is only one velocity field u#, the entrainment does
not appear explicitly but leads only to renormaliza-

tion of diffusion coefficients D‘)k, Djlk, and Dﬁ?,’{.
From a theoretical point of view, the MHD of
Refs. [12,15] has an advantage that it ensures
causality and stability of the resulting equations.
But how significant are the corresponding correc-
tions to the first-order MHD equations? Recent work
of Lander and Andersson [82] provides a good
example illustrating this point. These authors ana-
lyzed the heat conduction equation in Carter’s
variational framework. They showed that their
causal heat equation reduces to the standard heat
equation, used, e.g., in modeling of NS cooling, if
the following condition is satisfied [see their
Eq. (66)]:

K
7o > s (124)

where 7, is the timescale for variation of the heat
flux; x is the thermal conductivity; § is the entropy
density; c is the speed of light; and « is the lapse
function (typically, a~1). Estimating & ~ 10%
ergem~'sTIK! (e.g., [66]), § ~ 10" ergem™3 K~}
(e.g., [83]), one finds that the inequality 7, > pe
will reduce to 75> 107" s (these estimates are

BIn the nondissipative limit, some redundant entrainment
coefficients can be set to zero by choosing the appropriate
“gauge” for the Lagrangian [78].

In Refs. [80,81], it is argued that entropy entrainment is

needed to restore causality of the heat conduction equation.
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made for the temperature 7 = 10® K). Since for NS
conditions, 7y > 1 s, it is absolutely safe to use the
standard heat equation in all practical situations.
Note also that, since the thermal conductivity x ~
Sv2t [57], where v is the average microscopic
velocity (v ~ ¢ for electrons in NS interiors), the
condition (124) reduces to 7, > 7 (i.e., the system
must be in the hydrodynamic regime, which is an
expected result).

To sum up, in light of the above discussion it seems quite
clear why the structure of the MHD equations obtained in
this paper appears to be simpler than the formulations
available in the literature.

IX. CONCLUSION

In the present study, we formulated equations of dissipa-
tive relativistic MHD for nonsuperfluid mixtures. These
equations are rather simple and consist of the energy-
momentum conservation law (1), continuity equations for
each particle species (2), and Maxwell equations (11) and
(12), as well as the second law of thermodynamics (16).
Dissipative corrections for the particle current densities A j’(‘j)

and for the energy-momentum tensor Az** are given by
Egs. (55) and (60), respectively. Ohm’s law (13) follows
automatically from these equations. Dissipative coefficients,
appearing in the proposed MHD, have a clear physical
meaning and can be expressed through the quantities
calculated in the microscopic theory (see Sec. VI D).

How can these MHD equations be used in practice? Let us
outline some of the possibilities. First of all, one can employ
the dissipative MHD for studying magnetothermal evolution
in the internal layers of NSs, accounting for diffusion,
macroscopic flows, and the effects of general relativity;
the corresponding equations for a spherically symmetric NS
with npeu core composition were explicitly written out in
Sec. V. Diffusion may also play an important role in damping
of NS oscillations [84], although this effect has not been
studied previously, to the best of our knowledge. As for the
development of hydrodynamic theory, the next logical step
would be to generalize the dissipative MHD to the superfluid
and superconducting mixtures [51], i.e., combine the results
of the present paper with the nondissipative superfluid MHD
of Ref. [16]. This would open up a possibility for realistic
modeling of superfluid and superconducting NS cores at
finite temperatures. Finally, let us note that, while in this
paper we were mainly interested in the NS-related applica-
tions, the obtained MHD equations can, in principle, be
applied to any relativistic mixture, as long as it stays in the
hydrodynamic regime.
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APPENDIX A: ENTROPY PRODUCTION DUE TO
NONEQUILIBRIUM REACTIONS

Here we discuss the entropy production due to non-
equilibrium chemical reactions, which is given by the term
—“ AT; in Egs. (28)~(30).

Assume for a moment that there is only one chemical
reaction between particle species j = A, B, C, D:

A+ B < C+D. (A1)

In this case, the source terms AI'; are constrained by the

relations A’y = Al'p = —Al' = —Al'p = AT, where we

introduced the quantity AI'. The reaction is initiated if the

chemical potential imbalance Ap = u, + pup — pic — pp

differs from zero; thus, in the linear approximation, one
can write

ATl = —1Au, (A2)

where the coefficient A must be positive, so that the reaction

drives the system toward chemical equilibrium. In terms of

A and Ay, the entropy production rate corresponding to the
chemical reaction A + B <> C+ D is

Wi A A
—P ALy =2 ua + g — e = pp) A = 7 (B, (A3)

Now, let us analyze what happens if the reaction takes
the form

A+ Ay 4o BB+ By -, (A4)

where A; and B; are particle species and «; and f3; are

integer stoichiometric coefficients. In this case, one can
introduce the reaction rate AI" according to

ATy,

_ AL _ AL,
b

a (25)

AT,

=
(AS)

AT

and the corresponding conjugate thermodynamic quantity
called chemical affinity [85] as

Ap=aypy, + aopip, + - = Pipg, — Poptp, =+ (A6)
When all stoichiometric coefficients are equal to =+1,
affinity reduces to the chemical potential imbalance used

above. With these definitions, one obtains the same result
as in the previous case.
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Finally, in the most general case of several chemical
reactions, one should proceed by introducing the quantities
Ax > 0, AT'X, and Apuy for each reaction X and, summing
up the contribution from all these reactions, arrive at the
final result

Ax
T

In the case of npeyu matter with beta processes turned on,
Eq. (A7) reduces to

ﬂ.

A A

Hj e
SHIAT =S (A + (A (A8)

where Au, = p, — pp — po and Ay = p, — p, — .

APPENDIX B: GENERAL FORM OF KINETIC
COEFFICIENTS

In this Appendix, we derive the most general form of
kinetic coefficients under conditions discussed in Sec. [V B
(homogeneous matter, with the only preferred direction in
the comoving frame described by the magnetic induction
B). The kinetic coefficients in such matter can be expressed
through uw*, 1*, b* = LF /,/B,B?, and (scalar) equilib-
rium thermodynamic quantities.

Let us start with the coefficient A% Generally, it has the
form
Al;;: = Cllij_ﬂy + azjku"u” + a3jkbﬂl/ + a4jkbﬂabg. (Bl)
Note that the terms containing u,b** do not appear here,
since they vanish identically in view of Eq. (48). One can
also omit the term a,ju*u”, since dy), [see Eq. (32)] is
orthogonal to u* and, therefore, this term does not enter the
expression (34) for A j’(‘j). The expression (B1) satisfies

Eq. (41) automatically. The Onsager principle (49) reads
Al;lI:(B) - a]ij-lw + a3jkb/w + Cl4jkbﬂabg
= AZ;!(_B) = ay; L — az b + ag b
(B2)

Since this condition must be true for all »*¥, one can
conclude that

ayjk = A1kj» azjk = A3g;j> A4jk = Aqg;j- (B3)

Using the identity

brbY, = LM — b (B4)

and introducing the quantities DL!k =a Dﬁ{ =ajt
agj, and Dﬁ{ = azj, we finally arrive at the following
expression:

A =Dl brbY + DE(L* — b#b*) + Db, (BS)

Similarly, one can show that, in the absence of a magnetic
field,

Now, let us consider the coefficients Bj”"l and C’;”’l. The

general form for C***, satisfying the constraint (40), is

C{;D/l = Cljl/t”bl”bl/1 + Czj(u"J_W1 +u¥ LH) + C3ju’1J_’“’
+ ¢y (Wb 4 u b)) + cs;(u' b,

U DD + cout DR, (B7)

The first term can be omitted, since it does not enter the
expressions for A j’(‘j) (34) and for Az*¥ (35) in view of the

equalities w”d(;), = u**+V,u, = 0. Substituting Eq. (B7)
into the condition (43), one obtains

u, O d(j); = =y = cagb?dj); = c5b*"b od(j, = 0,
(B8)
which implies
Cj = cyj =cs5; = 0. (B9)
Thus, C’;”’1 takes the form
CW = oyl LW + coutbhab”,,. (B10)

Now let us make use of the constraint (42) on B’JM.
Substituting Egs. (51) and (B10) into the condition (42),
one finds
u#B’,:”’U-V,,uﬁ = 3V ut 4 ¢ob* bV, u; =0, (BI1)
which can be satisfied for arbitrary *V,u, and b** only if
c3j = cj = 0. As a result, we proved that
B = = 0. (B12)
Finally, let us consider the tensor Do, Generally, it can
be expressed in terms of the following rank-4 tensors:
uﬂuuulua, M”MDJ_M—, uuuszla, uyuublabow gﬂ”J_/b, gﬂybﬂa7
G¢vbYbe,, B, b b, and b"“b”abwb"ﬂ. For fur-
ther convenience, we introduce the tensor Z*¥ = bH*D¥,
and, noting that 1" = = 4 b*b* [see Eq. (B4)], express
D" in terms of wtu’uu®, W' u*=°, ututb*, uub*be,
BBl Zple ZbAbe, b b b bC, and bFBY b bC.
The tensors w”u”, Z*, b*, and b*b* in the comoving
frame, in which the magnetic field is directed along the z
axis, B = B, have the following form:
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1 0 0 O 0O 0 0 O

0O 0 0 O 01 0 O
utu’ = s Y = ,

0O 0 0 O 0O 0 1 0

0O 0 0 O 0O 0 0 O

0 0 0O 0 0 0O
0 0 1 0 0 0 0O
b:"”’ = N bﬂby -
0 -1 00 0 0 0 O
0 0 0O 0 0 0 1
(B13)

The general form of D**, satisfying conditions (39) and (50), reads

D4 = duFututu® + do [ uY B + wutEM) + ds[uh ut B + uFuCE + ubuER + uf utEM
+ dy[ut u b b° + W uCbPbY| + ds[w utbY b + u ut b bt + uPutbP b + u¥ u’ b bt
b deEVEN 4 dy[SMER - BROEN] 4 dg[SRD DT BBRBY] 4 do[SMBPBC + BROBPLE - BT | V]
F digbP BT 4 dy [ DB+ uf BB+ uP bR+ b b + dyp[EP BT 4 BRObYA | EApRe 4 Eo i)

+ di[BHDADH + BDD A B BADRT 4 bbb

(B14)

Here, we do not write the term proportional to b**b*® + b**b**, since it can be expressed through other terms [86].

Now, let us note that we should omit all the terms depending on u* and u° in the expression (B14) [since
'V, u, = u°+V,u, = 0, they do not enter the expression (35) for Az**] and also the terms depending on u* and u”
[otherwise, the constraint (44) is not satisfied]. As a result, D#***¢ takes the form

DM = deEMER | [EMEY 4 BROEH] 4 dg[B DD 4 BRDFBY] + do[BHBVDC + BFBYD + BUDHDC 4 B b D]
+ dygb BB + dyy [EPABYC + BROpVE 4 BVARHT 4 B 4 s [DRDMDY + BBV + BUDART + bY BB

(B15)

It has seven independent terms and, hence, seven viscosity coefficients. In terms of viscosity coefficients introduced in

Ref. [57], D**** can be presented as

1 2
DHvie — (5’70 - + é’) SHYEAC + ,,II[EMEM + EﬂaEM] + (__,,[0 + é’ + é’1> [Eﬂublbg + E/lab/lby]

3

4
+ 1 [EHD BT + BROD B 4 BV BB + BB + <3 o+ + 241) bbb b°

1
+ E'h [E/ulbm + E/wby/l + Ey/lb/w + Eyabui] + N4 [bﬂb/lbya + bﬂbabwl + bubﬁb/w + b”b"b"’l],

(B16)

where 7, ...n4 are five shear viscosity coefficients and { and ¢ are two bulk viscosity coefficients, determining the trace of

the tensor A7 (60):

Azt = _D/Mdlvwa = —(3 4 ¢1)B Vu, — (38 +44,) b bV u,.

The coefficients 5, 11, 172, £, and {; must be non-negative
in order to ensure entropy growth. The terms depending on
n3 and 54 do not contribute to the entropy production, so
these two coefficients can have arbitrary signs. The shear
viscosity coefficients #...77, have not been calculated for
magnetized neutron star cores to our knowledge. For a
magnetized NS crust, they were calculated in Ref. [87]
(note that i3 and 7, in that paper have the opposite sign as
compared to our definition).

A similar expression for D**** was derived in Ref. [86],
where relativistic dissipative MHD of a one-component

(B17)

I
liquid was analyzed; note, however, that the authors of
Ref. [86] used different definitions of viscosity coefficients.

One can show that, in the absence of a magnetic field,
DH%7 takes the form [36]

2
D,ul/ﬂo':;,l(l,uﬂJ_IJo’_i_J_l/ﬂJ_ﬂo’)_i_ (§_37]> J_;wJ_/l(r (Blg)

in order to satisfy the conditions (37) and (39). Here, 1 and
¢ are (non-negative) shear and bulk viscosity coefficients,
respectively.
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APPENDIX C: DIFFUSION COEFFICIENTS
FOR N-COMPONENT PLASMA

In this Appendix, we describe how to express diffusion

coefficients D‘)k, D]lk, and Dﬁ( through the momentum
transfer rates J ;; for the case of N-component plasma in the
low-temperature limit, considered in Sec. VID. To find
these relations, we rewrite the system (109) and (110) in

terms of particle current perturbations Aj(;) = n;u;/c and

i "_e"E, solve it with respect to Aj;), and

vectors dj 7
compare the result with Eq. (52).17 Here, as in Sec. VID,
we do not set ¢ = 1 and do not assume summation over
repeated indices.

Being expressed in terms of Aj;) and d;), Egs. (109) and

(110) (divided by u;n;) read, respectlvely,

lov_ T, .
2ot pi 0+

Hjlj
__Z < ] (k)>’ (Cl)
Ly M

> it =0
J

—L_[Ajj) x B]

(€2)

Substituting Aj; from Eq. (52) into the system (CI) and

(C2) and taking into account that vectors d ;) and d ;) are
arbitrary, one can express the coefficients DUk’ Djlk, and DH

through the momentum transfer rates J j;.
Let us present a step-by-step algorithm for finding the

coefficients Dﬂl, Dﬁ, and DH

determined in a similar way) It is sufficient to consider the
case when d) =0 and d), =0 for all k# 1. Then

Eq. (C2) reduces to

(all other coefficients can be

Zﬂ/ (Dad oy + Didoys + Dl xb) =0, (C3)
which implies
ZﬂjDHI =0, ZF‘JD i1=0, Zﬂj i1 =

(C4)

Equation (Cl1), after substituting Aj(;) from Eq. (52) and
gathering coefficients at d |, d(,) ., and [d(;), x b], yields

l [ DL L
10U T D D Dji | D
S = b T kl)}d +{——5 +— =5 ( kl)}d
c? ot [ n 01 uin ]; /k< S ) PR T, — jk PR O
s Dji . Di
+ |:_ Dl - J]k( >:| [d(l)L Xb] (CS)
Hjnj Hilj e P M

Now let us subtract Eq. (C1) for j = 2,3,.
[d(1), x D] to zero, we obtain

..N from Eq. (CI) for j = 1. Equating coefficients at d ), d;),, and

ol pl plpl T
[——Zjlk(—iJr kl)} - {——c ijk<——“+¢)] =—, j=2--N, (C6)
M1 k1 ng M]n] k#j nj N Hi
DL DL Dl T
[:1 D —Zflk<—“+ “)] L 24 —Zm( “ﬂ =—, j=2---N, (C7)
11 Kl S Ny Hilj e N Hi
DY DY L Di
() e () e
Hin 1M T ny Ml iy M

Equations (C6)—(C8) for j =2, ..

.N together with the conditions (C4) can be written, in the matrix form, as

(C9)

MM 0 0
0 MM MH
0 ~MHL M

Note that our definitions for D“ Dj;(, Dﬁ(, and d do not coincide with that of Ref.

[64] (see Appendix A there).
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where XM, x1()  xHD) and YD) are N-dimensional
vectors:

X1 = (D], DY, .. Dy ), (C10)

X+ = (D}, D5y, ...D3,)T, (C11)

XA = (pit DY, ..DE)T, (C12)

() = (o,z,l,..l)T, (C13)
i M Hi

while MM and MHAM) are N x N matrices, whose
elements are determined as (5;; is the Kronecker delta):
1
MY = .

k=1---N, (C14)

J J;
M=~ ziaduy Iy ()
mng m Hinjny
FY LI Jiw ¢ Ji c Dzl
W =o Sy SR, O S
M1y Ny png g Hjnj - nj
jk=2--N, (C16)
B e;B
MO 825, 75, jk=1--N. (CI7)

— Oy
Hiny il

Solving Eq. (C9), one can find the coefficients D‘)], Dj-l,
and Dﬁ. Matrices ’DL!k, Djlk, and Dﬁ( with k # 1 can be
obtained in a similar way. One can also directly check that

these matrices are symmetric; i.e., the Onsager principle is
satisfied (remember that J ;. = Jy;).
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