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We reanalyze the r-mode instability in rotating superfluid neutron stars. To this aim we develop
a model of resonance interaction of normal m = 2 r-mode with superfluid modes. We show that
this interaction dramatically modifies the instability window, that is the region of stellar spin fre-
quencies and temperatures in which a neutron star becomes unstable with respect to radiation of
gravitational waves. This modification allows us to formulate an evolution scenario for neutron
stars in LMXBs that can explain all rapidly rotating neutron stars observed in LMXBs, as well as
the existence of millisecond pulsars (see arXiv:1305.3825 and the presentation ‘Observationally
consistent evolution scenario for neutron stars in LMXBs’ by Gusakov, Chugunov, and Kantor for
more details).

I. INTRODUCTION

Neutron stars (NSs) are compact rotating objects with the mass M ∼ 1.4M� and radius R ∼ 10 km (see, e.g., [1];
M� is the solar mass). Rotation leads to the appearance of the so-called inertial oscillation modes in NSs, whose
restoring force is the Coriolis force [2]. A particular, but the most interesting class of inertial modes is r-modes.
These modes, neglecting dissipation, are subject to gravitational-driven instability at any NS spin frequency ν [3]. An
account for dissipation reduces the instability window, that is the region of spin frequencies ν and red-shifted internal
temperatures T∞, in which an NS is unstable with respect to emission of gravitational waves.

Observations of NSs in low-mass X-ray binaries (LMXBs) allow to measure ν and estimate T∞ for some objects
(see, e.g., [4–6] and Fig. 1). It turns out that many of the rapidly rotating warm sources fall well outside the stability
region, that makes their interpretation problematic [4–6].

This work is devoted to a possible resolution of that problem. Our key idea consists in that to study evolution
of NSs in LMXBs one has to correctly take into account the resonance interaction between the normal oscillation
m = 2 r-mode and superfluid inertial modes, which occurs at some fixed values of T∞ (see Sec. III). Such resonance
interaction has been completely ignored in the literature so far.

II. “STANDARD” INSTABILITY WINDOWS AND OBSERVATIONAL DATA

All calculations here are carried out for a canonical NS with the mass M = 1.4M� and radius R = 10 km, whose core
is composed of neutrons (n), protons (p), and electrons (e). Theoretical calculations predict that at T . 108÷ 1010 K
nucleons in the internal layers of NSs are in superfluid state. This is confirmed by observations of cooling isolated
NSs [7, 8].

In superfluid NSs two types of inertial modes can exist, normal and superfluid [9–11]. Normal modes (io-modes)
describe co-moving oscillations of superfluid and normal matter components and are similar to the corresponding
modes of a nonsuperfluid star [11–13]. The superfluid modes correspond to counter-moving oscillations and are
absent in normal stars. Generally these two types of modes are decoupled and almost do not interact. Among io-
modes we only consider the normal r-modes (ro-modes) with m = 2 and m = 3, since they are the most unstable
ones [14]. Their gravitational radiation timescale is τGR ≈ τGR 0(ν/1 kHz)−2m−2 [14, 15] (where τGR 0 ≈ −46.4 s and
−1250 s for l = m = 2 and l = m = 3 ro-modes, respectively).

Dissipation acts to suppress the instability; the corresponding timescale will be denoted as τDiss. For is-modes the
main dissipation mechanism is mutual friction [9, 10]. It tends to equalize the velocities of normal and superfluid

components. Hence, for is-modes τDiss = τMF ≈ τMF 0
Ω0

Ω , where τMF 0 ≈ 2.5 s, Ω0 ≡
√

3GM/(4R3) ≈ 1.180×104 s−1,
Ω = 2πν. In contrast, for ro-modes the mutual friction dissipation can be neglected since the normal and superfluid
components are comoving for these modes. Thus, we consider dissipation due to the shear viscosity as our minimal
model for damping of ro-modes. In that case τDiss = τS ≈ τS 0 (T∞8 )

2
, where T∞8 ≡ T∞/(108 K); τS 0 ≈ 2.2 × 105 s

for l = m = 2 ro-mode and τS 0 ≈ 2.4× 104 s for l = m = 3 ro-mode. It is crucial that damping of is-modes is much
more efficient than that of ro-modes.

The condition 1/τGR + 1/τDiss < 0 determines the instability window. Dashed line in Fig. 1 shows its boundary
(“the instability curve”) for m = 2 ro-mode. The stability region for m = 2 ro-mode is filled with grey. Also shown
are the spin frequencies ν and internal red-shifted temperatures T∞8 of 20 NSs in LMXBs, whose parameters can
be deduced from observations. One can see that many sources in Fig. 1 lies outside the stability region, where the
probability to observe them is negligibly small. All available in the literature explanations of this fact (see, e.g., [4–6])
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FIG. 1: Spin frequency vs internal redshifted temperature for NSs in LMXBs. The frequencies and temperatures of 20 sources
are shown by small filled circles. Error bars describe uncertainties in T∞ related to poorly constrained envelope composition.
The “standard” stability region for ro-mode with m = 2 is filled with grey, its boundary is shown by dashed line.

invoke rather artificial assumptions that either cannot be fully justified or even contradict the up-to-date calculations
available in the literature.

III. RESONANCE INTERACTION OF SUPERFLUID AND NORMAL MODES

While the eigenfrequencies ω of ro-modes are temperature independent, those of is-modes depend on temperature.
Thus, at some temperature the eigenfrequencies of is- and ro-modes can approach one another and start to interact
resonantly. As a result of such interaction, the superfluid is-mode transforms into the normal ro-mode and vice versa;
that is, an avoided crossing of modes is formed in the ω−T∞ plane. In Fig. 2(a) we (schematically) present oscillation
frequency ω as a function of T∞ for two neighboring modes of a superfluid NS, experiencing an avoided crossing at
T∞ = T∞0 . At T∞ < T∞0 the role of the ro-mode is played by the mode II, while the mode I behaves as the superfluid
is-mode. The resonance interaction of the modes I and II significantly affects their dissipation timescales τDiss, as it
is illustrated in Fig. 2(b,c).

Such a behavior of oscillation modes was confirmed by the analysis of oscillations of superfluid nonrotating NSs
[13, 16, 17]. Inertial modes (in particular, ro-modes) in rotating NSs should behave in a similar way. The results
of Refs.[9, 10, 18, 19] confirm this statement. This allows us to formulate the main assumption of our model: An
oscillation mode of a superfluid rotating NS, which behaves, at some T∞, as a normal quadrupole m = 2 r-mode
(ro-mode) can, as the temperature gradually changes, transform into a superfluid-like inertial mode (is-mode).

Let us qualitatively describe such resonant transformation of the modes. As we mentioned above, far from the
avoided crossings the superfluid and normal modes almost do not interact (their interaction is parameterized by the
small coupling parameter s ∼ 0.0001 ÷ 0.05). Assume, that the eigenfunction of a superfluid mode is Ψsfl and the
eigenfunction of a normal mode is Ψnorm. In the vicinity of an avoided crossing the modes start to interact resonantly
so that the eigenfunctions of the exact solution should be presented as a linear superposition of Ψnorm and Ψsfl. In
particular, in Fig. 2 an avoided crossing occurs between the modes I and II. Denoting the corresponding eigenfunctions
as ΨI and ΨII, one can write

ΨI = −sinθ(x) Ψnorm + cosθ(x) Ψsfl, (1)

ΨII = cosθ(x) Ψnorm + sinθ(x) Ψsfl, (2)

where the function θ(x) determines how the normal mode transforms into superfluid one (and vice versa). This
function depends on the parameter x ≡ (T∞ − T∞0 )/∆T∞ [see Fig. 2(a)] and ranges from 0 to π/2 on a temperature
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FIG. 2: A schematic plot showing oscillation frequencies ω for a superfluid NS (a), inverse damping timescale τ−1
Diss (b), and

τDiss (c) versus temperature T∞ for two oscillation modes (I and II), experiencing avoided crossing at T∞ = T∞0 . Dashes
correspond to an approximation of independent oscillation modes (s = 0), solid lines are plotted for exact solution allowing for
the interaction of modes I and II. Vertical dotted line indicates T∞0 . Filled circles in panel (c) illustrate the results shown in
figure 12 of Ref. [9].

scale specified by the characteristic width ∆T∞ of the avoided crossing, ∆T∞ ∼ s T∞0 . The exact form of the function
θ(x) can be found only by direct solution to the coupled oscillation equations. However, using as the analogy the
problem of intersection of electron terms in molecules (see, e.g., Ref. [20], §79), one can immediately write down an
approximate expression for θ(x) that correctly reproduces its main properties,

θ(x) =
1

2

[π
2

+ arctg(x)
]
. (3)

Consider, for example, the mode II. At x→ −∞ one has θ(x)→ 0, and it follows from Eq. (2) that the mode II is in
normal-like regime (ΨII = Ψnorm); at x→ +∞ one obtains θ(x)→ π/2, which corresponds to superfluid-like behavior
of the mode II (ΨII = Ψsfl).

Using Eqs. (1)-(3) one can calculate the damping timescales for the mode I and II. In particular, for the mode I
one has

1

τX
≈ 1

τnorm
X

sin2θ(x) +
1

τ sfl
X

cos2θ(x) (4)

and for the mode II

1

τX
≈ 1

τnorm
X

cos2θ(x) +
1

τ sfl
X

sin2θ(x). (5)

These are the main formulas of our approximate model. Their use for X = S, MF, GR (shear viscosity, mutual friction,
and gravitational radiation) enables us to plot the instability windows for the real oscillation modes (similar to the
modes I and II shown in Fig. 2).

IV. REALISTIC INSTABILITY WINDOWS

Instability curves for the modes I (solid red line) and II (solid blue line) are shown in Fig. 3(a,b). At low T∞ the
mode II behave as ro-mode, while the mode I – as is-mode (as in Fig. 2). The curves are obtained by making use of
Eqs. (4)–(5) with the coupling parameter s = 0.001. The panel (b) is a version of panel (a), but plotted in a different
scale. The dotted line in Fig. 3(a,b) corresponds to the temperature T∞0 = 1.5 × 108 K, at which the modes I and
II experience avoided crossing. In addition, Fig. 3(a,b) shows the instability curves for: (i) octupole m = 3 ro-mode
(grey solid line); (ii) m = 2 ro-mode (blue dashed line); (iii) superfluid is-mode with m = 2 (red dashed line). The
latter curves (i)–(iii) are obtained using the approximation s = 0 (neglecting the interaction between the superfluid
and normal modes).

As one would expect, far from the avoided crossing point the solid (modes I and II) and dashed (ro and is-modes)
lines almost coincide. The region, where m = 2 modes I, II, and the octupole m = 3 ro-mode are simultaneously stable,
is filled with grey in Fig. 3(a,b). The presence of the ‘stability peak’ at T∞ ≈ T∞0 is an important characteristic
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FIG. 3: Instability curves for superfluid NS oscillations. The red and blue solid curves correspond to m = 2 modes I and II,
which experience avoided crossing at T∞0 = 1.5 × 108 K. Coupling parameter was chosen to be s = 0.001. The dashed red
and blue curves correspond to m = 2 ro- and is-mode plotted under assumption that they are completely decoupled (s = 0).
The grey line is the instability curve for m = 3 ro-mode, plotted ignoring the resonance coupling with the superfluid modes.
The temperature T∞0 is shown by the vertical dotted line. The panel (b) shows temperatures and frequencies of the observed
sources. Only the fastest source 4U 1608-522 is shown in the panel (a).

feature of this region. The height of the peak is determined by the lowest-frequency intersection of the mode II
instability curve with the other instability curves. The instability curves for the modes I and II intersect at a very
high frequency ν ≈ 1580 Hz; hence, the lowest-frequency intersection corresponds to that with the octupole m = 3
ro-mode and occurs at ν ≈ 625 Hz. As a result, at T∞ = T∞0 the most unstable mode is m = 3 ro-mode, and the
height of the stability peak is ν ≈ 625 Hz.

It can be shown that, in the course of its evolution, any NS with equilibrium temperature less than T∞0 will spend
substantial fraction of time climbing up the left side of the stability peak. This naturally explains the high spin
frequencies of the sources 4U 1608-522, SAX J1750.8-2900, EXO 0748-676, Aql X-1, and SWIFT J1749.4-2807, which
can be interpreted as moving along the peak in Fig. 3(b).

In reality, the normal m = 2 r-mode mode can experience more than one avoided crossing with the superfluid
modes. To illustrate this idea, we demonstrate in Fig. 4 the instability curves in case of two avoided crossings of
oscillation modes. The first avoided crossing takes place at T∞ = 4.5× 107 K between the mode III (the violet solid
line), which behaves as m = 2 ro-mode at low T∞, and the mode II (the blue solid line). For this avoided crossing
the coupling parameter was chosen to be s = 0.01. The second avoided crossing of modes I and II is discussed above
and takes place at T∞ = 1.5 × 108 K. In this case the mode II behaves as m = 2 ro-mode only at intermediate
temperatures 6 × 107 K . T∞ . 1.3 × 108 K. At higher and at lower temperatures it transforms into superfluid
modes, which are different. It is easy to demonstrate that, for low enough T∞eq . 4× 107 K, the evolution track goes
along the left (low-temperature) boundary of the first stability peak, corresponding to the avoided crossing of the
modes II and III (i.e., along the violet line in Fig. 4). One sees that two avoided crossings are already sufficient to
explain all the existing observations of frequencies and quiescent temperatures of NSs in LMXBs.

V. CONCLUSIONS

We show that instability windows of rotating NSs are significantly modified by accounting for the resonance inter-
action of normal oscillation m = 2 r-mode (ro-mode) and superfluid inertial modes (is-modes). In the vicinity of a
resonance the eigenfunctions of is-mode become admixed with the eigenfunctions of m = 2 ro-mode which results in
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FIG. 4: An example of the stability curves in case of two avoided crossings of m = 2 oscillation modes of a superfluid NS. As in
Fig. 3, the solid red and blue lines are plotted for the modes I and II experiencing an avoided crossing at T∞ = 1.5×108 K (the
coupling parameter s = 0.001). An additional violet solid line corresponds to the mode III, which exhibit an avoided crossing
with the mode II at T∞ = 4.5× 107 K. This avoided crossing is drawn for s = 0.01. Other notations are the same as in Fig. 3.

the enhanced damping of ro-mode due to the mutual friction dissipation. In the ν−T∞ plane, this effect is manifested
by the appearance of sharp ‘stability peaks’ over the standard (usually considered) stability region of fast rotating
NSs (Figs. 3 and 4; the stability region is filled with grey there). An analysis of evolution of NSs in LMXBs taking
into account the stability peaks shows that the stars spend significant amount of time climbing the left sides of these
peaks in the region, which has been previously thought to be unstable with respect to excitation of r-modes. As a
consequence, the real limit on the spin frequency of NSs is set by the instability curve for the octupole m = 3 ro-mode.
This result allows us to naturally explain the rapidly rotating warm NSs in LMXBs within the minimal assumptions
about the properties of superdense matter (see Fig. 4). Moreover, this result agrees with the predicted [21, 22] abrupt
cut-off above ∼ 730 Hz of the spin frequency distribution of accreting millisecond X-ray pulsars.
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