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ABSTRACT

We propose a possible way to solve the problem of inconsistency between the neutron star
long-period precession and superfluid vortex pinning, which is the basis of the most successful
theories of pulsar glitches. We assume that the pinning takes place in the region of the
neutron star core, which, being magnetically decoupled, can rotate relative to the crust. In
the framework of a simple three-component model we show that these two phenomena can
coexist in the same pulsar. Some constraints on the formally introduced interaction coefficients
following from observation data are formulated.
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1 INTRODUCTION

Radio pulsars are the sources of exceptionally stable pulse se-
quences with very slowly decreasing frequency. Some pulsars, be-
sides smooth slow-down, demonstrate so-called glitches, which are
sudden increases of frequency and its time derivative followed by
smooth recovery towards pre-glitch values. The relative amplitude
of the glitches AQ/S lies in the range of ~107'2—1073 (Espinoza
et al. 2011)" while the recovery time-scale is of the order of days
to months (Lyne, Shemar & Smith 2000). The long time-scales
of the glitch recovery indicate that the nucleon superfluidity sup-
posed to be present in neutron star interiors participates in this
phenomenon (Baym, Pethick & Pines 1969). The most successful
theories of glitches are based on the assumption that the neutron
superfluid vortices are pinned in some region of the neutron star in-
terior (Haskell & Melatos 2015). The pinned superfluid conserves
angular momentum and, from time to time, releases part of it, spin-
ning up the outer component of the star.

There are several pieces of evidence that isolated neutron stars
can precess with long periods. Pulsar B1821-11 demonstrates corre-
lated periodic variations of spin-down rate and beam shape (Stairs,
Lyne & Shemar 2000). The most favourable explanation for this
is the precession of the neutron star with period 7;, ~ 500 d (Ash-
ton, Jones & Prix 2016). Several pulsars show periodic variations
of spin-down rate without significant correlation with beam shape
(Kerr et al. 2016). The time-scales of the variations are 0.5-1.5 yr.
Some pulsars switch between two spin-down states. Despite the
fact that the switching itself is a fast process (< 1 min), there are
at least six pulsars for which the probability of being in a particular
state is a quasi-periodic function with a characteristic time-scale of
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~10? d (Lyne et al. 2010). Hence, it is natural to assume that this
probability depends on the precession phase (Jones 2012).

Besides the directly observed variations, there are observational
data, which can also be interpreted as manifestations of neutron
star precession but with much longer periods. Lyne et al. (2013)
found a steady increase in separation between the main pulse and
the interpulse of the Crab pulsar at 0.62° £ 0.03° per century. The
authors concluded that this is a consequence of the increase of the
pulsar inclination angle. The rate of increase seems to be too large
for secular evolution but it can be ensured by free precession with a
period of ~10? yr (Arzamasskiy, Philippov & Tchekhovskoy 2015).
Biryukov, Beskin & Karpov (2012) argued that anomalously large
braking indices indicate that the pulsar spin-down rate can oscillate
at the time-scale of 10°—10* yr. This oscillation can be caused by
precession with corresponding periods. The stellar magnetic field
by itself should make neutron stars precess at such time-scales
(Melatos 2000).

The problem is that it is difficult for neutron vortex pinning
and long-period (21 yr) precession to coexist in the same neutron
star. As was first pointed out by Shaham (1977), the pinning of
superfluid vortices dramatically decreases the period of precession.
Thus, on the one hand, the glitch theories require about 1 per cent
of the total stellar moment of inertia to be contained in a pinned
superfluid (Andersson et al. 2012). On the other hand, if neutron
stars precess with periods ~1 yr or longer, only part of <1078 of
the total moment of inertia can be in the pinned superfluid. Shaham
considered a simple model with perfectly pinned vortices. Several
attempts to attack this problem with more detailed models of pinned
vortex dynamics (Sedrakian, Wasserman & Cordes 1999; Link &
Cutler 2002; Alpar 2005) or assuming that pinning is absent (Link
2006; Kitiashvili & Gusev 2008) have been made. However, to date
the problem remains current (Jones, Ashton & Prix 2017).

In the present paper we suggest a way that may allow these two
phenomena to be reconciled. The paper is organized as follows. In
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Section 2 we introduce basic notations and formulate the problem.
In Section 3 we perform a linear mode analysis for a two-component
neutron star with the superfluid pinned in the crust. Section 4 con-
tains the same analysis but for a system with the superfluid located
in the core. In Section 5 we formulate a full three-component model
and perform a linear mode analysis for it. Section 6 is devoted to
the derivation of quasi-stationary equations, allowing the long-term
evolution of precessing neutron stars to be studied. In Section 7 we
study the ability of the model to show glitch-like events and what
restrictions for formally introduced coefficients can be obtained
from the glitch observation data. In the discussion in Section 8§ we
speculate on the possible physical realization of the model, discuss
some observational data and draw conclusions.

2 FORMULATION OF THE PROBLEM

Let us consider a rotating neutron star. From the point of view of
an observer in an inertial frame of reference the following equation
should be satisfied:

dM =K, )]

where M is the stellar angular momentum and K is external elec-
tromagnetic torque.

We start with the ‘rigid-body’ approximation assuming that the
whole star rotates with a uniform angular velocity that we denote by
Q.. The index ‘¢’ is introduced for the sake of notation unification
with the subsequent sections of this paper. We assume that the star
has an axisymmetric shape maintained by the crust rigidity (Cutler,
Ushomirsky & Link 2003) or by the magnetic field (Wasserman
2003). In this case, the angular momentum can be represented in
the following form:

M =19+ 1e(R - eec, @3]

where I is the star’s moment of inertia, e, is the unit vector directed
along the star’s symmetry axis and € is the oblateness parameter.

To date, there is no consensus concerning the exact form of the
external torque K acting on isolated neutrons stars (Beskin et al.
2015). However, it is generally accepted that it consists of two parts
of different nature (Davis & Goldstein 1970; Good & Ng 1985;
Melatos 2000):

K =K, + K3, 3

where K, o Q2 is the so-called anomalous torque originating from
the inertia of the near-zone electromagnetic field (Good & Ng 1985;
Beskin & Zheltoukhov 2014; Goglichidze, Barsukov & Tsygan
2015) while K5 Q? is related to the angular momentum transfer
away from the star to infinity by both particles and electromagnetic
radiation (Davis & Goldstein 1970; Jones 1976; Beskin, Gurevich &
Istomin 1983; Barsukov, Polyakova & Tsygan 2009; Philippov,
Tchekhovskoy & Li 2014).

The relation K3/K, can be estimated as ~(r,s2./c), i.e. it is small
for the most pulsars (except the fastest millisecond ones, which are
not considered in the present paper) We will ignore the term K3
in Sections 2-5, restricting ourselves to the consideration of time-
scales much smaller than t, ~ ©./K3. The effects of this term are
discussed in Section 6.

In the case of an axisymmetric stellar magnetic field, the
anomalous torque K, can be represented in the following form
(Goglichidze et al. 2015):

K2 = —8[,”(9 : em)[sZ X en], (4)

Precession of neutron stars 3033

where e, is the unit vector directed along the field symmetry axis,
81, ~ 1072 B}, g cm?, )

76 is the neutron star radius in units of 10° cm and By, is the surface
magnetic field in units of 10'>G. In the special situation of vector
e,, coinciding with vector e., the anomalous torque can be taken
into account just by redefining the oblateness parameter (Zanazzi &
Lai 2015; Goglichidze et al. 2015):

€new = €old T 81,,1/1, (6)

where €,)q characterizes the stellar matter deformarion only. In the
general case, the anomalous torque can be taken into account by
modification of the star’s moment of inertia tensor.

Ignoring K5 and including K, in M (without changing the nota-
tion), we can reduce equation (1) to

dM = 0. 7

In Sections 2—5 we will consider only the axisymmetric case. There-
fore, formula (2) is assumed to be valid, where the oblateness pa-
rameter is now calculated with equation (6). The more general case
of a triaxial star is discussed in Section 6.

Equation (7) formally states the conservation of total angu-
lar momentum. It is easy to verify that the mechanical energy
E = (- M)/2 is also conserved. It is natural because we neglect
torque K53 describing the energy and angular momentum flows away
from the star. The effects of this term are discussed in Section 6.

Substituting the angular momentum expression (2) into equa-
tion (7) and changing to a co-rotating frame of reference, we obtain

Qc =e(e. ﬂc)[ec X Qc] (8)

Here and further we will denote by a superscript dot the time deriva-
tive in the frame of reference rotating with angular velocity 2. The
solution to this equation is the uniform rotation of vector £, about
the symmetry axis e, with the angular frequency

wp = €cos O, )

where 6 is the angle between angular velocity £, and symmetry axis
e.. This type of motion is called free precession. Introducing the
pulsar rotational period P = 27/2,. and period of pulsar precession
T, = 2n/w,, directly from equation (9) we have

P

T, = . 10
P ecosh (10)

Equation (8) has a fixed point corresponding to stationary rotation
about the symmetry axis:

Q. =Ry =const, L | e.. (11)

In order to study perturbations to the stationary rotation let us in-
troduce a departure vector :

", = — Q. (12)

Further, it will be convenient to use the following notations, which
can be applied to an arbitrary vector V:

VIi=(W-e), Vi=(V-e)+i(V-e,), (13)

where (e,, e, e;) is an orthonormal basis fixed in co-rotating frame
of reference such that e, = e.. Substituting expression (12) into
equation (8) and neglecting the quadratic in theu! and p terms,
we obtain

il =0, (14)
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1t =ieQout. (15)

Free precession motion is described by the ‘perpendicular’ equa-
tion (15). Substituting u,f o exp(pt) we find

p = ieQy. (16)

Hence, the perpendicular part of the vector u rotates about the

symmetry axis with angular frequency w, = £, which in a linear

approximation (cos € ~ 1, Q. & Q) coincides with expression (9).

Thus, knowing the pulsar period P and period of pulsar precession

T,, one can estimate the oblateness parameter as

€~ P an
T,

As was first pointed out by Shaham (1977), the situation dramat-
ically changes if a neutron star contains a pinned superfluid. In this
case, the stellar angular momentum expression (2) requires some
modification, namely,

M:790+67(96'ec)ec+ldsfs (18)

where L is the angular momentum of the pinned superfluid and 7
is the moment of inertia of the rest of the stellar matter (excluding
the pinned superfluid).

The angular momentum of the superfluid is totally determined
by the distribution of quantum vortices. If the vortices are pinned,
their density and orientation are fixed in the frame of reference
rotating with angular velocity €2.. Therefore, angular momentum
L is constant in the co-rotating frame of reference:

Ly =0. (19)

For the sake of simplicity we restrict ourselves to the considera-
tion of a particular configuration of L || e.. Such a configuration
is not unrealistic but it is far from the general case. The analysis
of star rotation with arbitrarily oriented L was given by Shaham
(1977). It shows no significantly different results.

Substituting expression (18) and equation (19) into equation (7)
and changing to the co-rotating frame of reference, we obtain

Y P
¢ 1Q, cosf

At first sight this equation is similar to equation (8). However, the
rate of vector €2, rotation is now determined by the sum of the two
terms in parentheses. The second term can be estimated as ~ I, / 1,
where I, is the moment of inertia of the pinned superfluid. If the
understanding of glitches as a manifestation of neutron vortex dy-
namics is correct, at least about 1 percent of a star’s moment of
inertia should be contained in the pinned superfluid (1, / 1>1072)
to ensure the observed glitch activity of the pulsars (Andersson et al.
2012). As for the first term, €, it hardly can reach such large magni-
tudes. Calculations give values at least several orders of magnitude
smaller (Cutler et al. 2003; Wasserman 2003). Hence, the second
term in parentheses is dominant.
After linearization we obtain

il =0, 1)

) Q.cosfle. x R.]. (20)

it =ieQout, 22)
where we have introduced the effective oblateness parameter

~ Lsf
€ =€+ =
1%

~ Lyn/T 21072, (23)
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Substituting ucl o exp(pt) into equation (22), we find
p = i€Qy. (24)

Thus, one can see that the free precession is governed almost
exclusively by the amount of pinned superfluid, which does not
allow the star to precess with periods substantially longer than

P
LSz~ 10°P. (25)

Such short periods are many orders of magnitude smaller than the
observed values.

3 TWO-COMPONENT SYSTEM

In the previous section we assumed that the whole star except the
pinned superfluid rotates as a rigid body. Let us relax this assump-
tion. First we consider the simplest case supposing that the neu-
tron star consists of two dynamically distinguished components: an
outer c-component whose rotation is directly observed and an inner
g-component (Shaham 1977; Sedrakian et al. 1999). At this point,
the components are introduced phenomenologically. The indices ‘¢’
and ‘g’ are chosen for the sake of unification with the full model
presented in Section 5. For the components we can write

dtMc = Ngca (26)

&M, =N, 27)

where M; are the components’ angular momenta and N;; are the
components’ interaction torques, i, j = ¢, g. The c-component con-
sists of the ‘normal’ fraction and the pinned superfluid fraction. By
the ‘normal’ fraction we mean all the possible constituents of the
c-component except the pinned neutron superfluid. It includes the
ions in the crust lattice sites, electrons and possible non-superfluid
neutrons. It could also include the part of stellar core matter that is
rigidly connected to the crust. The ‘normal’ fraction is assumed to
be axisymmetric with moment of inertia /. and oblateness parameter
€.. It rotates with angular velocity .. The pinned superfluid con-
tains angular momentum L directed along the ‘normal’ fraction
symmetry axis e.. Thus, the total c-component angular momentum
has the form

M. =19+ I.€(R-e)e.+ L. (28)

The g-component is the part of the core that is not rigidly con-
nected to the crust. This component, for simplicity, is assumed to
be spherically symmetric. It is characterized by moment of iner-
tia I, and rotates with angular velocity 2,. Therefore, its angular
momentum is equal to

M, =1,%,. 29)
Since the total stellar angular momentum M = M. 4+ M, should

be conserved, N., = —N,.. However, for the mechanical energy

we have

dE=—(R— L) N (30)

Therefore, the non-zero components of the interaction torque par-
allel to the angular velocity difference (2. — 2,) lead to the dissi-
pation of mechanical energy inside the star.

Substituting equations (28) and (29) into equations (26) and
(27), changing to the frame of reference co-rotating with the
c-component, and taking into account equation (19), we obtain the
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equations for angular velocities:

QL’ + (EL' + Ot ) (SZL : e(')[sz X eL'] (3])
Qcosf
€c
= Rgc - Tec(Rgc : ec)em
Szg + [SZL‘ X Qg'] = chv (32)

where the following notations have been introduced: R;; = N;;/1;
and wg = L /1. Note that @ is just a convenient notation. In the
general case, it does not have the meaning of superfluid angular
velocity.

This system of equations has a fixed point corresponding to the
uniform rotation of both components with the same angular veloc-
ity 2y parallel to e.. In order to consider linear perturbations to
the equilibrium state, it is convenient to introduce small departure
vectors:

n; = SZ,- — Sl(). (33)

Let us also assume that, with linear in u; accuracy, the interaction
torques have a simple frictional form:

Rij =Olij(ﬂi —Mj)» (34)

where the coefficients «;; > 0. From the angular momentum con-
servation it follows that
I;
Qjj = —Qjj. (35)
1
Substituting expressions (33) and (34) into equations (31), (32)
and neglecting the quadratically small terms, we obtain

Bl = T (k= md) =0 (36)
fuh = g (nl = b)) =0, (37
i — i&Qopt — age (ng — ) =0, (38)
iy + 10y — 1) = ey (10— 1y) =0, (39)
where

€ =€+ g—% (40)

is the c-component effective oblateness parameter. One can see that
the system of equations falls into two independent parts. The ‘paral-
lel’ part describes the evolution of the difference in absolute values
of the angular velocities while the ‘perpendicular’ part works when
the angular velocities decline from the symmetry axis. Substituting
pcll.‘ o exp(pt) into equations (36)—(37), we obtain

e

1 + €. ’ (41)
The angular velocity difference, being excited, decays exponentially
at the characteristic time-scale ~ p[l.

Since our main goal is studying the precession, the ‘perpendicu-
lar’ modes are more interesting for us. Substituting ;- oc exp(pt)
into equations (38)—(39), we obtain the following characteristic
equation:

P = —0c

P2+ p(iQ — 1820 + Qg + 0ge) + E.Q2 — i€, Qe = 0. (42)
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This equation can be solved exactly. However, it would be more in-
formative to obtain the approximate roots corresponding to different
limiting cases.

Introducing an auxiliary interaction parameter ,

_ Olcg + ag('

Q (43)
we can rewrite equation (42) in the following form:
PP +ip(l — &) + &9 + 0 Qo(p — i€9) = 0, (44)
where

is the effective oblateness parameter of the star as a whole.

If the interaction between the components is weak (o < 1), the
roots of equation (44) can be found in the form of the expansion in
o . After returning to the initial interaction coefficients, in the linear
approximation we obtain (Sedrakian et al. 1999):

. Qe
pr~ _IQO — Oy — 1 _:,gy7 (46)
i€.Q & 47)
~ €.y — g
P2 0 1 + gc g

Here, p; is the rotational mode corresponding to the angular velocity
misalignment. According to equation (46) the angular velocity dif-
ference vector, v, = 2. — ,, rotates with angular velocity —£,
if it is observed from the co-rotating frame of reference. Therefore,
in the inertial frame of reference, the direction of vector v, is con-
stant. The absolute value of vector v., decreases with time. The
characteristic time-scale of the mode decay is

—1
ta ~ (g + —2 ~ s L (48)
& 1 + EC UQ() QO

Note, that, in contrast to ‘parallel’ mode p,, this one contains &,
instead of &..

The second mode represents the free precession motion. The
imaginary part of mode (47) is similar to mode (24). But now it has
a real part and, hence, it decays with time as well as the rotational
mode. The characteristic time-scale of the precession damping is

Tg ~ Ellge > (49)

Q0
The star will complete of the order of Q2p/c,. > 1 precession cycles
before the angular velocities align with the symmetry axis but the
precession, being, as in the rigid-body case, governed by the pinned
superfluid, remains fast.

In the opposite limiting case of strong interaction (o > 1), the
approximate roots obtained as the expansion in o ~! are (Sedrakian
et al. 1999)

prA—i(14+&—8&)Q — otge — g, (50)

_0+aE -8,
Crate =g

51
Qg + Uge G

P2 R iEQ
Again, we have one rotational mode, p;, and one precession mode,
pa2- The real part of mode (50) is much larger than its imaginary part.
Therefore, being excited, this mode decays before the first rotational
cycle completes. Hence, the rotational mode is not oscillatory in the
strong-interaction limit.
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The real part of equation (51) relates to the imaginary part ap-
proximately as (/%)™ < 1. Therefore, the precession mode is
slowly damped as well as the weak-interaction precession mode.
The imaginary part of mode (51) relates to the imaginary part of
mode (47) as I./(I. + I,). Hence, the period of precession is longer
in the strong-interaction limit but the precession is still governed by
the pinned superfluid. Passing («;;/€2o) to infinity we reproduce the
rigid-body precession mode (24).

In sum, the introduction of the internal dissipation in the way
described above leads to the damping of the precession but the
precession frequency remains high. However, the two-component
approximation gives us another possible configuration.

4 TWO-COMPONENT SYSTEM WITH
PINNING IN THE CORE

Let us shift the pinned superfluid into the inner g-component. With
all the other assumptions being kept, the angular momenta of the
components would have the following form:

ML' = I('SZ(' + I('ec(szc : ec)em (52)

M, = 1,2, + L. (53)

Substituting equations (52) and (53) into equations (26) and (27),
and changing to the c-component frame of reference, we obtain the
equations for the angular velocities:

9(' + ec(gc : e(')[sz X ec] = RgL' - ﬁ(Rg( : ec')e('v (54)
Qg + [Sl(‘ X Szg] + [ﬂg X wsf] = ch7 (55)
where the vector
Lsf (56)
Wy = —
f Ig

has been reintroduced.

Since the angular momentum of the pinned superfluid is now
fixed in the g-component, for an observer in the c-component we
have the following equation for the vector ws:

o = (R — R) X @y 57)

The rotation of the star is stationary if . || e., £, || @ and
Q. = Q,. Considering the linear perturbations to this equilibrium
state, let us first multiply equation (57) by the vector e, scalarly. In
terms of ‘parallel” and ‘perpendicular’ components the result has
the form

ol = —Re [iof (- ut)'] (58)

where 1 denotes the complex conjugation. Since, in the zeroth ap-
proximation, the vector ws; is parallel to e, the quantity a)jf can be
treated as a small variable together with four variables w[, pu,
and p,gL, which were introduced earlier. Therefore, the right-hand
side of equation (58) is quadratically small. Thus, operating in the

linear approximation we can put
w!f = const. (59)

Keeping this in mind, we can formulate a system of equations for
the linear perturbations:

[

W) =0 )

MNRAS 482, 3032-3044 (2019)

i =g (nl =) =0, (61)

/’L(L - iECQOM(yL — Ugc (M; - /’L(L) =0, (62)

L
. . ~ s~ a)
,u; — IQ()/,Li +1Q20(1 — eg)ugL + 1egQ(2)—T‘f
Wyt
o (11— 1) =0, (©3)

of +iol (uf —ul) =0. (64)

Here, we have introduced the g-component effective oblateness
parameter as €, = a)l,lf / L. Note that due to equality (59) the system
of equations falls into two independent subsystems.

Since equations (60) and (61) coincide with equations (36) and
(37), the ‘parallel’ mode remains the same. Let us consider the
‘perpendicular’ modes. Substituting i, a); o exp(pt) into equa-
tions (62)—(64) we obtain the third-order characteristic equation

P3 + 1172(1 — € — gg)S20 + P(Gc + gg - Ecgg)Q%

—i€.8,Q2} + 0 Q(p* — ipEQp) = 0, (65)

where we have again used the interaction parameter (43) and intro-

duced the whole star oblateness parameter as
l.e. + 1€,

66
) (66)

€ =

Assuming weak interaction between the stellar components (o
< 1) we obtain

acg agc

~ —iQy — — R 67
Di €29 +¢, 1+e (67)
. €
P2 = IGCQO - Tecdgc, (68)
~iE,Q & o (69)
P3 gneao l+€g cg-

The first mode is the rotational mode, similar to mode (46). The
second and third ones are the precession modes, each of which
represents the precession motion of a single component. Mode p;
corresponds to the g-component fast precession caused by the super-
fluid pinned to it. The c-component precession mode p,, in contrast
to mode (47), contains the real (not ‘effective’) oblateness param-
eter. Hence, the c-component precession period is not constrained
by the pinned superfluid and therefore it can be sufficiently long
if €, is small enough. Strictly speaking, the oblateness parameter
€. can be both positive (oblate star) and negative (prolate star). In
the second case the mode is unstable. The reason for this is as fol-
lows. Introducing internal dissipation we allow the star to convert
mechanical energy into thermal energy. However, the dissipation
cannot substantially affect the stellar angular momentum. Thus, the
star tends to the state with minimum possible mechanical energy for
a given angular momentum. This state is rotation about the major
principal axis (Landau & Lifshitz 1982). If €, > 0, this axis is e,.
Otherwise, it is an axis perpendicular to e.. In the second case, one
just needs to redefine the basic equilibrium state. For definiteness,
further we will assume that €, > 0.
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In the case of strong interaction, the approximate roots of equa-
tion (65) are the following:

i~ —i(l + & — € — &) — Age — Qg (70)

(I +8&)E—e€)E — &) 2

P A iEQy — - a1
: 0 &g + ge) 0

€8y E(€c + &) — €.8,(1 +8) €&
Py A i— — > o .
é €2 (aeg + age) € g+ oy

(72)

The first two of these are similar to the corresponding roots obtained
for the c-component superfluid model (cf. expressions (50) and
(51)). Itis easy to verify that combination (€ — €.)(€, — &) is always
positive and hence the real part of mode (71) is always negative.
Therefore, mode (71) is damped. The third mode arises when both
€. and &, are non-zero. However, it is easy to see that this mode is
not oscillatory.

Thus, if we assume that the pinning takes place in the internal
component, the slow long-lived precession mode can exist in the
case of weak interaction. It is also necessary to make sure that this
mode is observable. Substituting equation (68) into equations (62)—
(64), we can express

L 5
pe = ((1+€)Q + 0(0)) e (73)
sf
1 W5
pLg = (Qo+ 0(0’))J, (74)
sf

where O(o) are small corrections due to the component interaction.
Using expressions (52) and (53) it can also be shown that

L
M* = (M + 0(0)) 2, (75)
Wyp

where M = M. + M, is the total angular mometum. We see that,
if the p> mode is excited, vectors §2, and L remain directed almost
along the (fixed in the inertial frame of reference) stellar angular
momentum M while vectors e. and 2. are declined from it. In the
case of an infinitely small parameter o, this mode corresponds to
the independent precession of the external c-component.

5 THREE-COMPONENT SYSTEM

Having considered the basic idea, we turn to the full model. Let
us assume that the neutron star consists of three dynamically
distinguished components that we will denote as the c-, g- and
r-components.

The c-component is the outer component. The c-component as
before is assumed to have axisymmetric shape. Its angular momen-
tum can be represented as

M. =1+ I.€(R-e)e.. (76)

The g-component is an inner component. It consists of a ‘normal’
fraction and a pinned superfluid fraction. The ‘normal’ fraction,
for more generality, is assumed to have axisymmetric shape. It is
characterized by a moment of inertia /, and an oblateness parameter
€g. The ‘normal’ fraction rotates with angular velocity 2,. The
pinned superfluid contains angular momentum L. Thus, the total
angular momentum of the g-component can be represented as

M, = 1R, + e, (R - ep)e, + L, an
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where e, is the unit vector directed along the g-component symme-

try axis. We will assume that the vector Ly is directed along the

g-component symmetry axis, i.e.

0, = Lot _ @1 (78)
L Wsf

where oy is defined as in equation (56).

The r-component is the other inner component. It rotates with
angular velocity €2,. Its possible asymmetries would not lead to
substantially new effects but would complicate the expressions.
Hence, we will assume this component to be spherically symmetric.
Therefore, the angular momentum of the r-component is assumed
to have the form

M, =19, (79)

The angular momentum conservation law can be represented in
the form of three equations:

dM; = Nj, (80)
J#i

where i,j = ¢, g, rand N;; is the torque acting on the ith component

from the jth component. In the general case, all the components are

supposed to interact with each other.

The further analysis is similar to that performed for the two-
component system. We will describe it briefly, mentioning the main
steps and focusing only on new features. Substituting expressions
(76)—(79) into equations (80) and changing to the frame of reference
co-rotating with the c-component we obtain the following equations
for the angular velocities:

s:lc + EL‘(QC : ec)ec + Ec(ﬂr : ec)[ﬂ X ec] = Rgc + cha (81)

@, + e (szgﬂ) O 419 x 2]

Wsf ) Wsf
® [oX:
+ <€g <Slg : i) +wsf> |:Qg X 751:| = ch + Rrga (82)
Wsf Wsf
Qr +[R. x 2,]=R. + Rgr~ (83)
From the angular momentum conservation it is follows that
I;
R;; :_TRji- (84)

J

In order to close this system, equation (57) should be added.
It is assumed that if

Q2 -9,-9. (85)

and 2, || wy || e., the systemis in stable equilibrium. The reasoning
leading to approximate equality (59) remains valid. Hence, if the
star rotates near the fixed point, there are seven small variables,
namely !, puk, . pt, pl, g and wf.

We assume that there are no preferred directions for the com-
ponents interaction except the angular velocities. However, since
the exact interaction mechanisms are not specified at this point, we
consider a more general form of vectors R;;. Namely,

RY =y (1 = 1)), (86)

Ry =6 (ut —n}). (87)
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where &; = B; + iy; and «y;, By, v are the phenomenological
interaction constants. The particular case of simple linear friction
corresponds to B; = a;;, y;; = 0. If we consider, for instance, the
mutual friction interaction between the i- and j-component, one
of which is superfluid, the coefficients can be represented in the
following form (Sedrakian et al. 1999; Barsukov, Goglichidze &
Tsygan 2013):

X IB -0 X _ X2
L2 DT e VT T
where x is the coupling parameter. From relation (84) it follows
that

a;j =29 —Q (38)

I,' Ii Ii
@ = Tjd/z, Bij = Tjﬂji, YVij = ijji~ (39)
The linearized system of equations has the form:
(1 + ec)ﬂﬂ + (agc + O{rc) /-L! - agc//‘!: - arcuu =0 (90)
(I + Eg)/*bg + (acg +arg) M! - aL‘gﬂﬂ - arg“«ﬂ =0 on
i)+ (ter + 0t ) ] = el — g} =0 92)
4 (Ege + Ere — 1€0) 1 — Egety — et =0, (93)

i 4 (Eeg + &g +1Q0(1 — &) p — (10 + &eg) 1t
wJ_
—E -+ iggszgw—j’l =0, (94)
8

5+ (Gor + &or +10) 1" — (Q0 + o) 1

_";:grﬂi; =0, (95)
ik + il (uf — pt) =0, (96)
where the g-component effective oblateness parameter is equal
to
L!f w!f
€, = = —=. 97
€ €g+IgQO eg—|—s20 (GO

As before, the system falls into ‘parallel” and ‘perpendicular’ parts.

Let us first consider ‘parallel” modes. Substituting /L,” o exp(pt)
into equations (90)—(92) we obtain the following second-order char-
acteristic equation :

p2 + QO(Gcg + 0 + Ugr)p + Q% (chacr + OcgOgr + Ucragr)

Agclye Ueglyg _
_(1 n Ec)z — (1 T eg)z - O{cragr - 0 (98)
Here, we have introduced three interaction parameters:
1 Qi A
= — : 99
i Qo<1+ej+1+e,-) 9

it is easy to see that o;; = o7j;. The exact roots of equation (98) can
be given. However, instead of that we focus on the one particular
case of

Ocg > Ocry Ogr, (100)
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which appears to be the most suitable for the glitch model considered
in Section 7. With equalities (89) the roots can be represented in the
form
(1 + Gg)IgOlrc + (1 + EC)Ic(xrg

I+ e, + (1 +€)l,
N Qg Qe

AR B (101)
1+e¢ 1+e.

P+ =~ 70-ng20 -

(I 4+ eyt + (1 +€) g
(I + el + (1 + €l

(I+e)+(+e€)l, +1,
(el +(+el,

pP- ~ _(Ucr + (Tgr)QO +

(aer +ag). (102)

In this particular case, p. > p_.

Let us turn to the ‘perpendicular’ part. We do not give here the
fourth-order characteristic equation because of its awkwardness. By
analogy with the ‘parallel’ case we can introduce three interaction
parameters:

& +&j .

Z,‘j = QO

(103)

In the weak-interaction limit (| Z;| < 1) the approximate expressions
for the modes can be represented in the form:

p1 & —iQo +38p (104)
P2~ =i +8ps (105)
i€, ) — —— (Ege + Erc) (106)
~ 1€ - T, c re
pP3 €cddg 1+€[ g
.. €
pa = legQO - ﬁ(érg + gcg) (107)

With the introduction of the third component the rotational mode
becomes degenerate. It splits into two modes when the dissipation
corrections 8p; and 8p, are taken into account. They can be found
as the roots of the following equation:

8p* —8p [(1 4 €)bcg + (1 + E)(Ege + &)
+ (14 € + (1 + €)1+ E)Egr + E))]
— (1 + €)Eerbrg + Ecober + Ecobre)
— (1 + &) Egebor + Egcbor + Erckgr)
— (Egebrg + Erchrg + Ecgbre) = 0. (108)

To make some estimations by analogy with "parallel’ modes we
assume that |Z.| > |Z.|, |Z,|. This allows us to treat relations
ZeylZey and Zy,/Z., as small parameters and represent the roots of
equation (108) in the form of expansion in them. The resulting
expressions formally coincide with roots (101) and (102) with cor-
responding replacements of a;; by &;; and €, by &,. Since our goal
is estimating the damping time-scales, for the sake of brevity, we
neglect all the oblateness parameters, assuming their smallness. To
the first order in the small interaction parameters we have

]gSrc + Icérg

; 109
) (109)

5[71 ~ _“;:cg - “;:gc -

_ IL'(SVL' + ‘i:cr + égr) + Ig(écr + Sgr + Erg) )

b ~
P2 I+1,

(110)

8102 Jaquieoa(] 0 UO Jasn Jajua)) [esiwouoisy snolutadon snejodiN Aq £8€/815/2E0E/S/28 10 1Sqe-ajonie/Seiuwl/woo dnooiwspese//:sdiy woll papeojumoq



Another possible case is €, >>1, for which we have

o E.  LE, +ELE.

gy o - Feet B T T AL anm
& (I + &)

sz ~ Itv(grc + ggécr + gg";:gr) + Ig(ggscr + ggégr + Srg). (1 12)

I+,

Thus, assuming that the cg-interaction is much stronger than the
other two, we obtain the hierarchy of damping time-scales. Namely,
the real part of p,. and p; is determined by the strength of the
strongest interaction (i.e. gc-interaction) while p_ and p, modes are
damped due to the cr- and gr-interactions.

Mode p; corresponds to the c-component slow precession. It is
almost similar to mode (68) obtained in the framework of the two-
component model. However, let us note that the precession period,
in the general case, would be equal to

P
r=— " (113)

4 € 1— YectVre
c o)

Mode p, corresponds to the fast precession of the g-component.
We do not take into account the possible non-sphericity of the
r-component. However, one can see that in the weak-interaction
limit each component precesses almost independently. Hence, the
precession mode for the r-component can easily be obtained from
P3 or py by the corresponding interchange of indices.

We restrict ourselves to considering only the weak-interaction
limit between all pairs of components. We have seen in Section 4
that the strong-interaction limit between the c¢- and g-components
does not allow the observed c-component to precess with a long
period. Hence, the gc-interaction should be weak. On the other
hand, we will see in Section 7 that the gc-interaction should be the
strongest among all pair interactions. Thus, the only possible case
is the weak interaction between all the components. Recall that by
weak interaction we mean that
@ Py Vi

; , L. 114
Qo Qo Qo < (114

6 QUASI-STATIONARY EVOLUTION

We have seen that the long-period precession mode can arise if
we assume that the region of superfluid pinning can rotate relative
to the crust. This result was obtained for a freely rotating neutron
star perturbed from stable equilibrium. Such a formulation of the
problem, however, could be not quite realistic. As was mentioned at
the beginning of the paper, strictly speaking, the rotation of neutron
stars is not free. Even isolated neutron stars rotate under the action
of electromagnetic torque K caused by the rotation of the strong
magnetic field anchored to the star (Davis & Goldstein 1970; Beskin
et al. 1983; Melatos 2000). The part of this torque that we have
denoted by K, can be easily taken into account by redefinition
of the stellar moment of inertia tensor (see Section 2). As for the
second part, K3, we have not taken it into account because its effects
are negligibly small at precession time-scales. Now we are going to
formulate the equations that allow us to consider the evolution of
pulsar rotation at the pulsar live time-scales.

We will consider the three-component model introduced in the
previous section. Equations (82), (83) and (57) remain the same.
Equation (81) should be replaced by a slightly modified one that
is more convenient for subsequent consideration. First, let us re-
establish the third-order external torque term K3, which we put on
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the right-hand side of equation (81). After simple rearrangement
the equation takes the following form:

Qc + 6(,’(QL' ) ec)ec = Rgc + ch + Ss (] ]5)

where we have introduced the vector

K;
S = T - EC(SZE . ec)[szc x e.]. (116)
Multiplying equation (115) by e, and substituting the obtained ex-
pression for (e, - £,) back into equation (115) we get

©, = RHS — —¢
1+

(RHS - ¢e.)e,, (117)
where by RHS we mean the right-hand side of equation (115).
Recall that the c-component oblateness parameter is supposed to
be of the order of 103 or smaller. Therefore, the second term on
the right-hand side of equation (117) is negligibly small. Thus, the
c-component equation becomes

Q =R, +R, +S. (118)

The c-component angular velocity vector time derivative can be
represented as a sum of two terms:

Q. = Qeeq + Qéq, (119)

where eq = 2./,. Here, the first term represents the change of
the angular velocity absolute value while the second term arises due
to change of its orientation. Again it will be convenient to introduce
the ‘parallel’ and ‘perpendicular’ parts of the vectors. However,
in contrast to previous sections, we define the parts relative to the
direction of the vector £, instead of e.. Let e,, e,, e, be an
orthonormal basis oriented such that e, || eq and e, || éq. Having
fixed the basis, we can introduce the following notations:

VI =(V.e), VP =V .e)+i(V-e,), (120)

where V is an arbitrary vector. Taking into account equation (119)
and expressions (120), we can represent equation (118) as two
equations:

Q. = RW + R + 5O, (121)

Qeeq = R + R + S, (122)

The next step is linearization. Let us introduce the departure
vectors

v =% —Q;=p; — ;. (123)

We will assume that all the components rotate with almost the
same angular velocity and the g-component rotates almost about its
symmetry axis e,. However, the angle between £, and e. is now
not necessarily small. Multiplying equation (57) by the vector eg
we obtain

. . 1 + 1).
o = —Re [M)gf WOt 4 of >eg} . (124)

Since, in the zeroth approximation, the vector s is parallel to eq,
the quantity wiﬁ' ) can be treated as a small variable together with
the components of the angular velocity departure vectors. Hence,
the first term on the right-hand side of equation (124) is straightfor-
wardly quadratically small. According to equation (122) the time
derivative éq is linearly small. Therefore, the second term on the
right-hand side of equation (124) is quadratically small as well.
Thus, the parallel part of the vector wg with linear accuracy can be
treated as a constant (cf. equation (59)).
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The interaction between the components is described by the vec-
tors R;;. It is assumed that in the small departure approximation
(/20 < 1) they can be represented in the following form:

R =), (125)

R =gv, (126)
where &; = B; + iy and «y;, By, v j are the interaction constants.
If eq =~ e, this representation, up to linear terms, reproduces ex-
pressions (86) and (87). Hence, the interaction constants a;;, B, ¥ jj
coincide with the corresponding interaction constants introduced in
Section 5.

Substituting definition (123) into equations (82), (83) and (57)
and neglecting quadratically small terms, we obtain

ReY Ry W _ ph _ ¢
50D — Krg_pav _ po _ g, 17
Vae l+eg+l—|—eg 8¢ re (127)
ol =R + RY — R — R — 5D, (128)
e
D +i(1 — &) Qv +ig, 22—
w,
sf
— RW L) _ p) _ p) _ oW
=R+ R — R — R — 859, (129)
B0 oD
= R+ R — R — R — S, (130)
oD 1
s .
o T =g (R + R +859), (131)
sf
where
L o
G=€t o =6t o 132
L Q. (132)

The equation for vil) = vl — vl and v = v — v can be ob-
tained from equations (127)—(130). Equations (127)—(131) together
with equations (121) and (122) form a closed system describing the
rotation evolution of our three-component neutron star.

We have linearized the system of equations with respect to v,

vl i, v and ;. However, equations (121), (122) and (127)—
(131) contain different combinations with vector €., which is not
small. In its present form this system of equations is quite difficult
to solve. Fortunately, the analysis performed in Section 5 gives us

a way to simplify this system. Let us highlight the following:

(i) The observed quasi-periodic processes that are interpreted as
a manifestation of the long-period precession mode have the time-
scale T, ~ 10* d or longer and, hence, €, ~ 1078 or smaller.

(ii) If at least 1 percent of the total moment of inertia is con-
tained in the g-component pinned superfluid, according to expres-
sion (97) the g-component effective oblateness parameter &€, cannot
be smaller that ~10~2. The estimations that will be done in Section 7
provide &, ~ 10.

(iii) The interactions between the components are assumed to be
weak but not too weak. It is required that «;;/2,, |£;|/€2. < 1 for all
pairs of the components. Let us also constrain the coefficient values
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from the other side assuming that

,,& <1, & < 1. (133)
€(Beg + Bge) min(e;, Bij)

From points (i)—(iii) it follows that there is a gap between the
long-period precession time-scale (~7}) and the time-scales of all
the other modes except the long-period precession one. In other
words, if we introduce the internal relaxation time-scale 7, as a
smallest real part of all the other modes except the long-period
precession mode, condition 7, < 7}, is assumed to be satisfied.
Such a hierarchy of time-scales allows us to consider the behaviour
of the system on the different time-scales separately.

Let us first consider the evolution of the system at the internal
relaxation time-scale. At this time-scale, the absolute value of an-
gular velosity €2, and its orientation relative to vector e, can change
only slightly. Therefore, we can treat vector . as well as vec-
tor S as constants. In this case, equations (127)—(131) become a
closed system of linear equations. The system is inhomogeneous.
Therefore, the general solution consists of a particular solution to
system (127)—(131) and the general solution to this system with
zeroth S. The first can be found by putting all the time derivatives
in equations (127)—(131) equal to zero. We will call this solution
‘quasi-stationary’ where by ‘quasi’ we mean that it is an approxi-
mate solution, valid as long as vector 2, can be treated as a constant.
The general solution of homogeneous equations is a sum of modes
proportional to exp (pf). It is not difficult to see that they are the
same modes as were obtained in Section 5 (except the long-period
precession mode). Indeed, making the following formal change of
variables:

vl = pf — by vl =pl -l (134)
v =y — R v = g (135)
o _ep _ut

T@) = ‘”T; o (136)

and renaming €2 to 2., we can obtain the system of equa-
tions (127)—(131) with zeroth S from the system of equations (91)—
(96) with zeroth €. Since all the real parts of modes (101), (102)
and (104)—(107) are negative, small perturbations decay to the quasi-
stationary solution.

The quasi-stationary values of v{l, v, v(D v(D and w§” can
be obtained from equations (127)—(131) with simple algebra. The
expressions, however, are quite cumbersome. We do not give exact
expressions, restricting ourselves to estimations. Let us first look
at the ‘parallel’ part of the system of equations. Since the time
derivatives are negligibly small, the non-zeroth value of S’ can be
counterbalanced only by interaction torques Rfl-‘), ie. R}}') ~ Sh
and v;]" ~ SV /min(e;;). The precession term does not contribute
to S, Therefore, S ~ Ki/I. ~ (I/I.)(Q./T.) where 7. is the
characteristic age of the pulsar. For the ‘perpendicular’ part we

have 1", 0§’ ~ S/ Q.. The leading term in ™) is the preces-
€8] (L)

ij
sion term. Hence, v;;”, og” ~ €. Thus, we see that the quasi-
stationary values of these quantities are small as was assumed.

Let us turn to the long-period precession time-scale. If the small
perturbations are not excited during stellar evolution, they should
all be damped on this time-scale. However, we obviously can no
longer ignore the evolution of vector .. It produces corrections
to the quasi-stationary expressions arising to compensate the time

derivatives in equations (127)—(131). The time derivatives, in turn,
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arise due to changing the components of vector 2. contained in the
quasi-stationary expressions. Hence, v;; ~ v; j(Q(- /S2.). According
to equations (121) and (122) we have Q. ~ a;;v;; and éq ~ v;;.
Hence, v;; ~ vl-zj, i.e. the corrections are quadratically small. Thus,
we can continue to use the quasi-stationary expressions for small
departures at the long-period time-scales if the three following con-
ditions are satisfied. First, the departures from the solid-body ro-
tation should be small. Secondly, the internal relaxation time-scale
should be much smaller than the slow precession period 7}, (ensured
by conditions (133)). Thirdly, the time-dependent perturbations are
not excited during the star’s lifetime. The last condition is obviously
violated if the neutron star is glitching. This case is the subject of
the next section.

The quasi-stationary approximation allows us to exclude the rota-
tion of the internal components from consideration. Let us first look
at the ‘parallel’ part. The quasi-stationary expressions for vé‘l,) and
vf!,), being expressed from equations (127) and (128), can be sub-
stituted into the right-hand side of equation (121). However, a more
illustrative way to obtain the same result is the following. Taking a
look at equations (127) and (128), we notice that the three last terms
on their right-hand sides (cf. equation (122)) are exactly equal to
Q.. After transposing . to the left-hand sides of the equations one
can compose the combination I.(121)+(1 + &,)I;(127)+1(128).
Neglecting quadratically small time derivatives Dfl-l) and taking into
account relations (84), we finally obtain '

Q. =K\, (137)

where we have denoted 7 = I. + (1 + €)1, + I.. According to this
equation the neutron star is braked by the external torque as if it is a
rigid body with the moment of inertia equal to I. It does not contain
the moment of inertia of the pinned superfluid because the superfluid
does not slow down as long as it remains pinned. The rigid-body
braking is a general feature of the quasi-stationary approximation
(section 2.3 in Barsukov, Goglichidze & Tsygan 2014).

Let us turn to the ‘perpendicular’ part. According to equa-
tion (122), the right-hand side of equation (131) is equal to —égq.
Therefore, from equation (131) in the quasi-stationary approxima-
tion (d)ifl) ~ 0) we have

vl =ieq. (138)
Substituting equation (138) into equations (129) and (130) (with
zeroth time derivatives), we obtain the system of linear equations
for v and w{j”, allowing us to express these quantities as functions

of éq. The solution is the following:

%-L' r

W s — g, 139

e oo Qc - igcr - lggr oo ( )

o =itq + 2 (é—g + 1257> . (140)
» Eg Qc Qc Qc - lécr - légr

We see that all three quantities (138)—(140) contain the same term
ieq. The last two contain some corrections to it that, however, are
small in the weak-interaction limit. Substituting equations (138)
and (139) into equation (122) and making some rearrangement, we
finally obtain the equation for éq, which after returning to the vector
form can be represented as

eq X [eq x K3] + IR, X €,
(1+T)2+ B2
eq X (K3 — 1.2, x €R,)
(1+T)>+ B2

[Qceq =—(1+T)

, (141)
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where coefficients B and I" are determined by equality

Sr c Scr

B +ill =&, e+ ————. 142
+1 E}, + %- + Qc - l%'c‘r - l%'gr ( )

Here we have used the notation

Q. = ccec(e. - ). (143)

However, all steps of the derivation of equation (141) remain valid
if we assume a more general form for the c-component angular
momentum

M, =19+ 1.9, (144)

instead of form (76), where € is an arbitrary symmetric tensor de-
scribing small deviations of the c-component from spherical sym-
metry.

Since the weak-interaction limit is assumed (|£;|/Q. < 1), the
coefficients in equation (141) are approximately equal to

B ~ ﬂgC +ﬂr(‘ ~ ng + VVC
Qe Q.

Replacing equation (142) with expressions (145), we ignore the
difference between the rotation of the two internal components (the
second term in equation (139) is neglected).

If the internal components do not interact with the c-component
at all, both coefficients B and I' are equal to zero. In this case,
equation (141) takes the form

, T (145)

1.Qéq =—eq x [eq X K3] — .2, X €. (146)

With K5 = 0 and equality (143) it reproduces the rigid-body free
precession equation (8). The influence of K3 at the precession
evolution is beyond the scope of the present paper. This ques-
tion has already been well studied (Goldreich 1970; Melatos 2000;
Arzamasskiy et al. 2015; Goglichidze et al. 2015). The electromag-
netic torque can force the precession amplitude to both increase or
decrease at the time-scales of the pulsar characteristic age .. It is
difficult to formulate any more specific statement because the result
depends strongly on the mutual orientation of the stellar magnetic
axis and its principal axes as well as on the exact form of the external
electromagnetic torque K.

Next, let us switch off the external torque but take into account
the interaction with the internal components. If K3 = 0, according
to equation (137) we have 2. = Q.éq. Since the interaction is
assumed to be weak, we keep only the linear in B and I" terms. The
equation in the axisymmetric case would be the following:

Qc =e.(e. - Q) {(1 —Dle. x ]+ Beg x [e. X QL]} . (147)

The interaction with the internal components modifies the rigid-
body precession equation (8) in two ways. The coefficient I pro-
duced by non-dissipative interaction renormalizes the precession

period (cf. equation (10)):
~ P (148)
™ (1 -T)e.cosh’

It is easy to see that in the small-angle approximation this coincides
with value (113) obtained in the framework of the linear analysis.
Considering the influence of coefficient B, let us multiply equa-
tion (147) by vector e,:

(Qf -e.) = Q.d, cosf = eL.BSlz cos 6 sin® 6. (149)

Here, (e, - 2.) > 0by choosing the direction of e,; coefficient B cal-
culated with expression (145) is positive because interaction (125)
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should reduce the difference between the rotation of the compo-
nents. Therefore, the angular velocity €2, tends to align with the
symmetry axis e.. The characteristic time-scale of the alignment is

T

2nB’
This is the same time-scale that we obtained for the p; mode in
Section 5.

The quasi-stationary evolution formalism confirms the results
obtained in the framework of the linear mode analysis for the more
general case of an arbitrary angle between the angular velocity and
the c-component symmetry axis. However, the main advantage of
this formalism is that it allows us to obtain equations (137) and
(141), which can be used for studying the stellar rotation evolution
at time-scales comparable to the pulsar lifetime.

(150)

Talign ™~

7 GLITCH-LIKE EVENT

We have formulated a model of a rotating neutron star with pinned
superfluid that allows the neutron star to precess with long period.
The model should also be examined for the ability to demonstrate
glitch-like behaviour.

We assume that the glitch relaxation (the longest glitch stage)
is governed by internal relaxation processes. As was discussed in
the previous section, at the internal relaxation time-scale 7., vec-
tors 2. and § can be treated as constants in equations (127)—(131).
In this case, the full solution can be represented as a sum of the
quasi-stationary solution (considered in the previous section) and a
time-dependent solution to the homogeneous system of equations
(with zeroth S!V and S‘V). The last, in turn, is a sum of the linear
modes studied in Section 5 (except the p3 mode, which has already
been taken into account in the quasi-stationary solution; see Sec-
tion 6). Generally speaking, the glitch can excite both ‘parallel’ and
‘perpendicular’ modes. However, in the present paper, we will con-
sider only the ‘parallel’ perturbations, which allow us to reproduce
the main glitch manifestation — the pulsar rotation frequency jump.
Thus, the system of equations is reduced to

Q= ) + aold. sy
(). g Urg an
o0 = (g e Y ), 152
oc (Olg +1+€g+1+€g> gc ( )
- Upe — ai UE‘L“)
I+e¢
0 = = (e o) ol = (e )l (s

The exact glitch-triggering mechanism is not known at present
(Haskell & Melatos 2015). The mechanism is likely based on some
non-linear process that cannot be described by simple linear equa-
tions. We will model it in the following way. It is assumed that at
t = 0 the superfluid pinned in the g-component instantly releases
a small part of the stored angular momentum A L. Since we are
interested in studying the ‘parallel’ modes, the released angular mo-
mentum A L is supposed to be parallel to £.. The whole released
angular momentum is assumed to be instantly injected into the ‘nor-
mal’ fraction of the g-component such that the total g-component
angular momentum is conserved. Thus, at = 0 the value of a)ﬂ!)
decreases by AL,/I, while the angular velocity 2, increases by
ALy/l,. The value of a)ﬂ) is not contained in equations (151)-
(153). Thus, right after the triggering we have: Q. = Qo, vl = 0,
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Figure 1. A sketch of the glitch-like behaviour of €2..

vl = AL,/I,. We can consider these values as initial conditions
and study how the system evolves.

To find the c-component rotation response to the glitch in the
g-component we can substitute the solution to equations (152)—
(153) into equation (151) and then integrate it. The result can be
represented in the following form:

Q) = Q0+ AQ (1 — e’ — (1 — e ), (154)
where AQ = AQu /(1 — Q), AQo = AL, /T,

_ 7agc + (1 +e€)leps
Toge + (1 +€),p_

(155)

and coefficients p, and p_ are the two ‘parallel”’ modes. If one wants
to relate the solution to observed pulsar glitches, function (154)
should have the form shown in Fig. 1.

The values 1/p, and 1/p_ should be interpreted as glitch rise and
glitch relaxation time-scales respectively. Hence, it is required that
p+ > p—. This condition is satisfied if one of the pair of interactions
is much stronger than the other two other (see Section 5). Let us first
assume that the strongest one is the cg-interaction, i.e. inequality
(100) is satisfied. In this case, coefficients p, and p_ can be cal-
culated with expressions (101) and (102). If we want to reproduce
the angular velocity behaviour sketched in Fig. 1, we should also
ensure that (Lyne et al. 2000)

0<Q<l. (156)

Substituting expressions (101) and (102) into expression (155) we
obtain
Il’
7
If we choose another interaction to be the strongest one assuming,
for instance, that o, 3> 0, 0, the estimations for p, and p_ can
be obtained from equations (101) and (102) by the corresponding
interchange of indices. However, condition (156), in this case, re-
quires fine tuning of the interaction parameters, which is unlikely
to be able to be maintained for a long time since the parameters
evolve with the neutron star’s internal temperature. Thus, the case
of inequality (100) is most plausible.

From the physical point of view the picture is as follows. The
glitch suddenly increases the g-component ‘normal’ fraction angu-
lar velocity, making the angular velocity lag v{l exceed its quasi-
stationary value. Right after that the c-component spins up due to
the cg-interaction at the (observationally unresolved) p, -time-scale.
The spinning up is followed by spinning down due to the reaction
of the r-component. Thus, in the framework of the proposed model,
the glitch relaxation is provided by the presence of the r-component.
Indeed, putting 7, = 0 in approximate equality (157), we obtain Q =
0 and, hence, AQ,, = AQ.

Observations could give us some constraints for p,. and p_ and,
hence, for the interaction coefficient parameters. From equation

0~ (157)
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(101) it follows that
P (158)
g ™~ ,
& 27 Tien

where T gt is the characteristic glitch rise time. Supposing that g;;
~ «a;; and taking into account condition (100), we can relate o, to
B:

LA tel

o, 159
§ (1 +e)l, (159)

The relaxation time-scale T c1ax. allows us to estimate the other
interaction coefficients. From expression (102), we have

I+ (14 €I,

Aer + Qgr ™~ 7

Tg relax. (160)

8 DISCUSSION

We have formulated a simple model of a rotating neutron star sup-
posing the existence of three abstract dynamically distinguished
components. Let us now speculate on the possible physical coun-
terparts of these components.

The outer c-component can be represented by the neutron star’s
crust and part of its core strongly coupled with the crust. Therefore,
the moment of inertia of the c-component can be estimated as
I~ (1072—=10""1.

The role of the g-component can be performed by tangles of
closed flux tubes that could be formed from chaotic small-scale
magnetic field after protons became superconductive. Alternatively
it could be a torus composed of closed flux tubes (Giigercinoglu &
Alpar 2014). If, for instance, the characteristic cross-section S, of
the region occupied by the toroidal field is of the order of 1 km?, then
I, ~ p, Swrrss ~ 10731, where pp is the proton mass density. Some
of the superfluid neutron vortices located in the core can be pinned
to the closed flux tubes. On the one hand, this interaction prevents
the tangles or torus collapsing. On the other hand, when the critical
rotational lag is reached, the vortices unpin, triggering the glitch.
These pinned vortices carry angular momentum L. If we assume
that 1 per cent of the total stellar moment of inertia is contained in
the pinned superfluid, then Ly/I,Qy ~ 10*2(1/15,). Assuming that
a thin ring is a good approximation for the g-component mass
distribution, the real oblateness parameter can be estimated as &,
~ 2. Hence, the second term in expression (97) is dominant and
&, ~ 1072(1/1,) ~ 10.

Since the flux tubes are closed in the core, the g-component,
being magnetically decoupled, can rotate with an angular velocity
different from 2. (Glampedakis & Lasky 2015). As has been ar-
gued, the cg-interaction should be quite strong to ensure the rapid
c-component spin-up but not too strong to allow the g-component
to rotate relative to the crust. We guess that this interaction can be
implemented by the viscosity of the crust—core interface region with
the possible inclusion of the Ekman pumping mechanism. Unfor-
tunately, there are not many observational data for glitch rise times
at present. The Crab pulsar is the only pulsar for which partially
resolved spin-up data have been obtained (Shaw et al. 2018). The
delayed frequency increase lasted for 0.5-1.7 d. However, this phe-
nomenon was observed only in three large Crab glitches. Therefore,
it could be more correct to apply the upper limit for the fast unre-
solved part of the glitch spin-up for estimating the cg-interaction
coefficients. For the 2017 glitch, Shaw et al. (2018) placed the upper
limit Tgien < 6 h. Hence, for the Crab pulsar with P = 3.3 x 1072
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s (Manchester et al. 2005),2 using equation (158), we obtain Ocg
> 2.4 x 1077, For the Vela pulsar much stiffer restrictions were
obtained. For the 2004 glitch, Dodson, Lewis & McCulloch (2007)
obtained that 7 gjn < 30 s (Dodson et al. 2007) and, hence, o, >
4.7 x 107*, where P = 8.9 x 1072 s for the Vela pulsar 2 . The value
of o, can vary substantially from one pulsar to another due to dif-
ferent internal temperatures and magnetic flux tubes organization.
Moreover, we do not state that the presented model describes all
glitching pulsars. In some of them the g- and c-components could be
tightly coupled. These pulsars, however, cannot precess with long
periods, as was shown earlier.

From the observed glitch relaxation time-scales (Lyne et al.
2000), using expression (160), we obtain the following estimation
for the corresponding interaction parameters:

I.+ 1,
1
The weakly interacting r-component is likely composed of super-
fluid matter. We suppose this component consists of some of the
neutron superfluid thatis not pinned and possibly some of the normal
matter coexisting with it and weakly coupled with the c-component.
Hence, in order of magnitude, we can estimate that /, ~ I. Strictly
speaking, it would be more consistent to treat the superfluid and
normal fractions of the r-component as two separate components
because of their weak interaction. It would complicate the calcula-
tions and would probably lead to a more complex glitch relaxation

but qualitatively the model remains the same.

It is generally accepted that the neutrons in the inner crust should
be superfluid and, hence, the superfluid vortices can pin to the crust
lattice. According to theoretical calculations, about 1 per cent of the
total moment of inertia is contained in the crust superfluid. If all
that superfluid is pinned, the crust’s effective oblateness parameter
would be of the order of 1072 and, hence, long-period precession
becomes impossible. However, as shown by Link & Cutler (2002),
the Magnus force, acting on the crust vortices could be enough to
unpin them. Thus, we assume that the crust superfluid is unpinned
in precessing stars. Strictly speaking, in this case, it should be
included in the model as an additional component. Again, it can
modify coefficients B and I' and complicate the glitch relaxation.
The exact effects of the additional components mentioned are the
subject of future study.

Ashton, Jones & Prix (2017) found that the modulations in spin-
down rate and beam shape of pulsar B1828-11 become faster. If the
modulations are induced by precession, the rate of precession period
decreaseis T, &~ —1072s s~!. According to expression (10) this may
indicate the gradual increase of the star’s oblateness, which would
be quite counter-intuitive. Alternatively, the variation of precession
period could be caused by a decrease in angle 6. In the case of
a rigidly rotating star, the angle evolution can be caused only by
electromagnetic torque K; this process would occur on the same
time-scale as the pulsar spin-down and, hence, it cannot be the
source of such fast variation. However, the pulsar could align due to
internal dissipation. Taking the time derivative of precession period
(148) and using equation (149), we can obtain the estimation for
the corresponding coefficient :

(1-10%) d. (161)

Aer + Agr ™~

T, cos6
2 sin?6
Since the spin-down rate is not affected by internal dissipation (see
equation (137)) in the quasi-stationary approximation, the rotation

B~

(162)

Zhttp://www.atnf csiro.au/research/pulsar/psrcat/
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frequency can be treated as a constant at the considered time-scale.
Due to the symmetry of the problem there are two configurations
with 6 = 5° and 6 = 89°, which fit the observational data equally
well (Arzamasskiy et al. 2015). For the small angle configuration
with estimations (162) and (159) we formally obtain B ~ 0.2 and
0 ~ 1—10. This case is not self-consistent because the weak-
interaction condition is not satisfied. In the case of the large angle
configuration we have B~ 3 x 107° and o, ~ 107*—1073. This,
according to estimation (158), leads for the pulsar with P = 0.4 s to
Tglitch ™~ 102—107 s. These values seem to be quite plausible. The
configuration with large angle 6 assumes a small angle between the
symmetry axis and the magnetic dipole axis. Therefore, specula-
tively we can guess that, some time in the past, a starquake occurred,
which led to the rearrangement of the crust almost along the mag-
netic axis. This occasion started the precession. The phenomenon
of decreasing T,,, however, could have an alternative explanation.
For example, the crust superfluid, which is unpinned due to preces-
sion, can gradually re-pin, which caused the increase of the crust’s
effective oblateness.

In the present paper we have proposed a way in which vortex-
pinning-based pulsar glitches can be reconciled with long-period
precession. Basically it is assumed that the superfluid is pinned in
the region located in the stellar interior, which has sufficient freedom
to rotate relative to the crust. This allows the pinned superfluid’s
angular momentum to stay aligned almost along the stellar rotation
axis and, hence, to not affect the precession period. At the same time,
this region should be sufficiently effectively coupled with the crust
to ensure the sufficiently rapid spin-up of the crust after a glitch there
has happened. Since the precession and the glitches are governed
by different regions of the star, it is natural that the glitch has almost
no effect on the precession characteristics (Jones et al. 2017). The
exact glitch-triggering mechanism, however, is beyond the scope of
the model in its present form. It is rather brought into it by hand.
Therefore, the model by itself does not allow us to predict the sizes
and the waiting times of the glitches, but these questions could be
addressed in the existing core-located glitch models. The main new
point that we assume is the possible weakness of cg-interaction.
This assumption does not affect the ‘normal’ fraction spin-down
relative to the pinned superfluid, which is usually supposed to be
the key process for glitch triggering.

Unfortunately, our model in its present form does not allow us
to obtain the whole range of observed recovery fraction values.
According to equation (157) it is of the order of unity. It is not so
bad for young pulsars but the older ones demonstrate a wide range
of recovery parameters (Yu et al. 2013). However, we believe that
this discrepancy arises due to oversimplification of the model. In
particular, the injection of the angular momentum from the pinned
superfluid into the ‘normal’ fraction requires more self-consistent
consideration. Thus, further research is required.
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