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We suggest that specific thermal low-frequency g-modes can exist in superfluid neutron stars. They can

be excited in the matter with a nonzero gradient of entropy per electron. We determine the Brunt-Väisälä

frequency for these modes and demonstrate that they can be unstable with respect to convection. The

criterion for the instability onset (analogue of the well-known Schwarzschild criterion) is derived. It is

very sensitive to the equation of state and a model of nucleon superfluidity. In particular, convection may

occur for both positive and negative temperature gradients. Our results may have interesting implications

for neutron star cooling and seismology.
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I. INTRODUCTION

This note is devoted to gravity oscillation modes
(g-modes) and the related phenomenon of convection in
neutron stars (NSs). The restoring force for g-modes is
buoyancy that originates from the dependence of the pres-
sure on at least two quantities (e.g., density and tempera-
ture or density and chemical composition). g-modes and
convection are actively studied in laboratory experiments
(e.g., [1–3]) and are widespread in nature. For instance,
g-modes are observed in Earth’s atmosphere and ocean, in
white dwarfs [4], in slowly pulsating B-stars [5], and in
other objects [6], while convection is typical for most of
the stars (including the Sun). In application to NSs,
g-modes were studied, e.g., in Refs. [7–12]. In all these
works the NS matter was assumed to be nonsuperfluid
(normal). However, according to microscopic calculations
[13,14], baryons in the internal layers of NSs become
superfluid (SF) at temperatures T & 108 � 1010 K which
has a drastic impact on stellar dynamics and evolution
[14,15]. Recent real-time observations [16] of the cooling
NS in Cas A supernova remnant indicate that this NS has
an SF core [17,18]. A number of attempts [19–21] have
been made to theoretically predict g-modes in cold SF NSs,
but they have failed. This led to a general belief that
g-modes do not exist in SF interiors of NSs. In this paper
we show that proper account of finite temperature effects
leads to the presence of peculiar g-modes that can be
unstable with respect to convection. Possible applications
of these results are outlined. Below the Planck constant, the
speed of light, and the Boltzmann constant equal unity,
ℏ ¼ c ¼ kB ¼ 1.

II. CONVECTION IN SF NSS AND
THERMAL G-MODES

For simplicity, consider npe NS cores, composed of
neutrons (n), protons (p), and electrons (e). To start with,
assume that all particles are nonsuperfluid. Any thermody-
namic quantity in npe-matter (e.g., the heat function

w ¼ "þ P, where " is the energy density and P is the
pressure) can be presented as a function of 3 variables, say,
P, xe � ne=nb, and xS � S=nb. Here ni is the number
density for particles i ¼ n, p, and e; nb is the baryon
number density; S is the entropy density. What is the local
criterion for the absence of convection in npe-matter?
Assume that a spherically symmetric star is in hydrostatic
equilibrium (but not necessarily in thermal or beta-
equilibrium), that is rP ¼ �wr�, where �ðrÞ is the
gravitational potential and r is the radial coordinate. Here
and below r � d=dr because all quantities of interest
depend on r only. Consider two close points 1 and 2 with
r ¼ r1 and r2. Let A1 and A2 be the values of some
thermodynamic quantity A at points 1 and 2, respectively,
and �A � A2 � A1. Displace adiabatically a small fluid
element upward from point 1 to point 2. At point 2 P
adjusts itself to the surrounding pressure P2 ¼ P1 þ�P,
while xe and xS remain unchanged and equal to xe1 and xS1
(we assume that beta-processes are slow). The matter is
stable against convection if the inertial mass density of the
lifted element (w for the relativistic matter [22]) is larger
than the equilibrium density at point 2. Thus, stability
requires wðP2; xe2; xS2Þ<wðP2; xe1; xS1Þ. Expanding w in
Taylor series near point 1, we obtain

@xewðP; xe; xSÞrxe þ @xswðP; xe; xSÞrxS < 0; (1)

where @A � @=@A. When w is a function of P and xS only,
Eq. (1) reproduces the Schwarzschild criterion for the
absence of convection (see, e.g., [23,24]). In a strongly
degenerate matter the second term in Eq. (1) can be ne-
glected. Similarly, to calculate the first term it is sufficient
to set T ¼ 0 and xS ¼ 0. Then, Eq. (1) reduces to
@xewðP; xeÞrxe < 0 [11]. This Ledoux-type criterion is

always satisfied in beta-equilibrated NSs, i.e., they are
stable against convection. Oscillations of such a matter
near equilibrium correspond to temperature-independent
composition g-modes, first studied in Ref. [10].
Assume now that neutrons (and possibly protons) are SF.

What will be the analogue of criterion (1)? Nucleon SF
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leads to the appearance of two independent velocity
fields: SF neutron velocity Vsn and velocity of normal
liquid component Vq, composed of neutron thermal

(Bogoliubov) excitations and charge-neutral conglomerate
of protons and electrons [25,26]. The presence of extra
velocity field Vsn results in an additional (besides equation
rP ¼ �wr�) condition of hydrostatic equilibrium in SF
matter [26,27]: rð�ne

�Þ ¼ 0, where �n is the relativistic
neutron chemical potential. As a result, when we displace
the fluid element, ‘‘attached’’ to the normal liquid compo-
nent, from point 1 to point 2, both P and �n adjust
themselves to their equilibrium values P2 and �n2 at point
2. The pressure adjusts by contraction/expansion of the
fluid element, while �n adjusts by the variation in the
number of ‘‘SF neutrons’’ in this element. Note that, since
SF neutrons can freely escape from the fluid element
attached to the normal particles, the total number of neu-
trons in the element is not conserved, and neither are the
quantities xe ¼ ne=nb and xS ¼ S=nb. In this situation
the conserved quantity is xeS ¼ S=ne, because both the
entropy and electrons flow with the same velocity Vq

(e.g., [26–28]). Bearing this in mind, it is convenient to
consider w as a function of P, �n, and xeS. Then the
condition for stability against convection reads
wðP2; �n2; xeS2Þ<wðP2; �n2; xeS1Þ or

@xeSwðP;�n; xeSÞrxeS < 0: (2)

A similar condition was derived in a different way in
Ref. [29], where internal gravity waves were analyzed in
a mixture of SF He-4 and a normal fluid (see also [30,31]).
Note that the left-hand side of Eq. (2) vanishes at T ¼ 0.
Then the system is marginally stable, since there is no
restoring force acting on a displaced fluid element. Thus,
it is not surprising that the authors of Refs. [19–21], who
assumed T ¼ 0, did not find g-modes in SF NSs. In con-
trast, consistent treatment of the temperature effects should
reveal g-modes.

To check it we performed a local analysis of SF hydro-
dynamic equations (see, e.g., [26,27]), describing oscilla-
tions of a NS in the weak-field limit (� � 1) at T � 0.
We analyzed short-wave perturbations, proportional to
exp ði!tÞ exp ½iRr dr0kðr0Þ�Ylm, where the wave number k
of a perturbation weakly depends on r (k � jd ln k=drj,
WKB approximation), ! is the frequency, and Ylm is a
spherical harmonic. Solving oscillation equations in the
Cowling approximation (in which� is not perturbed [32]),
we found the standard [10] short-wave dispersion relation
for the SF thermal g-modes,

!2 ¼ N 2 lðlþ 1Þ
lðlþ 1Þ þ k2r2

; (3)

where

N 2 ¼ � g

�nnb

ð1þ yÞ
y

@xeSwðP;�n; xeSÞrxeS (4)

is the corresponding Brunt-Väisälä frequency squared;
g ¼ r�; y ¼ nbYpp=½�nðYnnYpp � Y2

npÞ� � 1> 0, Yik

being the relativistic entrainment matrix (analogue of the
superfluid density for mixtures; see, e.g., [33,34]). The
stability condition for these g-modes, N 2 > 0, coincides
with Eq. (2).
Introducing the thermal expansion coefficient for SF

relativistic npe-matter � � �@TwðP;�n; TÞ=w, one ob-
tains from Eq. (4), following similar derivation as in the
case of ordinary convection (e.g., Sec. 4 of Ref. [23]),

N 2 ¼ ��w½�w=CþrT1=ðgT1Þ�: (5)

Here � ¼ g2Tð1þ yÞ=ðy�nnbÞ> 0, C¼neT@TxeSðP;�n;
TÞ�T@TSðP;�n;TÞ>0, and T1 � Te� is the red-shifted
temperature. For an NS in thermal equilibrium, T1 is
constant throughout the core, rT1 ¼ 0. In that case N 2

in Eq. (5) is positive and reduces to

N 2 ¼ �ð�wÞ2=C > 0: (6)

If NS is not in thermal equilibrium,N 2 [and hence!2, see
Eq. (3)] can be negative for certain rT1. These gradients
follow from Eq. (5) [or Eq. (2)] and are defined by the
inequality �rT1 <�gT1�2w=C, which is the analogue
of the usual Schwarzschild criterion for convection [24].
This inequality, as well as Eq. (2), is valid not only in the
weak-field limit � � 1, but also in the full general rela-
tivity. When it is satisfied, convective instability occurs
(see, however, comment [35]). Thus, the critical gradient
for the instability onset is given by (cf. Eq. 4.4 of Ref. [23])

rT1
crit ¼ �gT1�w=C: (7)

Clearly, the thermal expansion coefficient� determines the
sign of rT1

crit. If �> 0 one gets the instability while

heating the matter from below; if �< 0 the instability
occurs when it is heated from above. Note that both signs
of rT1 can be realized in cooling NSs [37]. Most of the
substances (but not all) have �> 0 (e.g., �< 0 for water
near 0 �C). For npe-matter of NSs the situation is different:
Depending on equation of state (EOS) and/or model of SF
� (at fixed nb and T) can be either > or <0 (see below).
Notice, however, that in any case mature NSs, for which
rT1 ¼ 0, will be always stable with respect to convection.

III. RESULTS

First, consider the limit T � Tcn, Tcp (Tci is the critical

temperature for particles i ¼ n, p), in which the nucleon
thermal excitations are exponentially suppressed and only
electrons determine the dependence of w;P; C; . . . on T. In
this limit � / T, C / T and hence both N and rT1

crit are/ T. Figure 1(a) presents N [given by Eq. (6)] versus nb
for npe-matter in thermodynamic equilibrium (rT1 ¼ 0)
for 5 EOSs. The figure is plotted assuming T1 � T ¼
107 K (the weak-field approximation, � � 1). One
sees that for any EOS N vanishes at a certain nb that
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corresponds to � ¼ 0. Figure 1(b) shows rT1
crit [given by

Eq. (7)] versus nb for the APR EOS [38]. The regions of
parameters, where convection occurs are filled with gray.
As expected, rT1

crit changes sign simultaneously with �.
At small nb one has �> 0 (rT1

crit < 0), like in the vast

majority of other substances. (It is interesting to note that�
is always >0 for npe-matter treated as an ideal gas of
noninteracting particles.) At large nb the situation is oppo-
site, �< 0. The reason for this can be understood if we
rewrite � in the form [39]: � ¼ �½�n@TnbðP;�n; TÞ þ
C�=w and notice that the matter becomes stiffer (P grows
faster and faster) with increasing nb. As a consequence, nb
varies only weakly with T at fixed P and �n (the stiffer
EOS the smaller the variation), that is at large densities
�nj@TnbðP;�n; TÞj<C and hence �< 0.

When T is not too low (0:1Tci & T & Tci, i ¼ n and/or
p), the contribution of nucleon thermal excitations to
� and C (and hence toN and rT1

crit) cannot be neglected.

The results then strongly differ from those obtained in
the limit T � Tcn, Tcp and are presented in Fig. 2. For

illustration, we adopt the APR EOS and take T1 � T ¼
1:5	 108 K. Some realistic profiles of singlet proton

TcpðnbÞ and triplet neutron TcnðnbÞ critical temperatures,

employed in our numerical calculations, are shown in
Fig. 2(a). Figures 2(b) and 2(c) demonstrate the functions
N ðnbÞ and rT1

critðnbÞ, given by Eqs. (6) and (7), respec-

tively. The key role in their behavior is played by the
nucleon thermal excitations, whose number is very sensi-
tive to Tci, which is in turn a very strong function of nb
[especially, on the slopes of TciðnbÞ, see Fig. 2(a)]. To
illustrate this point we present different limiting cases in
Figs. 2(b) and 2(c). Solid lines in Figs. 2(b) and 2(c) are
obtained for TcnðnbÞ and TcpðnbÞ from Fig. 2(a). Dot-

dashed lines are plotted for TcnðnbÞ from Fig. 2(a), but
for Tcp ! 1. Finally, dashed lines in Figs. 2(b) and 2(c)

correspond to the limit Tcn, Tcp ! 1 of Fig. 1 (note,

FIG. 2 (color online). Panel (a): Tcn and Tcp versus nb. Panels
(b) and (c):N andrT1

crit given by, respectively, Eqs. (6) and (7),

versus nb for EOS APR and T1 � T ¼ 1:5	 108 K [see the
horizontal dotted line in panel (a)]. Solid lines in panels (b) and
(c) are obtained for TcnðnbÞ and TcpðnbÞ from panel (a); dot-

dashed lines: TcnðnbÞ is from panel (a), Tcp ! 1; dashed lines:

Tcn, Tcp ! 1. The right vertical dotted line indicates the bound-

ary between the SF and normal neutron matter (in the latter SF
thermal g-modes are absent). The left vertical dotted line shows
a similar boundary for protons. The convectively unstable re-
gions are filled with gray. Other notations are the same as in
Fig. 1.

FIG. 1 (color online). (a): N given by Eq. (6) (isothermal NS
matter, rT1 ¼ 0) versus nb for EOSs of Armani et al. [48],
Akmal-Pandharipande-Ravenhall (APR) [38], and Prakash-
Ainsworth-Lattimer (PAL) [49]. We adopt the model I of PAL
family with three values of the compression modulus, 120, 180,
and 240 MeV. (b): rT1

crit given by Eq. (7) versus nb for APR

EOS. The convectively unstable regions are filled with gray. The
vertical dot-dashed line corresponds to the crust-core interface.
Both panels are plotted assuming T1 � T ¼ 107 K (the weak-
field approximation); they can be rescaled to any T � Tcn, Tcp

since both N and rT1
crit / T in this limit. Here and in Fig. 2

g ¼ 1014 cm s�2.
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however, that Fig. 1 is plotted for different T). One can see
that accounting for the nucleon thermal excitations
strongly affects N ðnbÞ and rT1

critðnbÞ. Let us note that

when T � Tcp the solid and dot-dashed curves coincide,

because in that case all protons are paired. At the phase
transition (when T ¼ Tcp, left vertical dotted line in

Fig. 2), solid lines for N and rT1
crit are discontinuous,

since discontinuous are � and C.
Summarizing, from the analysis of Figs. 1 and 2 it

follows that the thermal g-modes and convection in the
internal layers of SF NSs are extremely sensitive to
the EOS and the model of nucleon SF. An account for
the singlet neutron SF at nb & 0:08 fm�3 may additionally
affect N and rT1

crit near the crust-core interface.

IV. DISCUSSION AND CONCLUSION

Our results indicate that NSs can have convective inter-
nal layers. This could affect the thermal evolution of young
NSs (such as in Cas A), for which rT1 is not completely
smoothed out by the thermal conductivity, as well as the
thermal relaxation of quasipersistent X-ray transients
[40,41]. Notice that in this paper we only consider thermal
g-modes and convection in SF NS cores (but not in the
crust). If the NS crust is elastic then it is most likely that
core SF (thermal) g-modes do not penetrate the crust, while
the crustal SF g-modes are ‘‘mixed’’ with the shear modes
[9] (for which the restoring force is elasticity), and pushed
to frequencies ! � N (but see comment [42]). Then
convection is absent. However, if the inner crust (espe-
cially, mantle [15]) is plastic [43], the existence of crustal
SF g-modes and convection cannot be excluded, which can
have even more interesting implications for NS cooling.
The detailed analysis of (not yet well understood) effects of
the SF thermal g-modes and related convection on the
dynamics of NSs is postponed for future work.

How can the predicted thermal g-modes in SF NSs be
excited? Among the potential scenarios is the excitation of
stable g-modes by unstable ones (i.e., by convective mo-
tions). Another possibility was considered in Refs. [11,44]
in application to composition g-modes of normal NSs. It

consists in resonant excitations of SF thermal g-modes by
tidal interaction in coalescing binary systems. Finally, SF
thermal g-modes in rotating NSs could be excited due to
gravitational driven (CFS) instability [12], though this
scenario does not seem very realistic because N is low,
which results in a large gravitational radiation time scale.
In this paper we considered nonrotating NSs (rotation

frequency � ¼ 0). However, it is well known for non-
superfluid NSs that, at � * N , rotation affects g-modes
(which transform into inertial waves [45]) and modifies the
criterion for convection [46,47] (stabilizes the star). It is
quite likely that the same is also true for SF NSs. Bearing
in mind thatN is small (e.g., for our NS modelN 
 1�
102 s�1 for T ¼ 1:5	 108 K), this would mean that the
effects discussed in this paper would play a role only in not
too rapidly rotating NSs. Clearly, the problem of rotation
deserves future attention.
To conclude, we have predicted specific thermal

g-modes in SF NSs. We have shown that these modes
can propagate in npe-matter with nonzero gradient of
entropy per electron. We have calculated their Brunt-
Väisälä frequency N , which strongly depends on T and
vanishes at T ¼ 0. The predicted g-modes appear to be
unstable for certain temperature gradients (that correspond
to N 2 < 0). We have derived the criterion for convective
instability (analogue of the Schwarzschild criterion) in SF
NS cores. We have shown that convection in the NS core
may occur for both positive and negative temperature
gradients and is extremely sensitive to the model of EOS
and nucleon SF.
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