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We briefly review analytic approximations of thermodynamic functions of fully ionized nonideal electron-
ion plasmas, applicable in a wide range of plasma parameters, including the domains of nondegenerate and
degenerate, nonrelativistic and relativistic electrons, weakly and strongly coupled Coulomb liquids, classical
and quantum Coulomb crystals. We present improvements to previously published approximations. Our code
for calculation of thermodynamic functions based on the reviewed approximations is made publicly available.
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1 Introduction

In a previous work [1, 2], we performed hypernetted chain (HNC) calculations and proposed analytic formulae
for the equation of state (EOS) of electron-ion plasmas (EIP). An alternative analytic approximation for the EOS
of EIP was proposed in [3,4]. A comparison (e.g., [1,4]) shows that the formulae in [2] have a higher accuracy, in
particular for the thermodynamic contributions of ion-ion and ion-electron correlations in the regime of moderate
Coulomb coupling. Recently [5, 6], we studied classical ion mixtures and proposed a correction to the linear
mixing rule. In this paper we review the analytic expressions for all contributions to thermodynamic functions and
introduce some practical modifications to the previously published formulae. The reviewed analytic description
of the thermodynamic functions of Coulomb plasmas is realized in a publicly available computer code.

Let ne and ni be the electron and ion number densities, A and Z the ion mass and charge numbers, respectively.
The electric neutrality implies ne = Zni. In this paper we neglect positrons (they can be described using the
same formulae as the electrons; see, e.g., Ref. [7]) and free neutrons (see, e.g., Ref. [8]), and consider mainly
plasmas containing a single type of ions (for the extension to multicomponent mixtures, see [5, 6]).

The state of a free electron gas is determined by the electron number density ne and temperature T . Instead
of ne it is convenient to introduce the dimensionless density parameter rs = ae/a0, where a0 is the Bohr radius
and ae = ( 4

3πne)
−1/3. The parameter rs can be easily evaluated from the relations rs = 1.1723 n

−1/3
24 , where

n24 ≡ ne/1024 cm−3, or rs = (ρ0/ρ)1/3, where ρ0 = 2.6752 (A/Z) g cm−3. The analogous density parameter
for the ion one-component plasma (OCP) is RS = aimi(Ze)2/~

2 = 1822.89 rsAZ7/3, where mi is the ion mass
and ai ≡ ( 4

3πni)
−1/3 = aeZ

1/3 is the ion sphere radius.
At stellar densities it is convenient to use, instead of rs, the relativity parameter [9] xr = pF/mec =

1.00884 (ρ6Z/A)
1/3

= 0.014005 r−1
s , where pF = ~ (3π2ne)

1/3 is the electron Fermi momentum and ρ6 ≡
ρ/106 g cm−3. The Fermi kinetic energy is εF = c

√

(mec)2 + p2
F − mec

2, and the Fermi temperature equals
TF ≡ εF/kB = Tr (γr − 1), where Tr ≡ mec

2/kB = 5.93 × 109 K, γr ≡
√

1 + x2
r , and kB is the Boltzmann

constant. If xr � 1, then TF ≈ 1.163 × 106 r−2
s K. The effects of special relativity are controlled by xr in

degenerate plasmas (T � TF) and by τ ≡ T/Tr in nondegenerate plasmas (T � TF).
The ions are nonrelativistic in most applications. The strength of the Coulomb interaction of ions is char-

acterized by the Coulomb coupling parameters Γ = (Ze)2/aikBT = ΓeZ
5/3, where Γe ≡ e2/aekBT ≈

22.747T−1
6 (ρ6Z/A)1/3 and T6 ≡ T/106 K.
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2 A. Y. Potekhin and G. Chabrier: Analytic equation of state of fully ionized plasmas

Thermal de Broglie wavelengths of the ions and electrons are usually defined as λi =
(

2π~
2/mikBT

)1/2
and

λe =
(

2π~
2/mekBT

)1/2
. The quantum effects on ion motion are important either at λi & ai or at T � Tp,

where Tp ≡ (~ωp/kB) ≈ 7.832 × 106 (Z/A)
√

ρ6 K is the plasma temperature determined by the ion plasma

frequency ωp =
(

4πe2 niZ
2/mi

)1/2
. The corresponding dimensionless parameter is η ≡ Tp/T .

Assuming commutativity of the kinetic and potential energy operators and separation of the traces of the
electronic and ionic parts of the Hamiltonian, the total Helmholtz free energy F can be conveniently written as
F = F

(i)
id + F

(e)
id + Fee + Fii + Fie, where F

(i)
id and F

(e)
id denote the ideal free energy of ions and electrons,

and the last three terms represent an excess free energy arising from the electron-electron, ion-ion, and ion-
electron interactions, respectively. This decomposition induces analogous decompositions of pressure P , internal
energy U , entropy S, the heat capacity CV , and the pressure derivatives χT = (∂ ln P/∂ ln T )V and χρ =
−(∂ ln P/∂ ln V )T . Other second-order functions can be expressed through these ones by Maxwell relations.

2 Ideal part of the free energy

The free energy of a gas of Ni = niV nonrelativistic classical ions is F
(i)
id = NikBT

[

ln(niλ
3
i /M) − 1

]

, where
M is the spin multiplicity. In the OCP, it can be written in terms of the dimensionless plasma parameters as
F

(i)
id = NikBT [3 ln η − 1.5 lnΓ − 0.5 ln(6/π) − ln M − 1] .

The free energy of the electron gas is given by F
(e)
id = µeNe − P

(e)
id V, where µe is the electron chemical

potential. The pressure and the number density are functions of µe and T :

P
(e)
id =

8

3
√

π

kBT

λ3
e

[

I3/2(χe, τ) +
τ

2
I5/2(χe, τ)

]

, ne =
4√
π λ3

e

[

I1/2(χe, τ) + τI3/2(χe, τ)
]

, (1)

where χe = µe/kBT (here, we do not include the rest energy mec
2 in µe) and

Iν(χe, τ) ≡
∫

∞

0

xν (1 + τx/2)1/2

exp(x − χe) + 1
dx (2)

is a Fermi-Dirac integral. An analytic approximation for µe(ne) has been derived in [1].
In Ref. [1] we calculated Iν(χe, τ) using analytical approximations [7], accurate typically to a few parts in

104, with maximum error < 0.2% at τ ≤ 100. These approximations are piecewise: below, within, and above the
interval 0.6 ≤ χe < 14. Their typical fractional accuracy is a few ×10−4, the maximum error and discontinuities
at the boundaries reach ∼ 0.2%. For the first and second derivatives, the errors and discontinuities lie within
1.5%. At χe ≥ 14 we use the Sommerfeld expansion (e.g., [10])

Iν(χe, τ) ≈ I(0)
ν (µ̃) +

π2

6
τ2I(2)

ν (µ̃) +
7π4

360
τ4I(4)

ν (µ̃) + . . . , (3)

where we have defined µ̃ = χeτ = µe/mec
2,

I(0)
ν (ε) =

∫ ε

0

I(1)
ν (ε′) dε′ =

∫ x0

0

(

√

1 + x2 − 1
)ν−1/2 x2 dx√

1 + x2
, I(n+1)

ν (µ̃) =
dI(n)

ν (µ̃)

dµ̃
, (4)

I(1)
ν (ε) = εν

√
2 + ε and x0 ≡

√

µ̃(2 + µ̃). In particular,

I(0)
1/2(µ̃) = [x0γ0 − ln(x0 +γ0)]/2, I(0)

3/2(µ̃) = x3
0/3−I(0)

1/2(µ̃), I(0)
5/2(µ̃) = x3

0γ0/4−2x3
0/3+1.25 I(0)

1/2(µ̃),

where γ0 ≡
√

1 + x2
0 = 1 + µ̃ (note that, if µ̃ = ε̃, where ε̃ ≡ εF/mec

2, then x0 = xr and γ0 = γr).
At small µ̃, accuracy can be lost because of numerical cancellations of close terms of opposite signs in Eq. (3)

and in the respective partial derivatives. In this case we use the expansion

Iν(χ, τ) =Inr
ν (χ) +

∞
∑

m=0

(−1)m (2m − 1)!! τm+1

4m+1m!
Inr
ν+m+1(χ), Inr

ν (χ) =

∫

∞

0

xν dx

ex−χ + 1
, (5)
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where (2m − 1)!! ≡
∏m

k=1(2k − 1) should be replaced by 1 for m = 0. At large χ, the nonrelativistic Fermi
integrals Inr

ν (χ) are calculated with the use of the Sommerfeld expansion. Sufficiently smooth and accurate
overall approximations for functions Iν(χe, τ) with ν = 1

2 , 3
2 , and 5

2 are provided by switching to Eq. (5) at
χe ≥ 14 and µ̃ < 0.1, while retaining the terms up to m = 3.

The chemical potential at fixed ne is obtained with fractional accuracy∼ T 2/T 2
F by using Eqs. (1), (3), setting

I(n)
ν (µ̃) ≈ I(n)

ν (ε̃) + I(n+1)
ν (ε̃) (µ̃ − ε̃), and dropping the terms that contain the product (µ̃ − ε̃) τ 2. Then at

T � TF

∆ε̃ ≡ ε̃ − µ̃ ≈ π2τ2

6 ε̃

1 + 2x2
r

γr(1 + γr)
, ∆F ≡ F

(e)
id − F

(e)
0 ≈ −1

2
TS

(e)
id ≈ −PrV

xrγrτ
2

6
, (6)

where F
(e)
0 = (PrV /8π2)[xr (1+2x2

r ) γr− ln(xr+γr)]−Nemec
2 is the zero-temperature limit [11] (without the

rest energy Nemec
2), and Pr ≡ mec

2 (mec/~)3 = 1.4218× 1025 dyn cm−2 is the relativistic unit of pressure.

Accordingly, P
(e)
id ≈ P

(e)
0 + ∆P, where P

(e)
0 = (Pr/8π2)

[

xr

(

2
3 x2

r − 1
)

γr + ln(xr + γr)
]

, and ∆P =

(Pr/18) τ2xr (2 + x2
r )/γr. In this case, χ

(e)
ρ ≈ Prx

5
r/9π2γrP

(e)
id , χ

(e)
T ≈ 2∆P/P

(e)
id , C

(e)
V ≈ π2kBNe γrτ/x2

r .
In order to minimize numerical jumps at the transition between the fit at χe < 14 and the Sommerfeld expansion
at χe > 14, we multiply the expressions for ∆F by empirical correction factor (1 + ∆ε̃/ε̃)−1, and those for χ

(e)
T

and C
(e)
V by [1 + (4 − 2xr/γr) ∆ε̃/ε̃]−1.

At xr < 10−5 we replace F
(e)
0 and P

(e)
0 by their nonrelativistic limits, F

(e)
0 /V = Prx

5
r/10π2 and P

(e)
0 =

Prx
5
r/15π2 ∝ n

5/3
e . In the opposite case of xr � 1, one has P

(e)
0 = Prx

4
r/12π2 ∝ n

4/3
e .

3 Electron exchange and correlation

Electron exchange-correlation effects were studied by many authors. For the reasons explained in [1], we adopt
the fit to Fee presented in Ref. [12]. It is valid at any densities and temperatures, provided that xr � 1.

In Ref. [2] we implemented an interpolation between the nonrelativistic fit [12] and approximation [3,4] valid
for strongly degenerate relativistic electrons. However, later on we found that such an interpolation may cause
an unphysical behavior of the heat capacity in a certain density-temperature domain. Therefore we have reverted
to the original formula [12], taking into account that in applications, as long as the electrons are relativistic, their
exchange and correlation contributions are orders of magnitude smaller than the other contributions to the EOS
of EIP (see, e.g., [8, 13]).

4 One-component plasma

4.1 Coulomb liquid

For the reduced free energy of the ion-ion interaction fii ≡ Fii/NikBT in the liquid OCP at any values of Γ
we use the analytic approximation derived in Ref. [2]. In order to extend its applicability range from T � Tp

to T ∼ Tp, we add the lowest-order quantum corrections to the Helmholtz free energy. [14]: f
(2)
q = η2/24.

The next-order correction ∝ ~
4 has been obtained in [15]. These corrections have limited applicability, because

as soon as η becomes large, the Wigner expansion diverges and the plasma forms a quantum liquid, whose free
energy is not known in an analytic form.

A classical OCP freezes at temperature Tm corresponding to Γ = 175, but in real plasmas Tm is affected by
electron polarization [2, 16] and quantum effects (e.g., [17–19]). Hence the liquid does not freeze, regardless of
T , at densities larger than the critical one. The critical density values in the OCP correspond to RS ≈ 140– 160
for bosons and RS ≈ 90 – 110 for fermions. In astrophysical applications, the appearance of quantum liquid can
be important for hydrogen and helium plasmas (see, e.g., Ref. [18] for discussion).

4.2 Coulomb crystal

The reduced free energy of the Coulomb crystal is flat ≡ Flat/NikBT = C0Γ+1.5u1η+fth+fah. Here, the first
term is the Madelung energy (C0 ≈ −0.9), the second represents zero-point ion vibrations energy (u1 ≈ 0.5),

Copyright line will be provided by the publisher



4 A. Y. Potekhin and G. Chabrier: Analytic equation of state of fully ionized plasmas

Fig. 1 Anharmonic contribution to the reduced free energy
of an ion lattice as a function of the quantum parameter
η = Tp/T for two values of the Coulomb coupling param-
eter, Γ = 175 (upper curves) and 1000 (lower curves). A
comparison of different approximations (see text): Wigner
expansion (long-dashed lines); an approximation from [25]
(IOI, dotted lines); the same approximation with the coeffi-
cients adjusted to Ref. [21] (short-dashed lines); and present
interpolation (8) (solid lines). The points with errorbars
show simulation results from [25] for Γ = 1000.

Fig. 2 Harmonic and anharmonic lattice contributions to
the reduced heat capacity at Γ = 175 and 1000. The har-
monic lattice contribution according to Ref. [20] (dot-dashed
lines) is compared to the model [18] (long-short-dash lines)
and to the anharmonic correction in different approximations
(see text): a derivative of the IOI fit [25] (dotted lines: orig-
inal; short-dashed lines: improved; see text) and a corre-
sponding derivative of Eq. (8) (solid lines).

fth is the thermal correction in the harmonic approximation, and fah is the anharmonic correction. We use the
most accurate values of C0, u1, and analytic approximations to fth for bcc and fcc Coulomb OCP lattices, which
have been obtained in [20].

For the classical anharmonic corrections, 11 fitting expressions were given in [21]. We have chosen one of
them: f

(0)
ah (Γ) = a1/Γ + a2/2Γ2 + a3/3Γ3, with a1 = 10.9, a2 = 247, and a3 = 1.765 × 105, because this

choice is most consistent with the perturbation theory [17, 22].
In applications one needs a continuous extension for the free energy to η 6= 0. With the leading quantum

anharmonic correction at small η one has [15]

fah ≈ f
(0)
ah (Γ) − (0.0018/Γ + 0.085/Γ2) η4. (7)

At T → 0, the quantum anharmonic corrections were studied in [17, 23, 24], where an expansion in powers of
R

−1/2
S was obtained, assuming RS � 1. The leading term of this expansion can be written in the form fah,T→0 =

−b1η
2/Γ. In the literature one finds different estimates for b1; we use b1 = 0.12 as an approximation consistent

with [23, 24]. Free and internal energies of finite-temperature quantum crystals were calculated using quantum
Monte Carlo methods in [19, 25, 26]. Iyetomi et al. in Ref. [25] (hereafter IOI) proposed an analytic expression
for the quantum anharmonic corrections. However, differences between the numerical results in [19, 25, 26]
are comparable to the differences between the numerical results and the harmonic approximation. Therefore,
finite-temperature anharmonic corrections cannot be accurately determined from the listed results.

In order to reproduce the zero-temperature and classical limits, we multiply f
(0)
ah by exponential suppression

factor e−c1η2

and add fah,T→0. Then we have

fah = f
(0)
ah (Γ) e−c1η2 − b1η

2/Γ. (8)
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According to Eq. (7), the Taylor expansion coefficient at η2/Γ equals zero. In order to reproduce this property,
we set c1 = b1/a1 ≈ 0.0112. In Fig. 1, the resulting approximation for the free energy as a function of η (solid
lines) is compared to the semiclassical expression [Eq. (7); long-dashed lines] and to the elaborated IOI fitting
formula: the dotted lines correspond to the original coefficients of this fit, chosen by IOI so as to reproduce the
results of Ref. [22] at η → 0, while the short-dashed curves show the same fit, but with the coefficients adjusted
to more recent results [21] at η → 0. The curves of the two latter types nearly coincide at Γ = 1000, but differ
near the melting point Γ = 175.

Interpolation (8) (unlike, for example, Padé approximations [27]) does not produce an unphysical behavior of
thermodynamic functions. In particular, anharmonic corrections to the heat capacity and entropy do not exceed
the reference (harmonic-lattice) values of these quantities at any η. In Fig. 2, we show the ion contributions to the
reduced heat capacity of the ion lattice cV,i ≡ CV,i/NikB , calculated through derivatives of Eq. (8) (solid lines),
and compare it to the contributions calculated through derivatives of the fitting formula in [25] (short-dashed
and dotted lines). In the same figure we plot the harmonic-crystal contribution to the reduced heat capacity: the
short-dash–long-dash line corresponds to the model of Ref. [18] (which we adopted in [2]), while the dot-dashed
line corresponds to the most accurate formula [20].

Interpolation Eq. (8) should be replaced by a more accurate formula in the future when accurate finite-
temperature anharmonic quantum corrections become available.

5 Electron polarization

5.1 Coulomb liquid

Electron polarization in Coulomb liquid was studied by perturbation [13, 28] and HNC [1, 2, 29, 30] techniques.
The results for Fie are fitted by analytic expressions in [2]. This fit is accurate within several percents, and it
exactly recovers the Debye-Hückel limit for EIP at Γ → 0 and the Thomas-Fermi result [9] at Γ � 1 and Z � 1.

5.2 Coulomb crystal

Calculation of thermodynamic functions for a Coulomb crystal with allowance for the electron polarization is a
complex problem. For classical ions, the simplest screening model consists in replacing the Coulomb potential by
the Yukawa potential. For instance, there were molecular dynamics simulations of classical Yukawa systems [16]
and path-integral Monte Carlo simulations of a quantum Yukawa crystal at RS = 200 [31]. However, the Yukawa
interaction reflects only the small-wavenumber asymptote of the electron dielectric function. A rigorous treatment
would consist in calculating the dynamical matrix and solving a corresponding dispersion relation for the phonon
spectrum. The first-order perturbation approximation for the dynamical matrix of a classical Coulomb solid with
the polarization corrections was developed in Ref. [32]. The phonon spectrum in such a quantum crystal has been
calculated only in the harmonic approximation [33], which has a restricted applicability: for example, it cannot
reproduce the known classical (T � Tp) limit of the anharmonic ie contribution to the heat capacity.

A semiclassical perturbation approach was used in [2]. The results were fitted by the analytic expression

fie = −f∞(xr) Γ [1 + A(xr) (Q(η)/Γ)s] . (9)

In the classical Coulomb crystal, Q = 1, f∞(x) = b1

√

1 + b2/x2, and A(x) = (b3 + a3x
2)/(1 + b4x

2).
Parameters s and b1–b4 depend on Z and are chosen so as to fit the perturbational results; a3 is a constant. All
the parameters weakly depend on the lattice type; they are explicit in [2] for the bcc and fcc lattices.

The factor Q(η) in Eq. (9) is designed to reproduce the suppression of the dependence of Fie on T at T � Tp.
For the classical solid, Q(0) = 1. In the quantum limit (η → ∞) Q(η) ' qη, so that the ratio Q/Γ in Eq. (9)
becomes independent of T . The proportionality coefficient q was found numerically in [2]; it equals 0.205 for
the bcc lattice.

The form of Q(η) suggested in [2] assumed a too slow decrease of the heat capacity (CV,ie ∝ η−1 ∝ T ) at
η → ∞, which signals the violation of the employed semiclassical perturbation theory in the strong quantum
limit, related to the approximate form of the ion structure factor used in the calculations, as discussed in [2,8]. In
order to fix this problem, we have changed the form of Q(η) to

Q(η) =
[

ln
(

1 + e(qη)2
)]1/2 [

ln
(

e − (e − 2)e−(qη)2
)]

−1/2

. (10)
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6 A. Y. Potekhin and G. Chabrier: Analytic equation of state of fully ionized plasmas

This form of Q(η) has the correct limits at η → 0 and η → ∞ and is compatible with the numerical results [2].
In addition, it eliminates the problematic ie contributions to the heat capacity and entropy at η � 1. It can
be improved in the future when the polarization corrections for the quantum Coulomb crystal are accurately
evaluated.

6 Conclusions

We have reviewed analytic approximations for the EOS of fully ionized electron-ion plasmas and described
recent improvements to the previously published approximations, taking into account nonideality due to ion-ion,
electron-electron, and electron-ion interactions. The presented formulae are applicable in a wide range of plasma
parameters, including the domains of nondegenerate and degenerate, nonrelativistic and relativistic electrons,
weakly and strongly coupled Coulomb liquids, classical and quantum Coulomb crystals.

For brevity we have considered plasmas composed of electrons and one type of ions. Extension to the case
where several types of ions are present is provided by [5, 6].

We have made the Fortran code that realizes the analytical approximations for the free energy and its deriva-
tives, described in this paper, freely available in the Internet 1.
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