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ABSTRACT

We examine radial oscillations of superfluid neutron stars at finite internal temperatures. For

this purpose, we generalize the description of relativistic superfluid hydrodynamics to the case

of superfluid mixtures. We show that in a neutron star, at hydrostatic and beta-equilibrium, the

redshifted temperature gradient is smoothed out by neutron superfluidity (but not by proton

superfluidity). We calculate radial oscillation modes of neutron stars assuming ‘frozen’ nuclear

composition in the pulsating matter. The resulting pulsation frequencies show a strong temper-

ature dependence in the temperature range (0.1−1) Tcn, where Tcn is the critical temperature

of neutron superfluidity. Combining our results with thermal evolution, we obtain a significant

evolution of the pulsation spectrum, associated with highly efficient Cooper pairing neutrino

emission, for 20 yr after superfluidity onset.
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1 I N T RO D U C T I O N

It is commonly accepted that a neutron star becomes superfluid (superconducting) at a certain stage of its thermal evolution (see e.g. Lombardo

& Schulze 2001). It is believed, in particular, that protons pair in the spin singlet (1S0) state, while neutrons pair in the spin triplet (3P2) state

in the neutron star core. A large number of different models of nucleon pairing have been proposed in the literature [references to original

papers can be found in Yakovlev, Levenfish & Shibanov (1999) and in Lombardo & Schulze (2001)]. These models predict very different

density profiles of neutron (n) and proton (p) critical temperatures, Tcn(ρ) and Tcp(ρ), respectively.

In spite of the many theoretical uncertainties in the theory, it is clear that superfluidity strongly affects the neutron star evolution, for

example, its cooling (see e.g. Page et al. 2004; Yakovlev & Pethick 2004), neutron star pulsations (see e.g. Mendell 1991a,b; Lindblom &

Mendell 1994; Lee 1995; Andersson & Comer 2001a; Andersson, Comer & Langlois 2002; Prix, Comer & Andersson 2004), and is probably

related to pulsar glitches (see Alpar, Langer Stephen & Sauls 1984; Andersson, Comer & Prix 2003; Mastrano & Melatos 2005; Peralta et al.

2005).

In this paper, we discuss the effect of superfluidity on neutron star dynamics. The hydrodynamics of a superfluid liquid, composed of

identical particles, were formulated by Khalatnikov (1952) within Tisza’s (1938) two-fluid model, which was elaborated by Landau (1941,

1947). This ‘orthodox’ two-fluid model is based on the assumption of two independent velocity fields: the ‘normal’ velocity of thermal

excitations Vq and the ‘superfluid’ velocity V s, each carrying some part of the mass of liquid, so that the mass current density j can be written

as

j = (ρ − ρs) Vq + ρs V s, (1)

where ρs is known as the superfluid density. The superfluid component moves without friction and does not interact with the normal fluid. The

hydrodynamic equations in this case include the equation of motion for the superfluid component, in addition to the energy and momentum

conservation laws and the continuity equations for mass density and entropy (see e.g. Putterman 1974; Landau & Lifshitz 1987; Khalatnikov

1989).

Obviously, the hydrodynamics described above cannot be applied directly to superfluid neutron stars. The stellar core consists of, at

least, three kinds of particles (neutrons, protons and electrons), and neutrons and protons may be superfluid. The superfluid hydrodynamics

were extended to superfluid mixtures by Arkhipov & Khalatnikov (1957) and Khalatnikov (1973) and later, more accurately, by Andreev &

Bashkin (1975).
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The main element of hydrodynamics and kinetics of superfluid mixtures is the entrainment matrix ρik , which naturally appears in the

theory as a generalization of the superfluid density ρs to the case of superfluid mixtures. If the only baryons in the core are neutrons and

protons, the matrix ρik can be found from the relations (Andreev & Bashkin 1975)

jn = (ρn − ρnn − ρnp) Vq + ρnn Vns + ρnp Vps, (2)

jp = (ρp − ρpp − ρpn) Vq + ρpp Vps + ρpn Vns . (3)

Here, ρi = mi ni , mi is the mass of a free particle and ni is the number density of particle species i with i = n or p; ji and Vis are the mass

current density and the superfluid velocity of particle species i, respectively. Since ‘normal’ protons and neutrons will be locked together

by friction, we assume that their velocities Vq are identical. In other words, we assume that the characteristic time τ np of neutron–proton

collisions is negligible in comparison with the typical hydrodynamic time (e.g. the inverse frequency ω−1 of stellar pulsations). For example,

for non-superfluid matter τ np ∼ (10−18 to 10−19) T−2
9 s (see e.g. Yakovlev & Shalybkov 1991) is much smaller than ω−1 ∼ 10−4 s (see

Section 6), where T9 = T/(109 K) is the temperature in units of 109 K. It follows from the phenomenological analysis of Andreev & Bashkin

(1975) that the matrix ρik is symmetric: ρnp = ρpn. Moreover, at zero temperature the equalities

ρnn + ρnp = ρn, ρpp + ρpn = ρp (4)

must hold (see e.g. Borumand, Joynt & Kluźniak 1996), in order for the system to be invariant under Galilean transformations.

The entrainment matrix ρik for a non-relativistic neutron–proton mixture was calculated by Borumand et al. (1996) at zero temperature

and by Gusakov & Haensel (2005) for any temperature. At T = 0, entrainment coefficients analogous to the matrix ρik have also been

calculated by Comer & Joynt (2003). Even though neutrons (and certainly protons) can be considered non-relativistic with good accuracy up

to the densities ρ � 1015 g cm−3, a fully relativistic calculation of Comer & Joynt (2003) is more self-consistent. Nevertheless, we will use

the results obtained by Gusakov & Haensel (2005) because we deal with dynamic effects associated with finite temperatures in the neutron

star core.

The hydrodynamics of superfluid mixtures presented by Andreev & Bashkin (1975) cannot be applied directly to neutron stars since it

is an essentially non-relativistic theory. We need to generalize the description to take into account the effects of General Relativity which are

important to neutron stars. Landau’s two-fluid model, initially applied to liquid He II, was extended to General Relativity by Carter (1976,

1979, 1985) using a convective variational principle and by Khalatnikov & Lebedev (1982) and Lebedev & Khalatnikov (1982) on the basis

of a potential variational principle. The equivalence of these two approaches in the non-dissipative limit has been demonstrated by Carter &

Khalatnikov (1992a,b). The former approach was extended by Carter and collaborators to analyse superfluid mixtures, in particular, neutron

star matter (see e.g. Carter & Langlois 1998; Langlois, Sedrakian & Carter 1998). The hydrodynamic equations derived from the convective

variational principle impose restrictions on the ‘canonical’ coordinates and momenta. They include various phenomenological coefficients,

which need to be related to parameters that are actually calculated from microscopic theory, for example, the superfluid densities. For this

reason, we will not use Carter’s elegant framework here, even though all available calculations of superfluid oscillations in General Relativity

have so far been made within this approach (see Comer, Langlois & Lin 1999; Andersson & Comer 2001b; Andersson et al. 2002; Yoshida

& Lee 2003). Instead, we will employ a version of superfluid hydrodynamics derived by Son (2001) from microscopic theory (see also Pujol

& Davesne 2003; Zhang 2003). Slightly modified, this approach has the advantage of offering an easy interpretation of the various physical

quantities entering the hydrodynamic equations. Although one can show that our equations are formally equivalent to those of Carter, it is

clear that further work is needed to connect his formulation with the microphysics.

The aim of the present study is to analyse the effect of finite temperatures on pulsations of superfluid neutron stars. Pulsations may be

excited during the star’s formation or during its evolution under the action of external perturbations (e.g. accretion, gravitational perturbations)

or internal instabilities (associated with unstable pulsation modes). A possible signature of these pulsations would be the modulation of the

electromagnetic radiation from the neutron star surface or the detection (in the future) of gravitational radiation generated by non-axisymmetric

fluid motion. It will be shown that the effect of finite temperatures may essentially influence the pulsation spectrum in the temperature range

T ∼ (0.1−1) Tcn, because in this range the entrainment matrix ρik changes considerably and cannot be treated as a constant. This, in turn, affects

the hydrodynamic equations for superfluid mixtures and, hence, the oscillations of the star. To simplify the problem, we restrict ourselves to

the case of radial pulsations and examine a simple one-fluid model of the non-elastic neutron star crust consisting of normal matter. The core

will be assumed to consist of neutrons, protons and electrons (npe-matter), with both types of nucleons being superfluid.

We would like to note that all previous calculations of global pulsations of superfluid neutron stars were made in a zero-temperature

approximation. We believe that this is too idealized for two reasons. First, even an initially cold star can be heated by pulsations because of

the transformation of the pulsation energy into heat (e.g., due to viscous dissipation; see Gusakov, Yakovlev & Gnedin 2005). Secondly, the

critical temperatures of nucleons depend on the density. This is a bell-shaped curve, which shows that the critical temperature first rises with

the density and then decreases after reaching a maximum. Thus, for any given temperature T there is usually a region in the star with T ∼ Tcn.

This is an important point that is worth emphasizing.

This paper is organized as follows. In Section 2, we extend Son’s equations to superfluid mixtures and rewrite them using more appropriate

variables. In Section 3, we consider equilibrium configurations of neutron stars. In Section 4, we discuss equations for radial pulsations taking

into account a finite temperature in the core. In Section 5, we analyse short wavelength solutions to these equations, that is, sound waves in

the superfluid neutron star. In Section 6, we examine the numerical solutions to the pulsation equations and the eigenfrequency spectrum as a

function of temperature. In addition, we study the evolution of the oscillation spectrum during the star cooling.
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2 R E L AT I V I S T I C E QUAT I O N S F O R N O N - D I S S I PAT I V E H Y D RO DY NA M I C S

O F S U P E R F L U I D M I X T U R E S

In this section, the relativistic equations suggested by Son (2001) for a one-component superfluid liquid at finite temperature will be extended

to multicomponent mixtures, and rewritten in a form which is better suited for our application. For simplicity, let us consider a mixture of

three kinds of particles, assuming that two kinds are superfluid and one kind is normal. In a neutron star, for example, neutrons and/or protons

may be superfluid, while electrons (with species index e) are normal.

It is well known that, in superfluid matter, several independent motions with different velocities may coexist without dissipation (see

e.g. Khalatnikov 1989). When a mixture is composed of two superfluids and one normal fluid (in principle, there may be many normal species),

the system is fully defined by three four-velocities uμ, w
μ

(n) and w
μ

(p). The latter two arise from additional degrees of freedom associated

with superfluidity. The velocity uμ refers to electrons as well as ‘normal’ neutrons and protons (Bogoliubov excitations of neutrons and

protons).

If there are several independent motions, the question arises how to define the comoving frame in order to determine the basic thermody-

namic quantities: the energy density ε and the particle number densities nl (l = n, p, e). Without any loss of generality, we can assume that the

reference frame in which the velocity uμ equals to uμ = (1, 0, 0, 0) is comoving. This assumption imposes certain restrictions on the particle

four-current jμ(l) and the energy-momentum tensor Tμν

uμ jμ

(l) = −nl , uμuν T μν = ε. (5)

The full set of hydrodynamic equations for superfluid mixtures which satisfy these conditions is

dε = T dS + μi dni + μe dne + Yik

2
d
[
wα

(i)w(k)α

]
, (6)

jμ

(l); μ = 0, jμ

(i) = ni u
μ + Yikw

μ

(k), jμ

(e) = neu
μ, (7)

T μν
; μ = 0, T μν = (P + ε) uμuν + Pgμν + Yik

[
w

μ

(i)w
ν
(k) + μi w

μ

(k)u
ν + μk wν

(i)u
μ
]
, (8)

uμ w
μ

(i) = 0. (9)

Here and below, the subscripts i and k refer to nucleons: i, k = n, p. Unless otherwise stated, a summation is assumed over repeated space–time

indices (Greek letters) μ, ν, α and nucleon species indices (Latin letters) i, k. Equation (6) represents the second law of thermodynamics for

superfluid mixtures, while equations (7) and (8) describe particle and energy-momentum conservation laws, respectively. Finally, equation (9)

is the additional equation for a superfluid component; it is a necessary condition for equation (5) to hold.

In equations (6)–(9), gμν is the metric tensor, S is the entropy per unit volume, μl is the relativistic chemical potential of particle species

l = n, p, e and P is the pressure which is defined in the same way as for ordinary (non-superfluid) matter:

P = −ε + μi ni + μene + T S. (10)

Finally, Yik = Yki is a 2 × 2 symmetric matrix, whose elements are the functions of temperature T and the number densities of neutrons and

protons. Using equations (6) and (10), we can write the Gibbs–Duhem relation for a superfluid mixture:

dP = S dT + ni dμi + ne dμe − Yik

2
d
[
wα

(i)w(k)α

]
. (11)

The requirement of constant total entropy of the mixture imposes an additional constraint on the four-velocities w
μ

(i). Namely, we obtain

the correct hydrodynamic equations for a perfect superfluid mixture if the four-velocities w
μ

(i) have the form

w
μ

(i) = ∂φi

∂xμ

− qi Aμ − μi u
μ, (12)

where φi is an arbitrary scalar function, Aμ is the four-potential of the electromagnetic field and qi is the electric charge of nucleon species i.
It is easy to demonstrate that with the quantity w

μ

(i) given by equation (12), the set of equations (6)–(9) leads to entropy conservation:

(Suμ);μ = 0. (13)

Obviously, the entropy is carried with the same velocity uμ as the normal fluid, that is, the entropy of the superfluid fraction in the mixture is

zero.

Let us now specify the physical meaning of the quantities φi , uμ and Yik . For this aim, we will examine how they are related in the

non-relativistic limit to the superfluid velocity Vis, the normal velocity Vq, the wave function phase of the Cooper-pair condensate 
i and the

entrainment matrix ρik . [These quantities appear in the non-relativistic hydrodynamics of superfluid mixtures discussed in detail by Andreev

& Bashkin (1975).] One can demonstrate that the following relations hold:

V is = 1

mi
(∇φi − qi A) , ∇φi = h̄

2
∇
i , (14)

Vq = u, Yik = Yki = ρik

mi mk
. (15)

Here and below, the speed of light is assumed to be c = 1. For convenience, a brief glossary of symbols is presented in Table 1.
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Table 1. A brief glossary of symbols describing superfluid hydrodynamics in both the non-

relativistic and the relativistic domains. Subscripts i and k refer to nucleons: i, k = n, p.

Tc Critical temperature

ρ Density

ρs Superfluid density

Vq Velocity of thermal excitations (Bogoliubov quasi-particles)

V s Superfluid velocity

j Mass current density

Tci Critical temperature of particles i
ρi Density of particles i
ρik Entrainment matrix


i Wave function phase of the Cooper-pair condensate of particles i
Vis Superfluid velocity of particles i
ji Mass current density of particles i

ni Number density of particles i
Yik Relativistic entrainment matrix, in the non-relativistic limit Yik = ρik/mi mk

uμ Four-velocity of electrons and neutron and proton thermal excitations

φi Scalar potential related to 
i by ∇φi = h̄∇
i /2

w
μ

(i) Four-velocity which reduces to w(i) = mi (Vis −Vq) in the non-relativistic limit

jμ(i) Four-current of particles i
Aμ Four-potential of the electromagnetic field

qi Electric charge of particles i

Let us discuss the properties of the matrix Yik in more detail. In the absence of superfluidity, when the temperature T is higher than the

critical temperatures of neutrons Tcn and protons Tcp, we have Yik = 0. Then, the expressions for the four-currents (7) and for the energy-

momentum tensor (8) take the standard form and describe a normal perfect fluid (see e.g. Landau & Lifshitz 1987). If, for example, the

inequality Tcn < T < Tcp holds, i.e. if we have only superfluid protons, the only non-vanishing matrix element is Ypp. In contrast, at T = 0

all neutrons and protons form Cooper pairs. In other words, there are no nucleons moving with the normal fluid component at velocity uμ. A

four-current jμ(i), therefore, is independent of uμ, and we have the condition (see equations 7 and 12)

μk Yik(T = 0) = ni . (16)

Unfortunately, to our best knowledge, results for the matrix Yik at finite temperatures have not yet been presented in the literature. Nevertheless,

Gusakov & Haensel (2005) calculated the entrainment matrix ρik(T). As we have already mentioned, the matrices Yik and ρik are interrelated

by equation (15) in the non-relativistic limit. Thus, we will use an approximate expression for the matrix Yik , which satisfies equation (15) in

the non-relativistic limit and at the same time meets condition (16):

Ynp = Ypn = ρnp

mnmp

, Ynn = ρnn + ρnp − mnμpYnp

mnμn

, Ypp = ρpp + ρpn − mpμnYpn

mpμp

. (17)

The condition (16) can be derived from these formulae if we take into account that equations (4) must hold at T = 0.

3 E QU I L I B R I U M C O N F I G U R AT I O N S O F S U P E R F L U I D N E U T RO N S TA R S

Let us now use the above formulae to describe neutron stars. For simplicity, consider a non-rotating star. We will often refer to the results

of the pioneering work of Chandrasekhar (1964) devoted to radial pulsations of non-superfluid stars in General Relativity. The metric for a

spherically symmetric star, which experiences radial pulsations, can be written as (see e.g. Chandrasekhar 1964)

ds2 = −eνdt2 + r 2d�2 + eλ dr 2, (18)

where r and t are the radial and time coordinates, respectively, and d� is a solid angle element in a spherical frame with the origin at the stellar

centre. The metric functions ν and λ depend only on r and t. The quantities referring to a star in hydrostatic equilibrium will be marked with

the subscript ‘0’; in particular, the metric coefficients of an unperturbed star will be denoted as ν0(r) and λ0(r).

In the equilibrium neutron star, the measurable physical quantities (e.g. the number densities) must be time independent. Thus, the

continuity equation for electrons (7) and the expression for the four-velocity of the normal component

uμ = dxμ

ds
(19)

yield (for a spherically symmetric star!)

u0 = e−ν0/2, u1 = u2 = u3 = 0. (20)

Next, the continuity equations for neutrons and protons (7) give

w1
(i) = w2

(i) = w3
(i) = 0. (21)
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Finally, in view of equation (20), one obtains from equation (9)

w0
(i) = 0. (22)

It is clear from equations (20)–(22) that the energy-momentum tensor (8) of an equilibrium superfluid star is the same as that of a non-superfluid

one. Therefore, the formulae that describe hydrostatic equilibrium of non-superfluid stars can be applied to our case as well. In particular, the

following formula is valid (see e.g. equation 21 of Chandrasekhar 1964)

dP0

dr
= −1

2
(P0 + ε0)

dν0

dr
. (23)

New information can be obtained from equation (22). When written for neutrons, it gives, together with equation (12),

∂φn0

∂t
= −μn0 eν0/2. (24)

On the other hand, from equations (12), (20) and (21) one finds

∂φn0

∂r
= 0. (25)

It follows from equations (24) and (25) that

d

dr

(
μn0 eν0/2

) = 0. (26)

It should be emphasized that the application of conditions (21) and (22) to protons will not yield a constraint similar to equation (26) for μp0,

because equation (12) for the protons depends, additionally, on the four-potential of the electromagnetic field. We are not interested here in

the relation between Aμ and μp0 that can be derived from equations (21) and (22).

Assuming that a star at hydrostatic equilibrium meets, in addition, the quasi-neutrality condition, ne0 = np0, one gets from equations (10)

and (11)

P0 + ε0 = μn0nb0 + δμ0ne0 + T0 S0, (27)

dP0

dr
= nb0

dμn0

dr
+ ne0

dδμ0

dr
+ S0

dT0

dr
, (28)

where nb0 ≡ nn0 + np0 is the baryon number density and δμ0 ≡ μp0 + μe0 − μn0. Substituting the expression for dν0/dr from equation (26)

into equation (23) and using equation (27), one obtains

dP0

dr
= nb0

dμn0

dr
− 1

2
(δμ0ne0 + T0 S0)

dν0

dr
. (29)

A comparison of equations (28) and (29) leads to the equality

ne0

d

dr

(
δμ0eν0/2

) + S0

d

dr

(
T0eν0/2

) = 0. (30)

Note that to derive this formula we have considered a star in hydrostatic equilibrium (but not necessarily in thermal, diffusive, or beta-

equilibrium). If we assume, in addition, that in some region of the star (i) the thermal equilibrium condition is fulfilled

d

dr

(
T0eν0/2

) = 0, (31)

and (ii) neutrons are superfluid, then equation (30) tells us that this region must be in diffusive equilibrium. (The opposite statement is also

correct: diffusive equilibrium means thermal equilibrium for the problem in question.) Indeed, in this case we have from equations (26)

and (30)

d

dr

(
μn0 eν0/2

) = 0,
d

dr

[(
μp0 + μe0

)
eν0/2

] = 0. (32)

These conditions describe the diffusive equilibrium of npe-matter and are quite standard (see e.g. Landau & Lifshitz 1980). The second

condition of equation (32) is nothing but a sum of the diffusive equilibrium conditions written for protons and electrons. Each of them

includes a self-consistent electrostatic potential to ensure quasi-neutrality. [The most recent discussion of diffusive equilibrium as applied to

npe-matter of neutron stars is given by Reisenegger et al. (2006).] We are not interested here in determining this potential: it cancels out after

the summation.

In this paper, we assume that an unperturbed star is at hydrostatic and beta-equilibrium (i.e. δμ0 = 0). In this special case, one immediately

obtains from equation (30) the thermal equilibrium condition (31). Thus, we arrive at the conclusion that a (redshifted) temperature gradient

cannot exist in any region of a hydrostatically and beta-equilibrated neutron star which contains superfluid neutrons. This situation is identical

to that for pure He II (see e.g. Khalatnikov 1989). Note that proton superfluidity imposes no such restrictions on the temperature gradient.

4 R A D I A L P U L S AT I O N S O F S U P E R F L U I D N E U T RO N S TA R S

In this section, we consider a star with small radial perturbations. Accordingly, in all the equations we will neglect the quantities which are

second order and higher in the pulsation amplitude and retain the linear terms. In addition, we will use the hypothesis of a frozen nuclear

composition, neglecting the effect of beta-processes on the chemical composition of the core during the pulsations. This assumption is justified

if the radial pulsation frequencies are ω � 1/τ , where τ is the characteristic time of beta-equilibration. Recall that for non-superfluid matter

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 372, 1776–1790



Temperature-dependent pulsations of neutron stars 1781

and under the condition |μp + μe − μn| � T it can be estimated that τ ∼ T−6
9 months if beta-relaxation proceeds via the modified Urca

process (see e.g. Yakovlev et al. 2001); for superfluid matter beta-relaxation rates were calculated by Haensel, Levenfish & Yakovlev (2000,

2001), and Villain & Haensel (2005). The final assumption we make is the validity of the quasi-neutrality condition in a pulsating star,

ne = np, (33)

which should hold since ω is much smaller than the plasma frequency of electrons, ωpe. In the following, the quantities containing no ‘0’

subscript refer to a perturbed star. If A is a physical quantity in a perturbed star and A0 the same quantity in the unperturbed star, then we

denote A − A0 ≡ δA.

The quasi-neutrality condition leads to equal four-currents of electrons and protons:

jμ

(e) = jμ

(p). (34)

By substituting the expressions for the currents from equation (7), one gets

Ypkw
μ

(k) = 0. (35)

We will also need the continuity equation for baryons, which can be found by summing the continuity equations (7) for protons and neutrons.

With equation (35), we obtain[
nbuμ + Ynkw

μ

(k)

]
;μ

= 0. (36)

4.1 Basic equations

Using the metric (18), one can write the linearized four-velocity uμ as

u0 = e−ν/2, u1 = e−ν0/2 v, u2 = u3 = 0, (37)

where v ≡ dr/dt is the velocity of the normal component of the mixture in the radial direction. (Note a misprint in formula 25 of Chandrasekhar

(1964): the expressions for u0 and u0 must have ν instead of ν0.) Using equation (37), one can find directly from equation (9)

w0
(i) = 0. (38)

In addition, because particles move only in the radial direction, we have

w2
(i) = w3

(i) = 0. (39)

Therefore, the only non-zero components of the energy-momentum tensor are

T 0
0 = −ε, T 1

1 = T 2
2 = T 3

3 = P, (40)

T 1
0 = −(P0 + ε0) v + �T 1

0 , (41)

T 0
1 = eλ0−ν0 (P0 + ε0) v − eλ0−ν0 �T 1

0 . (42)

These formulae differ from those for the normal liquid only by the term �T 1
0 , which is (see equation 8)

�T 1
0 = μk0Yik u0 w1

(i) = −μn0Yni w1
(i) eν0/2. (43)

When writing the last equality, we have used equation (35) and the expression u0 = − eν/2. (Equation 9 yields w1
(i) ∼ v, so that ν can be

substituted for ν0 in equation 43.) Note an important consequence of equation (43): if neutrons in a star are normal (Yni = 0), its pulsations

will be indiscernible from those of a common non-superfluid star, no matter whether the protons are superfluid or not.

Let us analyse equation (38) for neutrons. With equation (12), it can be rewritten as

−e−ν ∂φn

∂t
− μn e−ν/2 = 0. (44)

By substituting ν = ν0 + δν(r, t), φn = φn0 + δφn(r, t), μn = μn0 + δμn(r, t) into equation (44) and using equation (24), we get

∂δφn

∂t
= −

(
δμn + 1

2
μn0 δν

)
eν0/2. (45)

On the other hand, in the linear approximation and in view of equation (25), we have

w1
(n) = e−λ ∂φn

∂r
− μnu1 = e−λ0

∂δφn

∂r
− μn0 e−ν0/2 v. (46)

By combining equations (45) and (46), we find

∂

∂t

[
eλ0 w1

(n) + μn0 eλ0−ν0/2 v
] = − ∂

∂r

(
δμn eν0/2 + 1

2
μn0 eν0/2 δν

)
. (47)

Let us introduce new variables zi and ξ according to (there is no summation over i here!)

w1
(i) = μi0 e−ν0/2 ∂zi

∂t
, (48)
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v = ∂ξ

∂t
. (49)

The time integration of equation (35) gives the relation between the variables zn and zp

μk0 Ypk zk = 0. (50)

Assuming now that all perturbations vary with time as exp (i ωt), we rewrite equation (47) in the form

μn0 eλ0−ν0/2 ω2 (zn + ξ ) = ∂

∂r

(
δμn eν0/2 + 1

2
μn0 eν0/2 δν

)
. (51)

Thus, we have derived one of the equations that describe pulsations of a relativistic superfluid star. There is no analogue of this equation for

non-superfluid stars. In order to determine the unknown eigenfunctions zi and ξ and the frequency spectrum, it is necessary to find an additional

pulsation equation. In principle, this can be done by writing Einstein’s equations with the energy-momentum tensor given by equations (40)–

(42). However, the situation can be considerably simplified because this energy-momentum tensor does not essentially differ from that used

by Chandrasekhar (1964) in the analysis of pulsations of non-superfluid stars (see his equations 27 and 28). By adjusting his derivation to our

case, we find the following expressions for the quantities δλ, δε and ∂δν/∂r:

δλ = T̃ 1
0

1

P0 + ε0

d

dr
(λ0 + ν0) , (52)

δε = 1

r 2

∂

∂r

(
r 2 T̃ 1

0

)
, (53)

∂δν

∂r
= 1

P0 + ε0

[
δP +

(
dν0

dr
+ 1

r

)
T̃ 1

0

]
d

dr
(λ0 + ν0) . (54)

Here, the quantity T̃ 1
0 is defined by

T 1
0 = ∂T̃ 1

0

∂t
(55)

and is found to be (see equations 41, 43, 48 and 49)

T̃ 1
0 = − (P0 + ε0) ξ − μn0μi0Yni zi . (56)

Equations (52)–(54) are generalizations of the expressions (36), (37) and (41) from the paper by Chandrasekhar (1964). The pulsation

equation (43) of his work can be rewritten in our case as

−eλ0−ν0 ω2 T̃ 1
0 = ∂δP

∂r
+ δP

d

dr

(
1

2
λ0 + ν0

)
+ 1

2
δε

dν0

dr
+ 1

2
T̃ 1

0

(
dν0

dr
+ 1

r

)
d

dr
(λ0 + ν0) . (57)

Equations (51) and (57) fully describe radial pulsations of superfluid neutron stars. What remains to be done is to find the unknown functions

δP and δμn entering these equations.

4.2 The functions δP and δμn

With the quasi-neutrality condition, which is valid in a pulsating neutron star, any thermodynamic function (for a stellar core composed of

neutrons, protons and electrons) can be represented as a function of three thermodynamic variables, say, nb, ne and S. (The quadratically

small dependence of the thermodynamic parameters on wα
(i) w(k)α is neglected.) Since the pulsations are assumed to be small, the pressure

P(nb, ne, S) = P0 + δP and the neutron chemical potential μn(nb, ne, S) = μn0 + δμn can be expanded in the vicinity of their equilibrium

values,

δP = ∂P(nb0, ne0, S0)

∂nb0

δnb + ∂P(nb0, ne0, S0)

∂ne0

δne + ∂P(nb0, ne0, S0)

∂S0

δS, (58)

δμn = ∂μn(nb0, ne0, S0)

∂nb0

δnb + ∂μn(nb0, ne0, S0)

∂ne0

δne + ∂μn(nb0, ne0, S0)

∂S0

δS. (59)

Let us find δnb, δne and δS from the continuity equations for baryons (36), electrons (7), and entropy (13), respectively. Writing explicitly

the covariant derivative in the metric of equation (18) and keeping only terms linear in the perturbations, one can rewrite the continuity

equation for baryons (36) as

e−ν0/2
∂δnb

∂t
+ 1

r 2

∂

∂r

(
r 2 nb0 e−ν0/2 v

) + 1

2
nb0 e−ν0/2 ∂δλ

∂t
+ 1

2
nb0 e−ν0/2 v

d

dr
(λ0 + ν0)

+ 1

r 2

∂

∂r

[
r 2 Ynkw

1
(k)

] + 1

2
Ynkw

1
(k)

d

dr
(λ0 + ν0) = 0. (60)

The time integration of this equation using equations (48), (49), (52), and the equality (27) with δμ0 = 0 will yield

δnb = − eν0/2

r 2

∂

∂r

(
r 2 nb0 ξ e−ν0/2

) − eν0/2

r 2

∂

∂r

(
r 2 μk0Ynk zk e−ν0/2

)
. (61)
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The expressions for δne and δS can be derived in a similar way:

δne = − eν0/2

r 2

∂

∂r

(
r 2 ne0 ξ e−ν0/2

)
, (62)

δS = − eν0/2

r 2

∂

∂r

(
r 2 S0 ξ e−ν0/2

)
. (63)

Equations (61)–(63) are generalizations of Chandrasekhar’s (1964) equation (50). Note that equation (61) can be rewritten in a more compact

form. By multiplying its left- and right-hand sides by μn0 and using equations (26), (27), (31), (53) and (56), we find

μn0 δnb = δε − T0 δS. (64)

This is just the second law of thermodynamics (6) with the quasi-neutrality (ne0 = np0) and beta-equilibrium (δμ0 = 0) conditions valid for

an equilibrium star taken into account.

The substitution of equations (61)–(63) into (58) and (59) gives, after standard transformations,

δP = −dP0

dr
ξ − γ1 P0 
 − β1 P0 �, (65)

δμn = −dμn0

dr
ξ − γ2 μn0 
 − β2 μn0 �, (66)

with


 = eν0/2

r 2

∂

∂r

(
r 2 ξ e−ν0/2

)
, � = eν0/2

nb0r 2

∂

∂r

(
r 2 μk0Ynk zk e−ν0/2

)
, (67)

γ1 = nb0

P0

∂P(nb0, xe0, xs0)

∂nb0

, γ2 = nb0

μn0

∂μn(nb0, xe0, xs0)

∂nb0

, (68)

β1 = nb0

P0

∂P(nb0, ne0, S0)

∂nb0

, β2 = nb0

μn0

∂μn(nb0, ne0, S0)

∂nb0

, (69)

where xe0 ≡ ne0/nb0 and xs0 ≡ S0/nb0. It should be noted that the partial derivatives in equation (68) are taken at constant values of xe0 and

xs0. The new parameter γ 1 is just an adiabatic index of matter that describes pulsations of normal (non-superfluid) stars. When calculating the

partial derivatives of thermodynamic parameters, one can neglect the temperature effects and put S0 = 0 and xs0 = 0 everywhere.

Thus, we have found the functions δμn and δP under the assumption of frozen nuclear composition. In this work, all actual calculations

of the eigenfrequency spectrum are based on this assumption. Still, we would like to make a comment on how one could find these functions in

the opposite case when ω � 1/τ (when the core is in beta-equilibrium during pulsations). The pressure P and the neutron chemical potential

μn are then functions of nb and S only, whereas the electron number density ne(nb, S) is derived from the beta-equilibrium condition. Using

equations (61) and (63), one can write

δP = ∂P(nb0, S0)

∂nb0

δnb + ∂P(nb0, S0)

∂S0

δS, (70)

δμn = ∂μn(nb0, S0)

∂nb0

δnb + ∂μn(nb0, S0)

∂S0

δS. (71)

If we now neglect the entropy dependence of thermodynamic parameters (as is justified for the frozen nuclear composition), we will arrive at a

qualitatively wrong result, where one of the branches of the pulsation spectrum is missing. Indeed, the pulsation equation (57) will then depend

only on the eigenfunction T̃ 1
0 (see equations 53, 64 and 70). Therefore, the pulsation eigenfrequencies can be found just from equation (57)

alone, independently of equation (51). (It will be shown in the next section that the boundary conditions for the pulsation equations 51 and

57 can also be formulated only in terms of the eigenfunction T̃ 1
0 .) The obtained branch of the pulsation spectrum practically coincides with

the spectrum of a non-superfluid star, while the specifically ‘superfluid’ pulsation modes will be lost. To the best of our knowledge, such

‘temperature’ pulsation modes have not been discussed previously in the neutron-star literature.

4.3 Boundary conditions

Pulsation equations (51) and (57) together with equations (50), (53), (54), (56), (65) and (66) enable one to determine the unknown functions

zn, zp, ξ and the frequency spectrum, provided that the boundary conditions are known.

To formulate the boundary conditions, we should specify the model problem to be solved. We assume neutrons to be superfluid inside a

sphere of circumferential radius R0 with R0 � Rcc, where Rcc is the radial coordinate of the crust–core interface. Outside the sphere, neutrons

are assumed to be normal. The parameters related to the outer (r > R0) region of the star will be marked with the letter ‘c’. On the stellar

surface, we have a standard boundary condition:

Pc[R + ξc(R)] = 0, (72)
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which can be rewritten as(
δPc + dP0

dr
ξc

)
r=R

= 0. (73)

Here, R is the circumferential radius of an unperturbed star and ξ c is the Lagrangian displacement of matter in the outer region. In equation (73),

we defined Pc(R) ≡ P0(R) + δPc. All derivatives with respect to r at the stellar centre must be finite, which means that the following limits

are finite

lim
r→0

ξ/r < ∞, lim
r→0

zi/r < ∞. (74)

The other boundary conditions should be formulated at the superfluid–normal interface. First, the electron current at the interface must be

continuous. It follows then from equation (62) that the Lagrangian displacement of ‘normal’ particles is continuous, which leads to

ξ (R0) = ξc(R0). (75)

In addition, the energy and momentum currents through the interface must also be continuous. These conditions lead to the following equalities

(see equations 40–42 together with the expressions 49 and 56):

P[R0 + ξ (R0)] = Pc[R0 + ξc(R0)], (76)

[(P0 + ε0) ξ + μn0μi0Yni zi ]r=R0
= [(P0 + ε0) ξc]r=R0

. (77)

With equation (75), the equalities (76) and (77) can be written as

(δP − δPc)r=R0
= 0, (78)

μi0Yni zi |r=R0
= 0. (79)

Equations (73), (74), (75), (78) and (79) cover all boundary conditions that are to be imposed on equations (51) and (57) in order to find the

frequency spectrum for the present neutron star model.

5 S O U N D WAV E S I N S U P E R F L U I D M I X T U R E S

Before discussing the numerical solutions to the pulsation equations (51) and (57), let us analyse sound waves in superfluid neutron stars. One

would expect the numerical solutions to resemble a ‘plane’ sound wave when the number of nodes N of the eigenfunctions ξ and zi is large,

so that the wave number is large, k ∼ N/R � 1/R. Taking into account the estimate ω/k ∼ u, where u is the sound velocity, we see that the

eigenfrequencies of such ‘sound-like’ modes must obey the inequality

ω � u/R. (80)

We now simplify equations (51) and (57) to the case of short wavelength oscillations. Since the characteristic scale R of variation of the

equilibrium parameters (marked with the subscript ‘0’) is much larger than the characteristic scale 1/k of the variation of the eigenfunctions,

we can neglect the spatial derivatives of the ‘equilibrium’ quantities and rewrite the pulsation equations as

μn0 eλ0−ν0 ω2 (zn + ξ ) = ∂δμn

∂r
, (81)

−eλ0−ν0 ω2 T̃ 1
0 = ∂δP

∂r
. (82)

Under the assumption of a frozen nuclear composition, the functions δP and δμn are defined by equations (65) and (66), as before, but now

we have


 = ∂ξ

∂r
, � = μk0Ynk

nb0

∂zk

∂r
. (83)

The functions ξ and zi can be presented in the form

ξ = ξ0(r ) ei(kr−ωt), zi = zi0(r ) ei(kr−ωt). (84)

The derivatives of the slowly varying functions ξ 0(r) and zi0(r) can be ignored. By substituting the expressions (84) into equations (81) and

(82), one can find from the compatibility condition of the resulting set of equations a biquadratic equation for the local sound velocity u =
e(λ0−ν0)/2 ω/k :

y u4 +
[

P0

μn0nb0

(β1 − γ1 − γ1 y) + γ2 − β2

]
u2 + P0

μn0nb0

(β2γ1 − β1γ2) = 0. (85)

This equation has two non-trivial solutions for two possible sound velocities [see Andersson & Comer (2001a) for a similar discussion]. The

dimensionless parameter y is defined as

y = Ypp nb0

μn0

(
YnnYpp − YnpYpn

) − 1. (86)
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Figure 1. Sound velocities u1,2 (in units of c) as a function of temperature T for two models of the nucleon–nucleon potential: BJ v6 (solid lines) and Reid v6

(dashed lines). The u1(T) and u2(T) curves are marked as ‘normal’ and ‘superfluid’, respectively. The neutron and proton critical temperatures are indicated by

vertical dot–dashed lines. The baryon number density is nb0 = 3n0 = 0.48 fm−3.

At T → Tcn, we have Ynn, Ynp, Ypn → 0, hence, y ≈ nb0/(μn0 Ynn) → ∞. In this case, the roots of equation (85) are approximately given by

u1 ≈
√

P0γ1

μn0nb0

, u2 ≈
√

μn0 Ynn

nb0 γ1

(β2γ1 − β1γ2). (87)

The first root describes the velocity of perturbations similar to the familiar sound propagating through a medium with non-superfluid neutrons.

The second root indicates the existence of an additional pulsation mode specific to superfluid matter. For the second mode to be stable, the

condition β2γ 1 � β1γ 2 must be fulfilled. The second pulsation mode vanishes at T > Tcn (Ynn = Ynp = Ypn = 0), while the velocity of the

first mode is still defined by equation (87). In that case, the first mode is just the usual sound.

The results of a numerical solution of equation (85) for matter with baryon number density nb0 = 3n0 are presented in Fig. 1. (n0 =
0.16 fm−3 is the baryon number density in atomic nuclei.) In determining these data, we used critical temperatures for neutrons and protons

equal to Tcn = 6 × 108 and Tcp = 5 × 109 K, respectively, and employed the equation of state of Heiselberg & Hjorth-Jensen (1999) to

calculate the thermodynamic parameters and their derivatives. The velocities u1,2 (in units of c) are plotted as a function of temperature T
for two models of nucleon–nucleon potential: BJ v6 (solid lines) and Reid v6 (dashed lines). Note that the choice of the model potential

determines the entrainment matrix ρik and, hence, the matrix Yik [see the paper by Gusakov & Haensel (2005); the microphysics is described

by Jackson et al. (1982)]. The u2(T) curves are marked ‘superfluid’ and the u1(T) curves are marked ‘normal’. One can see that the sound

velocity u1(T) is practically insensitive to the model potential chosen: the solid and dashed lines in the figure coincide.

The analysis of Fig. 1 shows that the results of a numerical solution of equation (85) are generally consistent with the above conclusions.

We would like to stress that the sound velocity u1 does not significantly differ from that calculated from equation (87) even at T � Tcn. It is

also important that the velocity of the second mode u2 becomes comparable to the velocity u1 at low temperatures, in contrast to the case of

pure He II. At T � 0.5Tcn, the velocity u2 rapidly approaches its asymptotic value u2(T = 0).

Let us briefly discuss sound in beta-equilibrated matter. It is easy to verify that all the formulae derived in this section remain valid,

provided that the thermodynamic parameters and their derivatives are considered as functions of only the baryon number density nb0 and

entropy S0. (We recall that the electron number density ne0 is not an independent variable in this case; it is determined by the beta-equilibrium

condition.) In particular, the adiabatic index is now: γ 1 = (nb0/P0) ∂P(nb0, xs0)/∂nb0.

Using nb0 and S0 as independent variables instead of nb0 and xs0 in the functions γ 1 and γ 2 and expressing the derivatives

∂μn(nb0, S0)/∂nb0 and ∂μn(nb0, S0)/∂S0 in equation (85) with the help of the Gibbs–Duhem relation, dP = S0 dT + nb0 dμn, we get

y u4 − 1

μn0nb0

(
S2

0

∂T

∂S0

+ ynb0

∂P

∂nb0

+ S0 y
∂P

∂S0

)
u2 + S2

0

μ2
n0nb0

(
∂P

∂nb0

∂T

∂S0

− ∂P

∂S0

∂T

∂nb0

)
= 0. (88)

An approximate solution to this equation can be easily found if we keep in mind that we always have u1 � u2:

u1 ≈
√

1

μn0

∂P

∂nb0

, u2 ≈
√

S2
0

μn0nb0 y

∂T

∂S0

. (89)
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Figure 2. The velocity of the second sound u2 (in units of c) in beta-equilibrated matter as a function of temperature T for the same models of the nucleon–nucleon

potential, neutron and proton superfluidity and baryon number density nb0 as in Fig. 1.

Again, the first root describes the velocity of sound in non-superfluid matter (the first sound) and the second root describes the velocity of the

so-called second sound. It should be noted that the first sound cannot, in fact, propagate with the velocity u1 defined by equation (89) because

this velocity is so high that no beta-equilibrium can exist in such a wave. If we use equation (89) to describe the sound in a one-component

liquid, the expression for u2 in the non-relativistic limit will coincide with that for the second sound in liquid He II (see e.g. Khalatnikov

1989).

The function u2(T) for matter with baryon number density nb0 = 3 n0 is shown in Fig. 2. We used the same models of superfluidity and

the nucleon–nucleon potentials and the same equation of state as in the discussion of sound in matter with frozen nuclear composition. The

speed of sound was calculated numerically. While doing the calculations, we used the formula C = T ∂S/∂T , where C is the heat capacity of

superfluid matter. [An expression for C can be found, for example, in Yakovlev et al. (1999).]

It follows from equation (89) and Fig. 2 that the velocity u2 goes to zero at both T = Tcn and T = 0. However, beta-processes are so

suppressed at low temperatures that the second sound will not be able to propagate, because matter cannot approach beta-equilibrium on a

time-scale comparable with the pulsation period. Therefore, the second sound can only exist in a range of temperatures near T � Tcn.

To conclude, three types of sound waves can exist in superfluid npe-matter. The speed of two of them is so high that they propagate in

matter with a frozen nuclear composition, while the waves of the third type can exist only in beta-equilibrated matter at temperatures in the

vicinity of the neutron critical temperature Tcn.

6 R E S U LT S F O R R A D I A L P U L S AT I O N S

Let us now discuss the solutions to the pulsation equations (51) and (57). We have integrated the equations in a standard way, using the Runge–

Kutta method. We employed the equation of state of Negele & Vautherin (1973) in the stellar crust and that of Heiselberg & Hjorth-Jensen

(1999) in the core. The latter is a convenient analytical approximation to the equation of state proposed by Akmal & Pandharipande (1997).

For this equation of state, the most massive stable neutron star has central density ρc = 2.76 × 1015 g cm−3, circumferential radius R =
10.3 km and gravitational mass M = Mmax = 1.92 M
. The powerful direct Urca process of neutrino emission is open in the core of a star of

mass M > 1.83 M
. When calculating the matrix Yik , we have used the model BJ v6 of nucleon–nucleon potential (see Section 5).

For illustration, we consider a neutron star model with mass M = 1.4 M
 (R = 12.17 km, ρc = 9.26 × 1014 g cm−3). For such a star,

the crust–core interface is at Rcc = 10.88 km. The frequencies of the first three modes of radial pulsations of a non-superfluid star with this

mass are ω1 = 1.703 × 104 s−1, ω2 = 4.081 × 104 s−1 and ω3 = 5.732 × 104 s−1.

To reduce the number of factors affecting the pulsation spectrum, we consider a simplified superfluidity model in which the critical

redshifted temperatures of nucleons do not vary with the density and are equal to T ∞
cn ≡ Tcneν0/2 = 6 × 108 K and T ∞

cp ≡ Tcpeν0/2 =
5 × 109 K. Consequently, superfluid matter is contained in the stellar core: R0 = Rcc. This means that the boundary at R0 is ‘attached’ to

matter and, for example, is independent of temperature variations. (Note that, in the more general case of density-dependent profiles of

critical temperatures, the superfluid–normal boundary can depend on T and temperature perturbations.) Numerical tests have shown that the

approximation of critical temperatures T∞
cn,p as constant throughout the core describes reality well if these temperatures smoothly depend on

the density. This is consistent with the predictions of some microscopic models of nucleon pairing known in the literature (see e.g. Yakovlev

et al. 1999).
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Figure 3. The pulsation eigenfrequencies ω (in units of ω0 = c/R) of a neutron star as a function of the redshifted core temperature T∞. The neutron

critical temperature T∞
cn is indicated by the vertical dot–dashed line; the horizontal dotted lines changing into solid lines at T∞ > T∞

cn indicate the first three

eigenfrequencies (I, II and III) of a non-superfluid star. No spectrum was plotted in the shaded region. The dashed curves correspond to ‘superfluid’ modes at

T∞ � T∞
cn and the solid curves correspond to ‘normal’ modes at T∞ � T∞

cn (see text).

Fig. 3 shows the dependence of the pulsation eigenfrequencies ω on the redshifted temperature T ∞ ≡ T0eν0/2. (We recall that the

superfluid core is isothermal, in accordance with equation 31.) The vertical dot–dashed line indicates the neutron critical temperature T∞
cn . The

horizontal dotted lines show the first three eigenfrequencies ω1, ω2 and ω3 for a non-superfluid star. No attempt to determine the spectrum in

the shaded region was made. At T∞ > T∞
cn , the star pulsates as a normal fluid (no matter whether the protons are paired or not). Hence, the

spectrum contains only normal, temperature-independent pulsation modes. (The first three modes I, II and III are shown as solid lines.) At

T∞ � 0.1 T∞
cn , a pulsating star can be described in the zero-temperature approximation. The spectrum of a cold superfluid star is doubled, as

compared with that of a normal star (see Comer et al. 1999). In addition to ‘normal’ pulsation modes, whose eigenfrequencies are close to

those for a non-superfluid star (solid lines), the spectrum contains specific ‘superfluid’ modes (dashed lines). Note that the first ‘superfluid’

mode is quite different from the ‘normal’ one, but the second and third ‘superfluid’ modes are already sufficiently close to their ‘normal’

counterparts (see Fig. 3).

As the temperature increases, starting from approximately T∞ ∼ 108 K, the frequency of each mode begins to decrease. When a mode

reaches one of the horizontal dotted lines, it changes behaviour and becomes temperature-independent, imitating the behaviour of one of the

non-superfluid modes. As the temperature rises further, the frequency of the higher mode approaches that of the mode in question, which in

turn begins to decrease again (see avoiding crossings in Fig. 3). As a result, the two different modes of the spectrum will never intersect. One

can conclude that a given mode may behave either as ‘superfluid’ or as ‘normal’ with increasing temperature.

The behaviour of the frequency spectrum at temperatures close to T∞
cn is of particular interest. It is clear from Fig. 3 that the frequency

of any mode goes to zero at T∞ = T∞
cn . This is not surprising if we keep in mind that high-order pulsation modes represent sound-like waves

(see Section 5), and the frequency of the ‘superfluid’ sound also goes to zero at the transition point into the superfluid state (Fig. 1). It might

seem that the spectrum does not contain eigenfrequencies of non-superfluid stars at the transition point when all neutrons in the star are

normal. However, this is not the case. The point is that at T∞ → T∞
cn , the number of modes with frequencies in any given interval, say [0, ω1],

becomes infinitely large. As a result, at any temperature T∞ and any eigenfrequency of a normal star, there is a mode which is temporarily

‘normal-like’, i.e. it has the same frequency as in the normal fluid.

Since the temperature of neutron stars changes with time, it would be interesting to discuss how the pulsation frequencies vary with

time. Suppose that the pulsation energy is much lower than the thermal energy, we can then neglect the star heating due to the conversion of

pulsation energy into heat (see Gusakov et al. 2005, for details). The star will cool down, and to determine the dependence of the internal

temperature T∞ on time t one should use the cooling theory of superfluid neutron stars (see e.g. Yakovlev et al. 1999; Yakovlev & Pethick

2004).

Since the direct Urca process is forbidden for the chosen neutron star model, the main cooling mechanisms (at T∞ < T∞
cn ) will be neutrino

emission due to Cooper pairing of neutrons, neutron–neutron bremsstrahlung and the photon emission from the stellar surface. One can easily

find the function T∞(t) by solving the thermal balance equation (see e.g. Yakovlev et al. 1999) under the assumption that the stellar core is

isothermal. If the dependencies ω(T∞) and T∞ (t) are known, it is possible to plot the frequency spectrum ω as a function of time t (Fig. 4).

Here, the time (in units of 103 yr) is counted from the moment of neutron superfluidity onset (at T∞ = T∞
cn ).
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Figure 4. The dependence of the pulsation spectrum of a superfluid neutron star on time t, counted from the moment of neutron superfluidity onset (at T∞ =
T∞

cn ). The time is in units of 103 yr. Notations are the same as in Fig. 3.

The analysis of Fig. 4 shows a significant change in the pulsation spectrum for 20 yr after superfluidity turns on. This is associated with

the highly efficient Cooper pairing neutrino emission. [The detailed discussion of this process and its influence on the neutron star cooling

are given by Gusakov et al. (2004).] For example, the frequency of the third ‘superfluid’ mode changes during this period of time from 0 to

the eigenfrequency ω2 of a non-superfluid star. The Cooper pairing neutrino emission process quickly becomes weaker with time, the cooling

slows down and the variation in ω(t) becomes smoother. We would like to emphasize that the fast change of the pulsation frequencies for

the first few dozens of years is due to the high critical temperature of neutrons, T∞
cn = 6 × 108 K. We could make the ω(t) dependence less

dramatic by choosing lower critical temperatures.

7 S U M M A RY

The aim of the present study was to analyse radial pulsations of superfluid neutron stars at finite core temperatures. We used the equations

for one-component superfluid hydrodynamics suggested by Son (2001), rewritten in terms of more convenient variables, and extended to the

case of superfluid mixtures in General Relativity. A simple model of npe-matter was employed to show that a necessary condition for a star to

be at hydrostatic and beta-equilibrium is constancy of the redshifted temperature in the region of the star where the neutrons are superfluid:

T eν0/2=constant. Proton superfluidity does not impose any restrictions on the temperature because protons are ‘coupled’ with normal electrons

by electromagnetic forces and behave as a normal fluid, no matter whether they are superfluid or not.

The hydrodynamics of superfluid mixtures were applied to investigate radial pulsations of neutron stars. It was assumed that the crust is

non-superfluid, and neutrons and protons have redshifted critical temperatures, which are constant throughout the core. The set of equations

we have derived describes radial pulsations of superfluid stellar matter.

We have found the short wavelength solutions to this set of equations, representing sound waves in superfluid neutron star matter. The

dependence of the speed of sound on the stellar temperature was examined in two limiting pulsation regimes: (i) in beta-equilibrated pulsating

matter and (ii) in pulsating matter with frozen nuclear composition. It was shown that three different kinds of sound waves may in principle

exist, two of them propagate in the matter with frozen nuclear composition and one can exist only in beta-equilibrium. While the speeds of

the former sound waves are comparable to each other (see Fig. 1) and to the speed of sound in the usual non-superfluid matter, the speed of

the latter is 4–5 orders of magnitude lower (see Fig. 2); it can be excited only at temperatures T close to Tcn.

Generally, the pulsation equations were solved numerically, and the results show that the finite internal temperatures strongly affect the

pulsation spectrum in the range of T ∼ (0.1−1) Tcn (see Fig. 3). The frequency of any pulsation mode in this range decreases with increasing

temperature. However, when the mode reaches one of the eigenfrequencies of a non-pulsating star, it becomes temperature independent for a

while. One may say that it begins to mimic the behaviour of a non-superfluid mode. At T → Tcn, all superfluid eigenfrequencies tend to zero.

At T � 0.1Tcn, the pulsation spectrum is similar to that calculated in the zero-temperature approximation.

In addition to the analysis of the temperature dependence of the pulsation spectrum, we discuss the temporal evolution of the eigenfre-

quencies during the star cooling (Fig. 4). In our analysis, we use the standard cooling theory of superfluid neutron stars (see e.g. Yakovlev

et al. 1999). The calculation shows that essential changes (within the present model) in the pulsation eigenfrequencies occur for the first

20 yr following the moment of neutron superfluidity onset. This rather short (for the cooling theory) period of time is associated with the fast
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cooling due to the effective Cooper pairing neutrino emission process. It will be even shorter if the powerful direct Urca process operates in

the stellar core.

The consideration of the problem presented here is based on a simplified model. In particular, we discuss only the simplest case of

radial pulsations and assume critical temperatures of nucleons that are constant throughout the core. However, it would be important (and

interesting) to understand how finite internal temperatures affect the frequency spectrum of non-radial pulsations and how the results would

change if we analysed more realistic density profiles for the critical temperatures. Finally, in a more realistic approach one should take into

account 1S0 neutron pairing in the stellar crust and more accurately treat the physics of the crust, especially if one deals with pulsation modes

localized in the outer layers of the star. In spite of the considerable simplification of the problem discussed in this paper, we conclude that finite

internal temperatures significantly affect the pulsation spectrum of not too cold superfluid neutron stars. Moreover, the pulsation frequencies

can change dramatically for a period of several dozens of years, an effect that may potentially be observable.
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Carter B., 1985, in Dadhich N., Krishna Rao J., Narlikar J. V., Vishveshwara C. V., eds, Proc. Vadya–Raychaudhuri Festschrift, IAGRG, A Random Walk in

Relativity and Cosmology. Wiley Eastern, Bombay, p. 48

Carter B., Khalatnikov I. M., 1992a, Phys. Rev. D, 45, 4536

Carter B., Khalatnikov I. M., 1992b, Ann. Phys., 219, 243

Carter B., Langlois D., 1998, Nucl. Phys. B, 531, 478

Chandrasekhar S., 1964, ApJ, 140, 417

Comer G. L., Joynt R., 2003, Phys. Rev. D, 68, 023002

Comer G. L., Langlois D., Lin L. M., 1999, Phys. Rev. D, 60, 104025

Gusakov M. E., Haensel P., 2005, Nucl. Phys. A, 761, 333

Gusakov M. E., Kaminker A. D., Yakovlev D. G., Gnedin O. Y., 2004, A&A, 423, 1063

Gusakov M. E., Yakovlev D. G., Gnedin O. Y., 2005, MNRAS, 361, 1415

Haensel P., Levenfish K. P., Yakovlev D. G., 2000, A&A, 357, 1157

Haensel P., Levenfish K. P., Yakovlev D. G., 2001, A&A, 372, 130

Heiselberg H., Hjorth-Jensen M., 1999, ApJ, 525, L45

Jackson A. D., Krotscheck E., Meltzer D. E., Smith R. A., 1982, Nucl. Phys. A, 386, 125

Khalatnikov I. M., 1952, Zh. Eksp. Teor. Fiz., 23, 169

Khalatnikov I. M., 1973, Pis’ma Zh. Eksp. Teor. Fiz., 17, 534

Khalatnikov I. M., 1989, An Introduction to the Theory of Superfluidity. Addison-Wesley, New York

Khalatnikov I. M., Lebedev V. V., 1982, Phys. Lett. A, 91, 70

Landau L. D., 1941, Zh. Eksp. Teor. Fiz., 11, 592

Landau L. D., 1947, J. Phys., 11, 91

Landau L. D., Lifshitz E. M., 1980, Course of Theoretical Physics, Part I, Statistical Mechanics. Pergamon Press, Oxford

Landau L. D., Lifshitz E. M., 1987, Course of Theoretical Physics, Fluid Mechanics. Pergamon Press, Oxford

Langlois D., Sedrakian D. M., Carter B., 1998, MNRAS, 297, 1189

Lebedev V. V., Khalatnikov I. M., 1982, Zh. Eksp. Teor. Fiz., 83, 1623 [1982, Sov. Phys. JETP, 56, 923]

Lee U., 1995, A&A, 303, 515

Lindblom L., Mendell G., 1994, ApJ, 421, 689

Lombardo U., Schulze H.-J., 2001, in Blaschke D., Glendenning N. K., Sedrakian A., eds, Lecture Notes in Physics Vol. 578, Physics of Neutron Star Interiors.

Springer, Berlin, p. 30 (astro-ph/0012209)

Mastrano A., Melatos A., 2005, MNRAS, 361, 927

Mendell G., 1991a, ApJ, 380, 515

Mendell G., 1991b, ApJ, 380, 530

Negele J. W., Vautherin D., 1973, Nucl. Phys. A, 207, 298

Page D., Lattimer J. M., Prakash M., Steiner A. W., 2004, ApJS, 155, 623

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 372, 1776–1790



1790 M. E. Gusakov and N. Andersson

Peralta C., Melatos A., Giacobello M., Ooi A., 2005, ApJ, 635, 1224

Prix R., Comer G. L., Andersson N., 2004, MNRAS, 348, 625

Pujol C., Davesne D., 2003, Phys. Rev. C, 67, 014901

Putterman S. J., 1974, Superfluid Hydrodynamics. North-Holland/American Elsevier, Amsterdam/New York
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