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Magnetic field inertia and rotation dynamics of radio pulsars
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ABSTRACT
In this article, we discuss the magnetic field inertia that results in the so-called anomalous
electromagnetic torque, making neutron stars precess. We focus particularly on the relative
contribution of fields of different scales and show that small-scale fields may produce an
anomalous torque comparable in magnitude with the one produced by dipolar field. Also, the
internal toroidal field may play an important role. If the stellar magnetic field is not symmetric
with respect to the dipolar moment axis, the pulsar inclination angle may oscillate with a
typical amplitude of tens of degrees, due to precession. Such variations may, in principle, be
observable.
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1 IN T RO D U C T I O N

The electromagnetic torque acting on rotating neutron stars con-
sists of two components. The first component is related to angular
momentum transfer away from the star to infinity by both parti-
cles and electromagnetic radiation. The second component is the
so-called anomalous torque. It is caused by inertia of the near-zone
electromagnetic field. The first component is determined almost
exclusively by the magnetic dipole moment of the star (see, how-
ever, Barsukov, Goglichidze & Tsygan 2013). As for the anomalous
torque, its amount and direction essentially depend on the structure
of the internal and external field, as will be seen.

To date, much observational and theoretical evidence has been
accumulated suggesting that the magnetic field near the surface
of a neutron star differs substantially from the dipolar field, the
value of which is usually determined by pulsar spin-down, assum-
ing that pulsars lose their rotational energy due to magnetic dipole
radiation. This can be up to 1–2 orders of magnitude stronger and
apparently contains an essential small-scale component. Some pul-
sars have features in their X-ray spectra: for instance, the millisec-
ond pulsar B1821+24 has a feature slightly above 3 keV (Becker
et al. 2003). This feature is interpreted as an electron cyclotron line
formed at magnetic field ≈3 × 1011 G, while the field value deter-
mined by the spin-down rate equals 4.6 × 109 G. X-ray pulsar 1E
1207.4−5209 has two features near 0.7 and 1.4 keV (Sanwal et al.
2002). These features are interpreted by authors as lines associated
with the atomic transition of once-ionized helium in a neutron star
atmosphere; this gives a magnetic field strength ≈1.5 × 1014 G
at the surface. Another interpretation is that these features are the
cyclotron lines of hydrogen and helium nuclei in a magnetic field
of 2.2 × 1014 G or of helium nuclei and once-ionized helium ions
in a magnetic field of 4.4 × 1014 G. The spin-down rate estimation
gives Bdip ≈ 3 × 1012 G.
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The asymmetry in the location of hot polar caps at the surface
of several X-ray dim isolated neutron star (XDINS) objects can be
explained by the presence of a quadrupolar component comparable
in magnitude with the dipolar magnetic field (Zane & Turolla 2006;
Zane 2007). For radio pulsars, some indications of the presence of
a quadrupolar component also exist (Kuzmin & Losovsky 1996;
Page & Sarmiento 1996).

The partially screened gap model developed by Gil, Melikidze &
Geppert (2003), which is most successful in explaining the pulsar
subpulse drift phenomenon, requires a curvature radius of magnetic
field lines ∼106 km. This is about two orders of magnitude smaller
than the curvature radius of the neutron star dipolar magnetic field.
Moreover, it also requires a magnetic field strength >1013–1014 G,
which is 1–2 orders of magnitude larger than typical dipolar field
values. Thus, apparently, this model is valid only if a strong small-
scale magnetic component is present at the star surface.

A small-scale component can be generated at the protoneutron
star stage due to turbulent dynamo action (Urpin & Gil 2004). After
the star has cooled enough, a crust is formed and the field becomes
frozen into it. The high conductivity of the crust allows magnetic
structures with length-scales ∼1–3 km to survive during the period
105–107 yr. Moreover, small-scale structures can be formed during
the neuron star’s life, due to Hall drift (Rheinhardt, Konenkov &
Geppert 2004; Geppert, Gil & Melikidze 2013).

In this article, we discuss the inertia of the neutron star magnetic
field and its possible influence on star rotation dynamics. In partic-
ular, we focus on the relative contributions of magnetic structures
of different scales.

2 A N O M A L O U S E L E C T RO M AG N E T I C
TO R QU E

Let us consider the angular momentum balance equation

dt M∗ + dt M f = KL. (1)
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Here, M∗ is the angular momentum of a neutron star, M f is the
field angular momentum contained inside the sphere with radius
rL = c/� and KL is the angular momentum flux flowing into this
sphere.1 The field angular momentum can be calculated with the
integral (Landau & Lifshitz 1975)

M f = 1

4πc

∫
r<rL

r × [E × B] d3r. (2)

We will suppose that neutron stars are surrounded by a plasma-
filled magnetosphere, the high longitudinal conductivity of which
results (according to Goldreich & Julian 1969) in electric and mag-
netic fields that are connected by the relation

E = − [� × r]

c
× B, (3)

not only inside the star but at least up to distance rL = c/�.
If the star angular velocity is denoted by � and the star radius is

denoted by r∗, one can introduce the parameter ε = r∗/rL = (�r∗/c),
which is small for most radio pulsars. The fields can be expanded
in a series with respect to this parameter:

B = B0 + B1 + B2 + . . . , E = E0 + E1 + E2 + . . . , (4)

where subscripts denote the power of ε. According to the definition,
B0 and E0 are the magnetic and electric fields of a non-rotating star
and other terms are the corrections to the fields due to star rotation.
We assume that rotation is the only source of electric currents in
the magnetosphere, meaning that there are no currents outside the
star that do not depend on angular velocity �. Hence, B0 should be
currentless for r > r∗.

The electric field of a non-rotating star E0 is assumed to be
negligibly small, since the neutron star is supposed to be uncharged
and the conductivity of its interior is high. When we talk about the
smallness of E0, we mean that

E0 � �r

c
B0. (5)

Indeed, if the star does not rotate, the largest electric field occurs
inside it near the surface, where the conductivity is worst. According
to Geppert & Rheinhardt (2002), the crust electric field is related to
the magnetic field by the equation

E0 = c

4πσ||
(curlB0 − ωBτr[eB × curlB0]) , (6)

where σ || is the longitudinal conductivity, ωB is the electron Larmor
frequency, τ r is the relaxation time and eB = B0/B0. Using this
equation, one can rewrite condition (5) as

c2

4πσ||

ωBτr

r∗�B�
� 1, (7)

where �B is the scale of the magnetic field variation. It is easy
to verify that this condition is satisfied for any reasonable values:
σ || = 1018–1023 s−1 (Potekhin 1999), ωBτ r = 1–103 (Geppert &
Rheinhardt 2002) and for a magnetic field of any reasonable scale
(�B = r∗ − 0.01r∗). As for the exterior, we automatically set E0 = 0,
assuming that curlB0 = 0 outside the star.

1 Note that it is more common to use rL to denote the size of light cylinder,
measuring the distance from the rotation axis instead of the star centre.
However, throughout this article we will use spherical geometry, which is
more convenient for our problem. This should not cause any problems,
because all assumptions usually supposed to be reasonable inside the light
cylinder are reasonable inside the sphere inscribed in it.

In the vicinity of a neutron star, the magnetic field strength falls
approximately as r−3 (in the case of a dipolar field). Hence, accord-
ing to relation (3), the electric field strength falls approximately as
r−2. Given this, it is easy to see that the main contribution to integral
(2) comes from the vicinity of the star. The corrections due to star
rotation are small there (Beskin 2009). Therefore, if one expands
M f as a series in ε, it is enough to keep only the linear term:

M f ≈ 1

4πc

∫
r<rL

r × [E1 × B0] d3r. (8)

Expressing E1 through B0 with formula (3), one can represent M f

as

M f = 1

c2

∫ rL

0
〈B2

n� − (� · Bn)Bn + (� · Bt )Bt 〉r r4 dr, (9)

where Bn = (B0 · er )er , Bt = B0 − Bn, er = r/r and 〈〉r denotes
averaging over the sphere with radius r. Thus, all we need to know
to calculate the field angular momentum is the expression for the
magnetic field in the non-rotating star approximation.

The time derivative of field angular momentum equals

dt M f = � × M f . (10)

Taking into account that the main contribution to M f comes from
the vicinity of the star and using expressions (10), (8) and (3), one
can obtain the following estimation:

dt M f ∼ ε2B2
∗r

3
∗ , (11)

where B∗ denotes the typical surface magnetic field value. Angular
momentum flux KL equals (Landau & Lifshitz 1975)

KL = r3
L〈(er · E)[er × E] + (er · B)[er × B]〉rL , (12)

where one needs to substitute the field values taken at distance rL.
Recalling that B ≈ B∗(r∗/rL)3 and E ∼ B at r = rL, one obtains

KL ∼ ε3B2
∗r

3
∗ . (13)

Thus, KL contains an extra power of small parameter ε. Therefore,
up to ε2,

dt M∗ ≈ −� × M f ≡ K⊥, (14)

where K⊥ can be interpreted as a torque acting on the star (Good
& Ng 1985). It is the largest torque component. Other components,
which equal the sum of KL and the corrections to dt M f , contain
at least one additional power of small parameter ε. Thus, K⊥ is
‘anomalously’ large. This is why it is sometimes called the anoma-
lous torque.

An arbitrary magnetic field can be expressed in terms of two
functions (Geppert & Wiebicke 1991):

B0 = −∇ × [r × ∇	] − r × ∇
, (15)

where 	 and 
 represent the poloidal and toroidal field constituents,
respectively. If one introduces an orthonormal basis (ex, ey, ez) fixed
in the star and spherical coordinates (r, θ , φ) associated with this
basis, these functions can be expanded in a series of spherical har-
monics:

	(r, θ, φ) = 1

r

∞∑
l=1

l∑
m=−l

	lmRlm(r)Ylm(θ, φ), (16)


(r, θ, φ) = 1

r

∞∑
l=1

l∑
m=−l


lmSlm(r)Ylm(θ, φ). (17)
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We separate amplitudes 	lm and 
 lm from the radial functions,
which we normalize so that functions Rlm equal unity at the star
surface, while functions Slm(r) equal unity at their maximum. Radial
functions Rlm and Slm can also depend on time if one wants to take
magnetic field evolution into account.

Substituting these expansions into expression (15), one can rep-
resent the magnetic field in general form as a series of spherical
harmonics. It will be useful to formulate this representation sepa-
rately for normal and tangential field components:

Bn =
∞∑
l=1

l∑
m=−l

l(l + 1)	lm

Rlm(r)

r2
Ylm(θ, φ)er , (18)

Bt =
∞∑
l=1

l∑
m=−l

⎧⎨
⎩	lm

dRlm

dr
∇Ylm(θ, φ)

− 
lmSlmer × ∇Ylm(θ, φ)

⎫⎬
⎭. (19)

Recall that B0 is the currentless magnetic field outside the star,
so

Rlm = (r∗/r)l (20)

and Slm = 0 for r > r∗. Hence, requiring continuity of magnetic field
and the vanishing of radial electric current at the star surface, one
obtains the following boundary conditions (Geppert & Wiebicke
1991):

d

dr
Rlm(r∗) + l

r∗
Rlm(r∗) = 0, (21)

Slm(r∗) = 0. (22)

In order to estimate the contribution of magnetic fields of different
scales, we have calculated M f with formula (9) for a single poloidal
harmonic ∼cos (mφ) (which can be constructed by summation of
Ylm and Yl, −m). If m 
= 1, the result can be represented as

M f = If� + δIf ez(ez · �), (23)

where

If = r4
∗ 〈B2〉r∗

c2

(l + 1)

(2l + 3)(2l + 1)(2l − 1)

×
⎧⎨
⎩ 2l4 + 4l3 − l2 − 3l + m2(2l2 + 2l + 3)

2l2(l + 1)2

∫ rL

0

(
r

dRl

dr

)2

dr

+ (3l2 + 3l − m2 − 2)
∫ rL

0
R2

l dr

⎫⎬
⎭ (24)

and

δIf = r4
∗ 〈B2〉r∗

c2

(l + 1)(l2 + l − 3m2)

(2l + 3)(2l + 1)(2l − 1)

×
{

2l2 + 2l + 3

2l2(l + 1)2

∫ rL

0

(
r

dRl

dr

)2

dr −
∫ rL

0
R2

l dr

}
. (25)

Here, we expressed amplitude 	lm through the averaged squared
surface magnetic field 〈B2〉r∗ . According to expression (23), the
field can be characterized by the following principal moments of

inertia: I xx
field = I

yy
field = If , I

zz
field = If + δIf . These moments of inertia

can be roughly estimated as

If, If + δIf ∼ 1032r5
6 B2

12

1

l2

(
r∗
�B

)2

g cm2, (26)

where r6 = r∗/106 cm and B12 =√〈B2〉r∗/1012 G. Thus, the field
moments of inertia are many orders of magnitude smaller than the
star moment of inertia, I∗ ∼ 1045 g cm2. Coefficient δIf can be
both positive and negative, but sum If + δIf is always positive. It is
convenient to introduce the effective oblateness coefficient

ε = δIf

I∗
. (27)

According to definition (14), the anomalous torque equals

K⊥ = −δIf (� · ez)[� × ez]. (28)

It can be directed both parallel and antiparallel to vector [� × ez],
depending on the sign of coefficient δIf. The octupole harmonic
with m = 2 does not produce the anomalous torque at all.

The distribution of the field moment of inertia of all harmonics
with m = 1 is triaxial:

M f = I ′
f � + δIfx ex(ex · �) + δIfy ey(ey · �), (29)

where

I ′
f = r4

∗ 〈B2〉r∗
c2

(l + 1)

(2l + 3)(2l + 1)(2l − 1)

×
⎧⎨
⎩ 2l4 + 4l3 − 2l − 3

2l2(l + 1)2

∫ rL

0

(
r

dRl

dr

)2

dr

+ l(l + 1)
∫ rL

0
R2

l dr

⎫⎬
⎭, (30)

δIfx = (l − 2)(l + 3)

2(l2 + l − 3)
δIf, δIfy = 3(l − 1)(l + 2)

2(l2 + l − 3)
δIf . (31)

This asymmetry arises because of cos φ contained in the harmonics
we used to calculate angular momentum (29). To obtain the angular
momentum of a harmonic with the same l but containing sin φ,
one needs to replace δIfx↔δIfy. For all harmonics with m = 1, one
should introduce two effective oblateness parameters.

Thus, in the general case, the anomalous torque produced by a
single poloidal harmonic can be calculated with the formula

K⊥ = r4
∗ 〈B2〉r∗

c2

(l + 1)

(2l + 3)(2l + 1)(2l − 1)

×
{∫ rL

0
R2

l dr − 2l2 + 2l + 3

2l2(l + 1)2

∫ rL

0

(
r

dRl

dr

)2

dr

}
k, (32)

where vector k is given by

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(l2 + l − 3m2)(� · ez)[� × ez], m 
= 1,

1
2 (l − 2)(l + 3)(� · ex)[� × ex] m = 1.

+ 3
2 (l − 1)(l + 2)(� · ey)[� × ey],

(33)

It is important to note that the integrals in all expressions should
be evaluated from the star centre. The internal magnetic field gives
a comparable or even leading contribution to K⊥. However, let us
first discuss the contribution of the external field. Substituting radial
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Magnetic field inertia and pulsar rotation 2567

function (20) into expression (32) and integrating from r∗ to infinity,
one obtains

K⊥(out) = r5
∗ 〈B2〉r∗

2c2

k
(2l + 3)(2l + 1)(2l − 1)(l + 1)

. (34)

One can see that K⊥ ∝ l−2 for large l. Thus, a small-scale field
with l = 10 gives a comparable contribution if it is one order of
magnitude stronger than the dipolar field at the surface.

The situation with the internal field is more difficult, because to
date there is no clear understanding of the internal field structure
(see, for example, the survey of Reisenegger 2013). Modelling the
internal field, we assumed that the field is generated by electric
currents flowing only in the crust region (rc < r < r∗). We chose
the radial functions having the following form in this region:

R
(c)
lm(r) = a

(
rjl(μlr) − jl−1(μlr∗)

nl−1(μlr∗)
rnl(μlr)

)
, (35)

where jl(x) and nl(x) are the spherical Bessel functions of the first
and second kind and a is the normalization constant. These ra-
dial functions satisfy boundary condition (21). Coefficients μl are
determined by the boundary condition at the crust–core interface
specified below. Note that functions (35) are the eigenmodes of
free Ohmic decay in the approximation of constant and isotropic
conductivity. For each l, we choose the smallest μl of those that
satisfy the boundary condition, because it corresponds to the most
long-lived mode. We have considered two models differing from
each other in the behaviour of the magnetic field in the star core.
Model I assumes that the crustal field continues as a currentless one
within the core, while according to Model II the field is confined in
the crust (see the two first columns in Fig. 2). Model I corresponds
to a core in the normal state, while Model II may be reasonable, for
instance, for cores in the superconducting state of the first kind.

In the first case,

Rlm(r) = R
(c)
lm(rc)

(
r

rc

)(l+1)

for r < rc, (36)

where rc is the internal crust radius and μl is determined by the
boundary condition

d

dr
R

(c)
lm(rc) − (l + 1)

rc
R

(c)
lm(rc) = 0. (37)

In the second case,

R
(c)
lm(r) = 0 for r ≤ rc. (38)

The crust thickness hc = r∗ − rc is taken to be equal to 0.1r∗.
In this article, we are primarily interested in the small-scale field.

It was argued that such fields at the protoneutron star stage are
generated most effectively in the outer layer, which hereinafter
crystallizes, forming the star crust (Urpin & Gil 2004). Moreover,
small-scale magnetic structures can be generated in the crust due
to Hall drift (Rheinhardt et al. 2004; Geppert et al. 2013). As for
the large-scale field, its source can be located in both the crust and
the core. We assume that it originates from the crust, purely for
uniformity of the model.

The results of calculations represented in terms of effective
oblateness are shown in Fig. 1. One can see that the results es-
sentially depend on the magnetic field configuration. The effective
oblateness calculated with Model I changes its sign between dipole
and quadrupole harmonics. In the case of a dipolar field, the largest
amount/part of moment of inertia is contained in the core homoge-
neous field, which produces a negative δIf. For l ≥ 2, the dominant
and positive contribution is generated by the crust magnetic field.

Figure 1. The effective oblateness ε calculated for different axisymmetric
(m = 0) poloidal harmonics calculated with different magnetic field config-
uration models. Here, I45 = I∗/1045 g cm2. Filled markers correspond to
negative values of ε, hollow ones to positive values of ε. If one wants to
obtain the oblateness produced by non-axisymmetric harmonics, the corre-
sponding value should be multiplied by (l2 + l − 3m2)/(l2 + l).

The effective oblateness calculated with Model II remains nega-
tive up to l = 15. To understand this behaviour, we should point out
that, according to the expressions (18) and (19), radial field com-
ponent Bn ∝ Rl, while tangential field component Bt ∝ drRl. Thus,
expression (32) can be interpreted in such a way that the radial and
tangential components generate oppositely directed torques. For
small l, most of the crust volume is occupied by a tangential field
(see Fig. 2). With growing l, the crust field becomes more and more
vertical. The radial and tangential field component contributions are
approximately equal for a magnetic field cell with radius equal to
the crust thickness. For hc = 0.1r∗, this takes place between l = 15
and 16. Harmonics with l > 16 give oblateness values that tend to
the corresponding results calculated with Model I. The reason for
this is that the form of the magnetic field cells in the two models
becomes more and more similar with increasing l.

One can see that for high harmonics the absolute value of effective
oblateness increases slightly with l. The boundary conditions for
radial function derivatives at the star surface and crust–core interface
require an increase of the derivatives and the function itself inside
the crust with increasing l (see Fig. 3). Physically, this means that
the same magnetic field magnitude at the star surface requires a
stronger field inside the crust in the case of a more small-scale
field. The first integral in expression (32) grows slightly with l,
because of the boundary conditions, while the pre-integral factor
tends to a constant. Note, however, that this slight growth of |ε| is
the consequence of the choice of harmonics normalization. If, for
example, we calculate K⊥ fixing the maximum value of the surface
magnetic field instead of 〈B2〉r∗ , an additional factor (l + 1) in
the denominator of (32) arises, leading to the decrease of |ε| with
increasing l.

In order to demonstrate the importance of the finite thickness of
the crust (magnetic-field generating layer), we have also considered
the surface-current model:

Rlm(r) =
( r∗

r

)l

, r > r∗, (39)

Rlm(r) =
(

r

r∗

)l+1

, r ≤ r∗ (40)

(right panel in Fig. 2). The presence of a surface current leads to the
breaking of boundary condition (21) and discontinuity of the mag-
netic field tangential component. For such a field configuration,
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Figure 2. Magnetic field lines: Model I (left), Model II (centre) and surface-current model (right).

the effective oblateness decreases with l even faster than the oblate-
ness produced only by an outer field. It is a consequence of the fact
that the external and internal fields produce contributions to δIf of
opposite sign and the terms containing the largest power of l cancel
each other.

A toroidal component of B0 can exist inside the star. The anoma-
lous torque produced by a single toroidal harmonic has the form

K⊥ = 〈B2〉V r3
∗ − r3

0

6c2

∫ r∗
r0

S2
lmr2 dr∫ r∗

r0
S2

lm dr

k
l(l + 1)

, (41)

where again vector k equals (33). The toroidal harmonics cannot
be normalized at the surface field value. We normalize them at the
volume-averaged field:

〈B2〉V = 3

(r3∗ − r3
0 )

∫ r∗

r0

〈B2(r, θ, φ)〉r r2 dr, (42)

where r0 is the lower boundary of the region occupied by the toroidal
field.

We chose the toroidal radial functions to be equal to

S
(c)
lm (r) = b

(
rjl(μlr) − jl(μlr∗)

nl(μlr∗)
rnl(μlr)

)
, (43)

where b is the normalization constant. Again, functions Slm are
the eigenmodes of free Ohmic decay, but satisfying toroidal field
boundary condition (22). There is no single point of view about how
large the region occupied by the toroidal magnetic field is. However,
according to modern researches (Braithwaite & Nordlund 2006;
Ciolfi et al. 2009), the most realistic field configuration corresponds
to a toroidal field confined in a region of poloidal field lines closed in
the star interior. In the poloidal field models considered by us, such
lines exist only inside the crust (see Fig. 2), so we set r0 = rc. Hence,
coefficients μl are obtained as the roots of equation Slm(rc) = 0.
Again, for each index l we take the smallest root, corresponding to
the most long-lived eigenmode. One can see from Fig. 3 that the
radial functions chosen in this way are almost indistinguishable,
despite the index l running from 1 to 20. This fact does not seem
completely unexpected related bell-shaped functions fixed at two
closely spaced points and normalized at unity at their maximum.

Thus, for our chosen model, the integrals in expression (41)
barely depend on l and the effective oblateness produced by a single
axisymmetric harmonic is almost independent of l as well. It equals

εl = −1.21 × 10−13 B2
V 12r

5
6

I45
, (44)
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Magnetic field inertia and pulsar rotation 2569

Figure 3. Radial functions of the poloidal field: Model I (top panel), Model
II (middle panel) and toroidal field model (bottom panel).

where BV 12 =
√

〈B2〉V /1012 G. In the case of non-axisymmetric
harmonics, one needs to multiply (44) by (l2 + l − 3m2)/(l2 + l).
Note that the toroidal field may be 1–2 orders of magnitude stronger
than the poloidal field (Braithwaite 2009). If so, it gives a leading
contribution to the anomalous torque.

If a star’s magnetic field is defined by several spherical harmon-
ics, the anomalous torque does not equal the sum of contributions of
each of these harmonics in the general case. Considering a poloidal
magnetic field constructed from two harmonics, one sees that the
cross-term under integral (9) can be represented as the sum of prod-
ucts (ei · er )Ylm(ej · er )Yl′m′ and (ei · ∇Ylm)(ej · ∇Yl′m′ ), where i,
j = x, y, z. According to the handbook of Varshalovich, Moskalev
& Khersonskii (1988), combinations (ei · er )Ylm and (ei · ∇Ylm) can
be expressed through sums of the spherical functions Yl ± 1; m and
Yl ± 1; m ± 1. This means that only the cross terms between the l and
l ± 2 poloidal harmonics survive after integrating over all direc-
tions. The cross term between two toroidal harmonics consists of
products (ei · [∇ × ∇Ylm])(ej · [∇ × ∇Yl′m′ ]). These combinations,
according to the same handbook, are represented through the sum
of spherical functions Yl; m and Yl; m ± 1. Hence, toroidal harmonics
with different index l do not cross at all.

There are several articles where the anomalous torque has been
calculated by different methods, mostly assuming that the magnetic
field consists of a single poloidal dipolar harmonic (Davis & Gold-
stein 1970; Good & Ng 1985; Melatos 2000; Istomin 2005; Beskin
& Zheltoukhov 2014). The anomalous torque can be obtained by
direct integration of the Lorentz force over the star volume (Good
& Ng 1985; Beskin & Zheltoukhov 2014):

K⊥ =
∫

V∗
r ×

[
ρ E + j

c
× B

]
d3r. (45)

This method is more straightforward but more complex, because one
needs to calculate second-order corrections to the fields. Another
approach is to use the formula for the angular momentum flux
(Melatos 2000):

K⊥ = r3
∗ 〈(er · E)[er × E] + (er · B)[er × B]〉r∗ , (46)

where, in contrast to formula (12), averaging is performed over
the star surface. However, by analogy with equation (1), this flux
equals the variation of the star’s angular momentum plus the angular
momentum of the internal field. Thus, the internal field does not

contribute to the anomalous torque calculated with formula (46). It
should be accounted for in the star’s angular momentum. Beskin &
Zheltoukhov (2014) proposed a modification of this formula, taking
into account the internal field but applicable when the star magnetic
field is generated only by surface currents. Since almost all authors
have assumed a vacuum magnetosphere [relation (3) is not satisfied
outside the star], a direct comparison of our results with others
cannot be made. Only Good & Ng (1985) assumed a particle-filled
magnetosphere. They used the same method and obtained the same
result, but restricted themselves to dipolar and quadrupolar poloidal
harmonics and a surface field model.

3 EFFECTI VE INERTI A TENSOR

We have argued that neutron star magnetic fields of different scales
may give comparable contributions to the anomalous torque. Fur-
ther, we would like to discuss the consequences that may result
from possible deviation of the magnetic field from a pure dipolar
configuration. Let us consider the simplest model of ‘asymmetric’
anomalous torque:

K⊥ = −δIdip (� · em) [� × em] − δIs (� · es) [� × es] . (47)

Here, the first term is produced by the dipolar field, em = m/m,
where m is the dipolar moment vector. The second term is produced
by some other field component. It can be, for example, a quadrupole
field, the axis of which does not coincide with em, or some small-
scale field anomaly. Here, es is some unity vector that does not
coincide with em. Let us introduce angle α, the cosine of which is
given by cos α = (es · em).

In the case of a perfectly spherical star, equation (14) can be
rewritten as

I∗dt� − K⊥ = 0. (48)

Recall that coefficients δIdip and δIs are many orders of magni-
tude smaller than the star moment of inertia I∗. If one substitutes
torque (47) into equation (48) and adds negligibly small terms
δIdip (dt� · em) em and δIs (dt� · es) es to the left-hand side, the
equation can be reduced to compact form:

d∗
t Meff + � × Meff = 0, (49)

where d∗
t is the time derivative in the frame of reference rotating

with the star Mi
eff = I

ij
eff�

j and we have introduced an effective
inertia tensor

I
ij
eff =

⎛
⎜⎝

I∗ + δIs sin2 α 0 δIs sin α cos α

0 I∗ 0

δIs sin α cos α 0 I∗ + δIdip + δIs cos2 α

⎞
⎟⎠. (50)

Writing I
ij
eff , we use an orthonormal basis (ex′ , ey′ , ez′ ) fixed in the

star in such a way that ez′ = em and ex′ lies in the plane containing
em and es (see Fig. 4). Tensor (50) can be diagonalized by turning
this basis at angle β (see Fig. 4):

tan β = δIs sin(2α)

δIdip + δIs cos(2α) +
√

δI 2
dip + δI 2

s + 2δIsδIdip cos(2α)
.

(51)

The corresponding eigenvalues are

I xx
eff = I∗ +

δIdip + δIs −
√

δI 2
dip + δI 2

s + 2δIsδIdip cos(2α)

2
, (52)
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Figure 4. Two orthonormal bases used in Section 3: (ex′ , ey′ , ez′ ) is the
basis related to the magnetic dipole, while (ex , ey , ez) is the basis in which

tensor I
ij
eff is orthogonal.

I
yy
eff = I∗, (53)

I zz
eff = I∗ +

δIdip + δIs +
√

δI 2
dip + δI 2

s + 2δIsδIdip cos(2α)

2
. (54)

As a result, the rotation of a spherical neutron star under the action of
anomalous torque can be described as the free rotation of a triaxial
star.

In the general case, the anomalous torque produced by a magnetic
field cannot be represented in form (47), as it contains more terms.
This means that tensor I

ij
eff has a form more complicated than (50)

and requires a more complicated procedure to find the effective
principal axes, but the idea remains the same.

Real neutron stars are not perfectly spherical in themselves. First,
their form is deformed by the stresses produced by their own
internal magnetic field (Wasserman 2003; Haskell, Samuelsson,
Glampedakis & Andersson 2008; Mastrano et al., 2011; Mastrano,
Lasky & Melatos 2013). Secondly, non-hydrostatic deformations
can be maintained by star’s solid crust (Goldreich 1970). In the
general case, tensor I

ij
eff can be obtained by summation of the tri-

axial star inertia tensor and the tensor describing the inertia of the
near-zone field.

4 EQUATI O N S O F M OT I O N

Let us return to the angular momentum balance equation,

d∗
t Meff + � × Meff = K 3. (55)

Here, Meff is the effective angular momentum vector of general
form. Now we add to the equation the ‘external’ torque K 3, which
is the next term of electromagnetic torque expansion in a series of
small parameter ε (K 3 ∝ ε3). Despite its smallness compared with
the anomalous torque (included here in term � × Meff ), torque K 3

is important when the long-term rotation dynamics is considered,
because only the torque proportional to ε3 causes star spin-down
and secular inclination angle evolution. The rotation of a triaxial star
under the action of ‘external’ electromagnetic torque was studied
by Melatos (2000). In this section, we will discuss some key points
regarding such rotation.

If em 
= e�, an arbitrary torque K 3 can be represented as (Bar-
sukov, Polyakova & Tsygan 2009)

K 3 = K (k̃�e� + k̃mem + k̃p[e� × em]
)
, (56)

where K = ε3m2/r3
∗ and k̃�, k̃m, k̃p are some dimensionless func-

tions. Since we suppose that K 3 is caused only by rotation of mag-

Figure 5. Angles and vectors used in Section 4: ex , ey , ez are the principal

axes of the star effective inertia tensor I
ij
eff , β is the angle between the Z-axis

and the star’s magnetic moment direction, ϑ is the precession angle and χ

is the inclination angle.

netic dipole moment m, this representation is most convenient.
Moreover, since K ∼ ε3, even if function k̃p does not equal zero,
this term, being parallel to the dipolar contribution to anomalous
torque, is much smaller than K⊥. It allows us to ignore the last term
in expression (56). In contrast to the anomalous torque, the exact
form of torque K 3 is difficult to obtain because its calculation re-
quires knowledge of field behaviour not only near the star but up
to a distance ∼rL. For this reason, researchers use different model
torques (Davis & Goldstein 1970; Jones 1976; Beskin, Gurevich &
Istomin 1983; Barsukov, Polyakova & Tsygan 2009).

Since both effective and real deformations are very small, one
can replace d∗

t Meff by I∗d∗
t � in equation (55) (see the Appendix

for more detail). After substitution of expression (56), this vector
equation can be represented as the following three equations:

dt� = K
I∗

(
k̃� + k̃m cos χ

)
, (57)

dt ϑ = K
I∗�

(eϑ · em) k̃m − (εy − εx)� sin ϑ sin ϕ cos ϕ, (58)

dt ϕ = K
I∗�

k̃m

sin ϑ
(eφ · em)

+ [
εx cos2 ϕ + εy sin2 ϕ

]
� cos ϑ. (59)

Here, ϑ and ϕ (not to be confused with θ and φ) are precession and
azimuthal angles, defined as shown in Fig. 5,

εx = I zz
eff − I xx

eff

I∗
, εy = I zz

eff − I
yy
eff

I∗
(60)

are the oblateness parameters, cos χ = (e� · em) is the cosine of
inclination angle χ ,

eϑ = 1

�

∂�

∂ϑ
and eϕ = 1

� sin ϑ

∂�

∂ϕ
. (61)

Let us first consider ‘free’ rotation (K = 0). In the case of an
effectively triaxial star, the angular velocity vector can rotate about
two of three effective principal axes, corresponding to the largest
and smallest principal moments of inertia depending on the initial
conditions. If the angular velocity vector rotates about the z-axis,
angles ϑ and ϕ have a simple intuitive meaning. The variation of
angle ϕ describes the precessional motion of the star. The ‘ampli-
tude’ of the precession is set by angle ϑ . Oscillations of angle ϑ

describe the nutation of the star. The amplitude of these oscillations
is proportional to (εy − εx) (see the Appendix). Note that we in-
troduce ϑ as the angle between the angular velocity vector and the
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principal axis of the effective inertia tensor, while Melatos (2000)
measures this angle between � and the principal axis of the body
inertia tensor.

Using formula (A11), one can estimate the precession period:

Tp ≈ f√
εxεy

P

cos ϑ0

= 3.17 × 104 f

cos ϑ0

(
10−12

√
εxεy

)(
P

1 s

)
yr, (62)

where P is the period of neutron star rotation and f ∼ 1 is a coefficient
calculated with (A12). The observed parameter is the inclination
angle χ . It oscillates with the same period Tp.

If we now include in the consideration torque K 3, another evolu-
tion time-scale,

τx = I∗�
K ≈ 8.6 × 107 I45

R6B
2
12

(
P

1 s

)2

yr, (63)

arises. It is usually much larger than the precession period Tp. As
it was shown by Goldreich (1970), the ‘external’ torque can both
damp the precession and increase its amplitude, depending on the
orientation of dipole moment m relative to the star’s principal axes.
He considered an axisymmetric neutron star (εx = εy), the mag-
netic moment m of which departs from the star’s symmetry axis
ez at angle β, so that cos χ = cos βcos ϑ + sin βsin ϑcos ϕ and
(eϑ · em) = − cos β sin ϑ + sin β cos ϑ cos ϕ. He also assumed that
the star loses its angular momentum due to magneto-dipolar radia-
tion (Davis & Goldstein 1970):

K 3 = 2�3m2

3c3
(em cos χ − e�) . (64)

Being interested in the secular evolution of angle ϑ , one can average
equation (58) over the precession period, substituting in the right-
hand side the free precession solution �, ϑ = const, ϕ = 2π(t/Tp).
After averaging, one can verify that 〈(eϑ · em) k̃m〉Tp is negative for
β < arccos(3−1/2) ≈ 55◦ and positive for β > 55◦. This means that
the amplitude of precession decreases if β < 55◦ and increases in
the opposite case. It is obvious that the critical angle is the same
for any model of torque K 3, in which k̃m ∝ cos χ . However, if
the proportionality factor is negative, the situation is opposite: the
precession is damped if β > 55◦ and it grows if β < 55◦. This
should take place, for example, for a current losses model (Beskin
et al. 1983).

Note that Goldreich (1970) ignored the anomalous torque in his
calculations. This is correct only if the star deformation is much
larger than the effective oblateness produced by the inertia of the
field. In the general case, one should take into account both asym-
metries of the star and its field inertia distribution. Therefore, even
an axisymmetric star effectively becomes triaxial if the magnetic
moment direction does not coincide with the star symmetry axis.
For such a star, the question of whether the amplitude of preces-
sion would increase or decrease is more complex. It depends on the
relation between εx and εy, as well as on the initial conditions.

Typical curves of angles evolution with damped precession are
shown in Fig. 6. In plotting these graphs, we assumed that the
star is spherical and obtained oblateness parameters (60) using I xx

eff ,
I

yy
eff and I zz

eff calculated with formulae (52)–(54) and the following
parameters: α = 30◦, δIdip = 0.36K(c/r∗�3) and δIs = 1.2δIdip.
Time is measured in units of τ x. It makes the curves independent of
I∗ and, if εx and εy are proportional to m2, of neutron star magnetic
field strength. The form of the angles oscillations envelope also does
not depend on the initial period in these time units. However, initial

Figure 6. Evolution of inclination angle χ and precession angle ϑ with
time for a pulsar with the following parameters: εx = 1.9 × 10−13I−1

45 ,

εy = 2.05 × 10−13I−1
45 , β = 16.5◦ and for the following initial conditions:

P0 = 0.1s, ϑ0 = 40◦, ϕ0 = 45◦. Time is measured in evolution time-scales
τ x.

Figure 7. Precession motion of angular velocity vector � for the cases
ϑ > β (left panel) and ϑ < β (right panel). The opening of the precession
cones is equal to 2ϑ .

precession period Tp/τ x ∝�0. Since εy ≈ εx for this configuration,
oscillations of ϑ are small (they are almost indistinguishable in the
graph). However, the inclination angle χ oscillates with amplitude
≈30◦ at the beginning of the evolution. Individual oscillations of
angle χ are indistinguishable because of the small precession period
compared with τ x.

The form of the inclination angle oscillations envelope can be
understood after looking at Fig. 7. While ϑ > β, the inclination
angle changes from ϑ − β to ϑ + β during the precession period,
so that the amplitude is constant and equal to 2β. After angle ϑ

becomes less than β, the inclination angle starts to change from
β − ϑ to ϑ + β. This means that the amplitude equals 2ϑ and
consequently decreases with the damping of precession.

Plotting these curves, we used the vacuum magneto-dipolar for-
mula (64). Modern magnetohydrodynamics simulations of pul-
sar magnetospheres (Philippov, Tchekhovskoy & Li 2014) yield
a torque causing slower secular inclination angle evolution, but
qualitatively the behaviour of the curves is the same.

It is important to note that, due to anomalous torque after the
damping of precession, the star will not rotate about one of its
own principal axes but about one of the effective principal axes.
This is why the precession angle measured by Melatos (2000) from
the body principal axis in some of his simulations tends to a finite
constant.

Another scenario of angle evolution is shown in Fig. 8. In this
example, the precession grows with time. Here, the difference be-
tween εx and εy is much larger and the oscillations of angle ϑ are
much more noticeable. At approximately t/τ x = 4, angle ϑ reaches
90◦ and the star changes its axis of precession from ez to ex . After
that, angle ϑ loses the meaning of a ‘precession angle’.
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Figure 8. Evolution of inclination angle χ and precession angle ϑ with
time for a pulsar with the following parameters: εx = 2.06 × 10−13I−1

45 ,

εy = 1.13 × 10−13I−1
45 , β = 79◦ and for the following initial conditions:

P0 = 0.1 s, θ0 = 40◦, ϕ0 = 45◦. Time is measured in evolution time-scales
τ x.

A full analysis of triaxial star rotation under the action of a torque
of the form (56) is quite complex: both εx and εy can be both positive
and negative, the absolute value of εx can be either larger or smaller
than the absolute value of εy, function k̃m can be either positive or
negative depending on the magnetosphere model, vector m can be
arbitrarily oriented with respect to the principal axes and so on. One
of the essential assumptions that was made is that the neutron star
rotates as a perfectly rigid body. In reality, a number of dissipation
processes accompany the precession motion. Examples are crust
internal friction (Chau & Henriksen 1971; Macy 1974), crust–core
friction (Chau & Henriksen 1971; Casini & Montemayor 1998),
mutual friction between neutron superfluid vortices and a charged
component (Sedrakian, Wasserman & Cordes 1999) and so on. At
the very least, the growing precession should be discussed only after
dissipation processes are taken into consideration. We did not aim
to perform such analysis here.

5 C O N C L U S I O N S

In this article, we have calculated the so-called anomalous torque
produced by different poloidal and toroidal magnetic field harmon-
ics. It is shown that small-scale field structures may give a contribu-
tion to this torque comparable in magnitude with the contribution
of dipolar field. The magnitude of the torque may depend substan-
tially on the internal field structure. If the star magnetic field is
not symmetric with respect to the dipolar moment axis, the pul-
sar inclination angle may oscillate with a typical amplitude of tens
of degrees, due to precession. Such variations may in principle be
observable (Lyne et al. 2013).

Besides the anomalous torque, the magnetic field should deform
neutron stars directly. However, this effect is more difficult to cal-
culate and may depend substantially on the neutron star equation of
state (Haskell et al. 2008). For arbitrary poloidal harmonics, the star
deformation was calculated by Mastrano et al. (2013). Formally,
their results are much larger than the effective oblatenesses ob-
tained by us. However, they used another internal field model. This
difference is especially important for large l: for the same harmonic
and same surface field strength, their field can be up to one order
of magnitude larger inside the star (both direct deformation and
anomalous torque are quadratic in B) than the field we assume in
our models. Moreover, according to their model small-scale fields

occupy the whole star, while we assume that these fields are con-
centrated in the crust. Thus, direct comparison of the corresponding
oblateness coefficients does not give a real picture of the relative
contributions of these two effects.

The neutron star core in some regions may be in a superconduct-
ing state (Yakovlev, Levenfish & Shibanov 1999). If it is a supercon-
ducting state of the first kind, the magnetic field is pushed out of the
core and the field configuration may be like that we propose in Model
II. If, however, the superconductivity is of the second kind, the field
is organized in fluxoids, which can be modelled as cylindrical tubes
with radius approximately equal to penetration depth � and filled
with the first critical field Hc1 ≈ 4 × 1014(ρ/1014g cm−3) G directed
along the tube axes (Glampedakis, Andersson & Samuelsson 2011).
Let us consider a small box with size � and volume V = �3. The
inertia of the field contained in this box can be estimated roughly
as the field energy multiplied by the distance from a principal axis
and divided by the speed of light. For the energy, we have

EV =
∫

V

B2

8π
d3r ≈ H 2

c1

8π
π�2�N = Hc1BV

8π
V , (65)

where N is the number of flux tubes contained in the box and by
BV we mean the field averaged over this small volume. Thus, in
the case of a superconducting interior, we expect an increase in the
internal part of K⊥ by a factor ∼Hc1/BV.
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A P P E N D I X A : FR E E M OT I O N O F A N
A S Y M M E T R I C A L TO P

Let us consider a rigid body rotating with angular velocity �. If this
body does not feel the action of any forces, its energy

E = I ij�i�j

2
(A1)

and three components of angular momentum

Mi = I ij�j (A2)

are conserved. The angular conservation law can be represented in
the form of equation

d∗
t M + � × M = 0, (A3)

where d∗
t denotes the time derivative in the frame corotating with

the body. Since the inertia tensor is symmetrical, one can always
find a corotating basis (ex, ey, ez) in which this tensor is diagonal.
Projected on to this basis, equation (A3) is equivalent to three Euler’s
equations:

d∗
t �

x + I zz − I yy

I xx
�y�z = 0, (A4)

d∗
t �

y + I xx − I zz

I yy
�z�x = 0, (A5)

d∗
t �

z + I yy − I xx

I zz
�x�y = 0. (A6)

By a cyclic change of vectors ei , one can rearrange the principal
moments of inertia so that Ixx ≤ Iyy ≤ Izz.

If M2 > 2EIyy, the system of equations (A4)–(A6) has the fol-
lowing solution (Landau & Lifshitz 1975):

�x =
√

2EIzz − M2

I xx(I zz − I xx)
cnk(τ ), (A7)

�y =
√

2EIzz − M2

I yy(I zz − I yy)
snk(τ ), (A8)

�z =
√

M2 − 2EIxx

I zz(I zz − I xx)
dnk(τ ), (A9)

where cnk(τ ), snk(τ ) and dnk(τ ) =
√

1 − k2snk(τ ) are the Jacobi
elliptic functions, with parameter

k =
√

(I yy − I xx)(2EIzz − M2)

(I zz − I yy)(M2 − 2EIxx)
(A10)

ranging from 0 to 1 and argument τ = 2πf (t/Tp), where

Tp =
√

IxxIyyIzz

(Izz − Iyy)(M2 − 2EIxx)
(A11)

and

f = 2

π

π/2∫
0

du√
1 − k2 sin2 u

. (A12)

Functions cnk(τ ) and snk(τ ) are periodic, with period 2πf . In terms
of physical time, this period equals Tp. For k = 0, the elliptic
functions reduce to trigonometric functions: sn → sin, cn → cos,
dn → 1. For k = 1, they reduce to hyperbolic functions: sn → tanh,
cn, dn → 1/ cosh.

Instead of Cartesian components, vector � can be described
by its absolute value � = √

�x�x + �y�y + �z�z and two an-
gles: precession angle ϑ = arccos(�z/�) and azimuthal angle
ϕ = arcsin(�y/

√
�x�x + �y�y). It is also convenient to intro-

duce two oblateness parameters, εx = (Izz − Ixx)/Izz and εy = (Izz

− Iyy)/Izz, which are both positive. Using solution (A7)–(A9) and
definitions (A1) and (A2), one can obtain

� = �0

√
1 − εx(εx − εy)

1 − εy

sin2 ϑ0sn2
k(τ ), (A13)

cos ϑ = cos ϑ0
�0

�

√
1 − (1 − εy)(εx − εy)

εy

tan2 ϑ0sn2
k(τ ), (A14)

sin ϕ =
[

1 −
(

1 − εy(1 − εy)

εx(1 − εx)

)
cn2

kτ

]−1/2

snkτ, (A15)

where �0 and ϑ0 are the initial values of � and ϑ and angle ϕ0 is
supposed to be equal to zero.

If Ixx = Iyy (εx = εy, k = 0), � and ϑ remain constant and vector
� rotates uniformly about the z-axis. If vector ez is directed at us,
this rotation is counterclockwise. In the general case, the absolute
values of angular velocity � and precession angle ϑ oscillate with
doubled frequency.

Our interest is restricted to rotation of a body in which the mass
distribution is almost spherically symmetric (i.e. εx, εy � 1). In
this case, one can ignore all terms quadratic in εx, εy in equations
(A4)–(A6). This is equivalent to replacing equation (A3) by the
equation

I zzd∗
t � + � × M = 0. (A16)

It is easy to see that, in this approximation, the variation of angular
velocity � is perpendicular to this vector. Indeed, looking at ex-
pression (A13), one can see that oscillations of the absolute value
of angular velocity are quadratically small in terms of oblateness
parameters. As for angle ϑ , if the body is substantially triaxial, i.e.
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(εx − εy)/εy ∼ 1, its oscillations can be not small even for an almost
spherical body.

If M2 < 2EIyy, the solution to equations (A4)–(A6) can be ob-
tained from the one discussed above by exchanging ‘x’↔ ‘z’. This
means that, in this case, vector � rotates about the x-axis. Measur-

ing ϕ from the z-axis, we should keep in mind that (ez, ey, ex) is
left-handed triple. Hence, in contrast to rotation about the z-axis,
this rotation is clockwise.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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