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Quantum particle localization by frequent coherent monitoring
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We present an approach to monitoring and controlling a free quantum particle by coupling an internal (discrete)
state of the particle to a detector (or probe). We consider a sequence of time-dependent, spatially localized
interactions of the particle with the probe that are purely coherent (nondissipative), without mean energy-
momentum exchange. We show that a sequence of such force-free interactions can freeze or deflect the particle.
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I. INTRODUCTION

Schrödinger argued that quantum mechanics, particularly
the wave-particle duality, can be inferred from one principle:
the impossibility of continuous observation [1]. Yet this
principle has not been exhaustively scrutizined thus far. Studies
of position measurements of freely propagating quantum
particles [2–4] typically assume continuous (static) interaction
with a spatially inhomogeneous probe (detector) regarded
as a bath. The common denominator of such studies is
that the particle’s wave packet is localized by a spatially
inhomogeneous complex potential (and therefore a force)
associated with a bath [2–6].

We here put forward an alternative approach to monitoring
a wave packet that describes a free quantum particle. This
approach is realizable by coupling an internal (discrete) state
of the particle to a detector (probe), such that the probe-induced
transition from that state to another state signals the presence of
the particle (Fig. 1). Unlike previous models [2–8], we consider
a sequence of time-dependent, spatially localized interactions
of the particle with the probe that to a good approximation
are purely coherent (nondissipative), so that no coupling to
a bath is invoked. These interactions may be designed to be
“elastic,” without mean energy-momentum exchange so that
allegedly no force is involved. Yet, because the interactions
are with probe beams of finite width, momentum (force)
uncertainty is necessarily incurred by the process. We show
that a sequence of such “force-free” interactions, here denoted
as “premeasurements” (PMs) can freeze or deflect the particle.
Due to orthogonality between the wave packets corresponding
to different internal states, our PM monitoring consists in
repeated interferences within each of the orthogonal wave
packets.

The predicted effects are essentially different from the
quantum Zeno effect [9] or its inverse (the anti-Zeno ef-
fect) [10–14], i.e., the respective slowdown or speedup of
quantum-state change by frequent observations. Although
such effects have mostly been studied for discrete variables
[7–9,13,15–19], frequent observations of position have also
been considered [8] under the idealized assumption of pro-
jective measurements that fully localize the particles (which
would create nearly infinite effective potential barriers). We
here adopt an experimentally feasible model of frequent PM
monitoring that may appear to be the quantum analog of the
Zeno arrow paradox, whereby a frequently watched arrow does

not fly. Yet, remarkably, excessively frequent PMs are shown to
hamper localization, which requires specific timings, contrary
to either Zeno-like or anti-Zeno evolution [7–19]. Hence, we
are dealing with an essentially different monitoring regime.

II. MODEL AND PROCEDURE

We consider a free particle that interacts with a probe, with
states |0〉 and |1〉. The probe may be a detecting light beam
or internal states of the particle itself, e.g., energy states of
an atom or polarization states of a photon. We require the
mean energy and momentum of the particle not to change by
a transition between the internal states of the probe, so that no
classical force is exerted by the transition.

The total Hamiltonian of the particle (S) and probe (P ) is
given by

H (t,x) = HS ⊗ IP + IS ⊗ HP + HSP (t,x), (1)

HSP (t,x) = V (t,x)σx, (2)

where HS is the system (free-particle) Hamiltonian, σx =
|1〉〈0| + |0〉〈1|, and V (t,x) is the system-probe (detector)
interaction operator. For our plots, we choose HP = 0,
reflecting energy degeneracy of the probe states |0〉 and
|1〉, to simplify the analysis and accentuate its nonclassical
aspects [Figs. 1(a)]. The system-probe interaction is taken to
have the spatiotemporal form V (t,x) = h̄gu(x)f (t), where
g, u(x), and f (t) are the coupling strength and spatial and
temporal profiles, respectively. Specifically we shall take
f (t) =

√
π

2T

∑
n e−(t−nτ )2/T 2

to be a sequence of n temporally
Gaussian interactions of mean duration T and separation τ .

The static or continuous limit of time-independent V (x) =
πh̄gu(x)/(2τ ) is obtained upon taking T � τ , while the
dynamic impulsive limit is that of T � τ . The coupling is
chosen to achieve complete transfer from |0〉 to |1〉 after each
period of the system-probe interaction sequence at the spatial
profile peak u(0) = 1. In other words, we choose the coupling
strength g such that g

∫ τ

0 dt f (t) = π/2 in the impulsive limit
and g = 1 in the static or continuous limit.

The particle wave function is subject to the translational-
internal entanglement (TIE) [20,21] induced by the probe. It
is given by

|ψ(t,x)〉 = ψ0(t,x)|0〉 + ψ1(t,x)|1〉. (3)
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FIG. 1. (Color online) Schematic diagram of localization process:
an initial Gaussian wave packet with two degenerate internal degrees
of freedom (probe) undergoes translational-internal entanglement
(TIE) due to a localized (vertical dashed lines) interaction.

We can allow for the effect of decoherence (“proper
dephasing”) of the |1〉 ↔ |0〉 transition at a rate R, concurrent
with the system-probe interaction, which results in degradation
of the induced system-probe entanglement [22] and changes
the wave function into a mixed state (see below). The limit of
strong decoherence corresponds to uncorrelated interactions
separated by the interval τ , which amounts to using a new
probe at each interaction. Yet it is the opposite limit of
weak (or negligible) decoherence R � 1/τ , corresponding
to correlated acts of TIE, that is shown to cause the most
spectacular effects.

Two procedures will be compared: (i) Repeated selective
measurements (SMs), wherein the probe is read at times
t = nτ , n = 1, . . . ,N , thus collapsing the wave packet to the
appropriate form after each interaction: if |0〉(|1〉) is mea-
sured, ψ(nτ,x) = ψ0(1)(nτ,x)/

√
P0(1)(nτ ), where P0(1)(nτ ) =∫ ∞

−∞ dx|ψ0(1)(nτ,x)|2 is the probability of that measurement
result. (ii) Premeasurements, whereby no action is taken, apart
from repeated TIEs. As argued below, the latter procedure
amounts to tracing out the internal (probe) states, resulting in
a statistical mixture of the two wave packets, each undergoing
separate correlated interferences.

III. RESULTS

We wish to compare the wave-packet dynamics caused
by SMs and PMs, respectively, in both continuous static and
impulsive (dynamic) monitoring regimes. Two major effects
transpire from their numerical study:

(a) Localization (“freezing”) (Fig. 2). We find the possibility
of strong trapping or freezing a particle by frequently moni-
toring it at its initial location, via a spatially localized probe.
Localization is here characterized by the probability of the par-
ticle being within the detector’s profile u(x) at time t (Fig. 1): in
one dimension (1D) p(t) = ∫ ∞

−∞ dxu(x)〈x|ρ+(t,x)|x〉, where
〈x|ρ+(t)|x〉 = 〈x|[ρ00(t,x) + ρ11(t,x)]|x〉 is the probability
density under PM (the sum of |0〉 and |1〉 probabilities), Fig. 3.
PMs are shown to cause much more effective localization
than SMs, and impulsive monitoring is more effective than

FIG. 2. (Color online) Wave-packet probability exhibits local-
ization in the probe region due to coherent TIE premeasurements.
Hot (cold) colors indicate high (low) probability. White horizontal
solid lines indicate the probe region and white vertical dotted lines
indicate measurement times. Parameters: w/�x = 10, �xk0 = 1,
τ/τ∞ = 0.5. Also, u(x < 0) = σ ((x + w/2)/(5w)) and u(x � 0) =
σ ((x − w/2)/(5w)), where σ (x) = 1/(1 + e−x).

continuous static. Examining the probability distributions
ρ+(t,x) in Fig. 2 reveals that the particle “rebounds” from
the probe region boundaries, yet some probability “leaks” out
during the intermonitoring interval τ . This leakage, which
makes localization incomplete, decreases with the intervals τ .

Localization increases with the rate 1/τ , as shown in
Fig. 3. Several intriguing conclusions arise from these results:
(1) Not only do PMs lead to increased localization as their
interval decreases, but the shorter their interval the more
enhanced is their localization effect compared to SMs. (2)
Impulsive interactions cause stronger localization effects for
both SMs and PMs at any rate 1/τ , as compared to continuous
interactions.

(b) Exclusion (Fig. 4). We may exclude the wave packet by
repeated SMs or PMs from a chosen probe region if we start
performing them prior to the wave-packet arrival. Namely,
they can counter the rise in the probability that the wave
packet enters the chosen region. In the SM procedure the
wave packet’s portion inside the region is eliminated by the
collapse to the unmeasured state |0〉, as we monitor “no-click”
events [Fig. 6(a)]. In the PM procedure, the interactions also
deflect the wave packet from the measured region. Yet here

10
−2

10
−11

1.5

2

2.5

τ/τ∞

p τ/p
τ ∞

FIG. 3. (Color online) Detection probability as a function of the
interaction interval τ at t → ∞ for static SM (red, solid), impulsive
SM (green, dash), static PM (blue, dash-dot) and impulsive PM
(black, dotted) interactions. pτ∞ is the detection probability of a
nonmonitored wave packet at t → ∞. The parameters are the same
as in Fig. 2.
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FIG. 4. (Color online) As in Fig. 1, but the wave packet exhibits
exclusion from the probe region due to the PM.

the wave-function portion that does penetrate into the region
is actually localized or locked by further PMs [Figs. 4 and
6(d), arrow]. Hence, SMs are much more effective as an
exclusion scheme than PMs (Fig. 5) for all τ . As in the case of
localization, impulsive interactions have a stronger effect than
static (continuous) ones, for both SMs and PMs.

The effects of a measurement sequence on free-particle
propagation depend on the onset of the sequence, i.e., the
time of the first measurement, and the intermeasurement
interval. Figure 7 shows that whether the particle is excluded or
localized within the probed region crucially depends on these
two parameters. The dependence is nontrivial in the sense
that (i) the timing of the sequence onset determines whether
the outcome will be exclusion or localization; (ii) increasing
of the intermeasurement interval changes localization into
exclusion and further increase changes it back to localization.
The parameter phase space can thus be partitioned into
exclusion and localization parts. The timing onset and its
intricate interplay with the intermonitoring interval essentially
differ from previously considered dynamics, whether by static
detection or by repeated measurements [7–9,11–17].

IV. ANALYSIS

A. Wave-packet localization without decoherence

Coupling a wave packet to a localized probe via its de-
generate (internal) states creates [as per Eq. (3)] translational-
internal entanglement [20,21] between the ψ0(x) and ψ1(x)
parts of the wave packet and the corresponding probe states
|0〉 and |1〉. Thereafter, two “tagged” wave packets are formed.
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FIG. 5. (Color online) Detection probability as a function of
interaction interval τ at t → ∞ (the same as Fig. 3).

FIG. 6. (Color online) Wave-packet probability exhibits exclu-
sion from the probe region due to (a),(b) selective and (c),(d)
premeasurements. Hot (cold) colors indicate high (low) probability.
White horizontal solid lines indicate the probe region and white
vertical dotted lines indicate measurement times. (a),(c) Wave-packet
probability. (b),(d) Wave-packet probability difference from that of
the unperturbed propagation.

Each propagates coherently, but they are incoherent with
each other: only the incoherent sum of ρ+ ≡ ρ00 + ρ11 =
|ψ0(x,t)|2 + |ψ1(x,t)|2 is observed upon tracing out (ignoring)
the internal states, which is the source of the PM effects
(Fig. 2). Although SMs, which keep track of only one of these
wave packets, ρ00 or ρ11, are expected to have stronger effects
on propagation than PMs, this is generally not the case.

Interactions that are effected by transitions between the
degenerate (orthogonal) states |0〉 and |1〉 change neither the
mean energy and momentum of the particle, nor its mean
position. By contrast, the dispersion or spread grows under fre-
quent interactions, which redistribute the position probability
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FIG. 7. (Color online) Detection probability as a function of
intermeasurement interval τ and measurement onset t0. The color
codes for χ = sgn(1 − p/p∞)| ln(p/p∞ − 1)| are for clarification
purposes. Cold (hot) colors denote lower (higher) detection proba-
bilities, meaning exclusion (localization). White lines delineate the
boundaries between localization and exclusion.
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without affecting its mean. Fully coherent (unitary) n-fold TIE
interactions (R = 0) yield correlated PMs through repeated
interferences within each of the wave packets ψ

(n)
0 (x,t) and

ψ
(n)
1 (x,t). At the appropriate rate of interventions, the wave

packet can be strongly confined within the probe region by
interference, while outside that region undetected tails develop
and propagate at a speed determined by the probing rate.

Conversely, in order to deflect a particle or ban it from
a specific region in space, one can exploit the fact that a
detector that does not click provides as much information
as one that does, as indicated by the concept of interaction-
free measurements [23,24]. Hence, by performing localized
frequent SMs or PMs we can reinforce the particle’s absence
from this region, thus effectively repelling it (Fig. 4).

The repeated interaction between states |0〉 or |1〉 (with no
decoherence, i.e., R = 0) is described by the exact integro-
differential equation for either of the wave packets in Eq. (3):

iψ̇0(1)(t,x) = − h̄

2m
�ψ0(1)(t,x)

− gf (t)u(x)
∫ ∞

−∞
dx′G(t,x − x′)ψ1(0)(0,x′)

− g2f (t)
∫ t

0
dt ′f (t ′)

∫ ∞

−∞
dx′u(x)u(x′)

×G(t − t ′,x − x′)ψ0(1)(t
′,x′). (4)

Here G(t − t ′,x − x′) = [ m
2πih̄(t−t ′) ]

D/2 exp[−m(x−x′)2

2ih̄(t−t ′) ] is the
D-dimensional free-particle Green’s function. The dynamics
is symmetric for ψ0(t,x) and ψ1(t,x) except for the initial
wave packet, which is hitherto assumed to be described solely
by ψ0(0,x), whereas ψ1(0,x) = 0.

B. Wave-packet dynamics under decoherence

We next present an extended formalism, where we introduce
dephasing of the detector that can result, for example, from a
coupling to a dephasing bath or noise. The dephasing rate may
be time dependent and is given by R(t). The resulting Lindblad
equation is given by (we shall henceforth take h̄ = 1)

˙̃ρ = −i[H (t,x),ρ̃] − R(t)

8
[IS ⊗ σz,[IS ⊗ σz,ρ̃]], (5)

ρ̃ = ρ00|0〉〈0| + ρ01|0〉〈1| + ρ10|1〉〈0| + ρ11|1〉〈1|, (6)

where ρij is the particle’s density matrix and σz = |1〉〈1| −
|0〉〈0|.

The resulting Bloch equations are thus given by

ρ̇00 = i

2m
[�,ρ00] − i[V (t,x)ρ10 − ρ01V (t,x)], (7)

ρ̇11 = i

2m
[�,ρ11] − i[V (t,x)ρ01 − ρ10V (t,x)], (8)

ρ̇01 = i

2m
[�,ρ01]−i[V (t,x)ρ11 − ρ00V (t,x)] − R(t)ρ01/2,

(9)

ρ̇10 = i

2m
[�,ρ10] − i[V (t,x)ρ00 − ρ11V (t,x)]−R(t)ρ10/2

(10)

with initial conditions ρ01(0) = ρ10(0) = ρ11(0) = 0. Since
we are interested only in the measured particle, we define
ρ+ = ρ11 + ρ00 and ρr = ρ01 + ρ10 and get the two following
coupled equations:

ρ̇+ = i

2m
[�,ρ+] − i[V (t,x),ρr ], (11)

ρ̇r = i

2m
[�,ρr ] − i[V (t,x),ρ+] − R(t)ρr . (12)

To analytically solve these equations, we turn to the following
density matrix representation:

ρ+,r (t,x) =
∫ ∫

dxρ+,r (t,x)|x1〉〈x2|, (13)

where x = {x1,x2}, dx = dx1dx2, and ρ+,r (t,x) is a function.
Formally integrating Eq. (12) results in

ρr (t,x) = −i

∫ t

0
dt ′

∫ ∫
dx′e− ∫ t

t ′ dτR(τ )δV (t ′,x′)

×G(t − t ′,x − x′)ρ+(t ′,x′), (14)

G(t,x − x′) = G(t,x1 − x3)G∗(t,x2 − x4), (15)

δV (t,x′) = V (t,x3) − V (t,x4), (16)

where x′ = {x3,x4} and G(t,x) is the Green’s function of a free
particle. Inserting Eq. (14) into Eq. (11) results in the exact
integro-differential equation

ρ̇+(t,x) = i

2m

(
�x1 − �x2

)
ρ+(t,x)

−
∫ t

0
dt ′

∫∫
dx′e− ∫ t

t ′ dτR(τ )δV (t,x)δV (t ′,x′)

×G(t − t ′,x − x′)ρ+(t ′,x′). (17)

This is the probability-density equation, equivalent to Eq. (4),
with the important addition of the e− ∫ t

t ′ dτR(τ ) term.

C. Analysis results

One can view Eq. (4) [and its proper-dephasing extension
Eq. (17)] as a description of a freely propagating particle [the
first term on the right-hand side (RHS)] interfering with an
initial “source” (the second term on the RHS) and “sources”
emanating from previous system-probe interactions (the third
term on the RHS). Several time scales determine the interplay
between the effects of interactions and the free (unperturbed)
evolution of a wave packet of width �x and mean momentum
p0 = h̄k0: (i) the particle’s group-velocity propagation time
scale tp = m�x/h̄k0; (ii) its (unperturbed) dispersion time
scale tdisp = m�2

x/h̄; (iii) the measurement interval τ ; and
(iv) the dephasing (decoherence) interval duration tr = 1/R.
We investigate two distinct temporal limits in what follows.

In the impulsive limit, the particle propagates freely
between interactions, the instants at which it couples to the
probe. In this limit, T � τ � tp,tdisp, the free-propagating
portion ψ0(1)(x,t) periodically interferes at t = nτ with the
interactions-induced source, which has the following form,
obtained from Eq. (4):

δψ0(1)(x,nτ )|imp
∼= δ(t − nτ )

4/π2

n−1∑
m=1

φ0(1)(t,mτ,x), (18)
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FIG. 8. (Color online) Schematic diagrams of the freely propa-
gating part (solid) and the sources in Eq. (18) (upper diagram) and
Eq. (20) (lower diagram).

φ0(1)(t,t
′,x) = u(x)

∫
dx′u(x′)G(x − x′,t − t ′)ψ0(1)(x′,t ′),

(19)

where we used the impulsive full-transfer condition and set
gf (t) ∼= (π/2)

∑N
n=1 δ(t − nτ ). The repeated “bursts” of the

spatiotemporal nonlocal sources
∑n−1

m=1 φ0(1)(t,mτ,x) can give
rise to drastic interference with the freely propagating part:
each interaction renews the interference, while the previous
ones slowly diminish due to their temporal propagation (Fig. 8,
upper diagram).

By contrast, in the static limit τ � tp,tdisp, the particle
continuously interacts with the probe. The source then has
the following form:

δψ0(1)(x,t = nτ )|stat
∼= (π2/4)(1/τ 2)

∫ t

0
dt ′φ0(1)(t,t

′,x),

(20)

where we used the static full-transfer condition and set gf (t) =
(π/2τ ). Comparing Eqs. (18) and (20) reveals the reason for
the weaker localization effect of the static limit (Fig. 3): the
temporal-source interference is suppressed by the low probing
rate 1/τ (Fig. 5, lower diagram).

The interaction-induced source crucially depends on the
spatial width w of the probe profile u(x) relative to the particle
wave-packet width at the time of interactions, which we denote
by �

(n)
0(1). In the narrow-probe limit w � �

(n)
0(1), we find that

φ0(1)(t,t ′,x) ∼= G(x − xp,t − t ′)ψ0(1)(xp,t ′), where xp is the
probe location. Clearly, such a pointlike source cannot strongly
affect the spatial distribution or propagation of ψ

(n)
0(1)(x,t).

In the broad-probe limit w � �
(n)
0(1), we have φ0(1)(t,t ′,x) ∼=

u(xp)
∫

dx′G(x − x′,t − t ′)ψ0(1)(x′,t ′), i.e., the source does
not reflect the probe’s spatial profile and therefore cannot
induce localization. Hence, to maximize the localization (or
exclusion) we must enhance the bulk of the wave packet
and suppress the tails. Therefore, it is preferable to choose
�

(n)
0(1) � w. In this intermediate case, there is greatly different

interference inside and outside the probe region, so that the
bulk and the tails are differently affected. In this case the
shape of u(x) affects the localization: if u(x) has abrupt edges,
i.e., it is bounded by step functions �(x) at x = ±xp, the
generated source in Eq. (18) develops long-range tails [25,26].
In 1D geometry, δψ

(n)
0(1)(x > xp) ∝ |x − xp|−3/2. Such long

FIG. 9. (Color online) Main panel: PM interactions via photons
(yellow arrows) reflected (lower) or transmitted (upper) by a cavity
where an atom is present or not, respectively. Inset: PM interaction via
stimulated Raman adiabatic passage (STIRAP) transitions between
|−〉 and |+〉 internal states.

tails weaken the localization. A smooth profile of u(x) is
usually preferable.

The effects of decoherence (proper dephasing) at rate R

between the probe’s internal states cannot be incorporated into
Eq. (4). Under decoherence, the integro-differential equation
for ρ+(t,x) = ρ00(t,x) + ρ11(t,x), has two parts, similarly to
Eq. (4), a freely propagating part and a source part. However,
this source is diminished by the factor e−R(t−t ′), which
suppresses the temporal effect of previous interaction-induced
sources. Since these are essential for the interference effects
required for localization, a short decoherence interval tR � τ

results in weaker localization.

V. DISCUSSION

The present analysis may serve to put Schrödinger’s
conjecture [1] on firm ground, i.e., infer the fundamental
limitations on localization by observation: the spatial width
of the wave packet should be broader (but not by much) than
the probe, and the observation should not be “continuous,”
i.e., static, but rather consist of impulsive acts, well separated
within the dispersion or group-velocity time. This crucial
dependence of localization on PM intervals and their timing
is basically different from Zeno-like evolution [7–19]. The
present approach demonstrates localization and exclusion
solely from phase interference and translational-internal en-
tanglement considerations, and not from energy-momentum
transfer as in previous approaches [2–6,27]. Remarkably, the
mere tagging of wave-packet parts by correlating them to
orthogonal discrete states leads to PM effects of same-state
consecutive interferences that may cause either localization or
exclusion of the wave packet. Several feasible experimental
scenarios are given below.

Probing atoms by a cavity. One such experiment consists of
an atom falling through a cavity [28,29] while Raman-resonant
light impinges on the cavity at different onset times and
intensity or rate (Fig. 9). The atom’s exclusion from the
cavity occurs if the PM starts prior to the atom’s entrance.
Localization (suspension) within the cavity occurs if the
PM starts when the atom is inside. If the states are nearly
degenerate, there is no momentum transfer to the atom during
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FIG. 10. (Color online) Experimental scenarios. (a) Microres-
onator (toroid), wherein photon interaction with the falling cold atoms
(spheres) can localize the atoms near the resonator (arrow lengths
indicate speed) and increase their interaction duration. (b) Atomic
fountain setup with a localization or exclusion laser in its descending
path, which induces internal Raman transitions at a rate 1/τ . The
density of the dots indicates speed.

the Raman excitation and the pulse temporal shaping is a
control parameter.

Probing atoms by microresonators. Another feasible ex-
perimental scenario for SMs may involve falling atoms
that interact with light fields inside a microresonator [29],
Fig. 10(a). The detection of the photons exiting the resonator
to a coupled waveguide indicates the presence of an atom near
it. The photons probe the presence of an atomic wave packet
near the resonator, the states |0〉 and |1〉 corresponding to a
transmitted and reflected photon, respectively. In a typical
experimental setup [29], 10 μK atoms with �x = 50 nm
fall from a height of at least 1 mm that leads to velocity
v = 0.1 ms−1. A photon detection interval of τ = 100 ns
then suffices to achieve the atom localization effects described

above. The atom’s exclusion from the cavity occurs if the
SM starts prior to the atom’s entrance, where localization
(suspension) occurs if the SM starts when the atom is inside
the cavity.

Probing an atomic fountain. A feasible experimental
scenario for PMs may involve an atomic fountain, which
is crossed on its way down by a tightly (wavelength-scale)
focused laser beam. The laser radiation consists of two
copropagating beams that cause a Raman transition between
two hyperfine or magnetic ground-state sublevels of the atom,
|0〉|−〉 and |1〉|+〉, Fig. 10(b). For localization of the wave
packet (and, hence, delay in its fall) to take place, the first
Raman interaction should occur when the cloud enters the
laser region, while for deflection the Raman pulses should
occur prior to the cloud’s arrival. By varying the timing and
the interpulse intervals, the effects described above may be
demonstrated. A PM repetition period τ = 100 ns is realistic,
if we consider a stimulated Raman process (STIRAP) [30] with
the peak Rabi frequency ∼2π × 5 MHz (i.e., with the intensity
∼2 mW/cm2).

These setups emphasize the unique character of the pro-
posed localization scheme, by enabling a PM without (or with
negligible) energy-momentum exchange, via Raman transition
between near-degenerate states. We conclude that the predicted
effects may lead to additional probe-induced trapping or
steering procedures for quantum light and matter.
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