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Relativistic entrainment matrix of a superfluid nucleon-hyperon mixture:
The zero temperature limit
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We calculate the relativistic entrainment matrix Yik at zero temperature for a nucleon-hyperon mixture
composed of neutrons, protons, and � and �− hyperons, as well as electrons and muons. This matrix is analogous
to the entrainment matrix (also termed mass-density matrix or Andreev-Bashkin matrix) of nonrelativistic theory.
It is an important ingredient for modeling the pulsations of massive neutron stars with superfluid nucleon-hyperon
cores. The calculation is done in the frame of the relativistic Landau Fermi-liquid theory generalized to the case
of superfluid mixtures; the matrix Yik is expressed through the Landau parameters of nucleon-hyperon matter.
The results are illustrated with a particular example of the σ -ω-ρ mean-field model with scalar self-interactions.
Using this model, we calculate the matrix Yik and the Landau parameters. We also analyze the stability of the
ground state of nucleon-hyperon matter with respect to small perturbations.
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I. INTRODUCTION

Analyses of electromagnetic [1–4] and (in the future) grav-
itational [5–7] radiation from pulsating neutron stars can shed
light on the properties of superdense matter in their interiors.
The most interesting is the question about the composition
of massive neutron-star cores (nucleons? hyperons? quarks?
exotic matter?) as well as about the properties of superfluid
baryon matter (the dependence of baryon critical temperatures
on density, the type of pairing of various baryon species).

To interpret correctly the observational data, it is necessary
to have realistic theoretical models of pulsating neutron
stars. For that, one needs to formulate a hydrodynamics that
can be used to describe pulsations. Clearly, the ordinary
relativistic hydrodynamics (see, e.g., Ref. [8]), describing a
liquid composed of identical particles, is not suitable for this
purpose. The neutron-star cores are composed of a mixture
of various species of particles with baryons (nucleons and
hyperons) that can be in the superfluid state ([9–13]). The
hydrodynamics of superfluid mixtures strongly differs from
the ordinary one, because it allows the superfluid components
to move independently of the normal (nonsuperfluid) liquid
component without any dissipation of energy [14,15].

This paper is devoted to a study of the relativistic en-
trainment matrix, which is an important quantity in hydro-
dynamics of superfluid mixtures. We mainly focus on the
nucleon-hyperon matter in the core of massive neutron stars.
Notice that until now only the superfluid hydrodynamics of
nucleon matter, composed of neutrons (n), protons (p), and
electrons (e) with a possible admixture of muons (µ), has
been considered in astrophysical literature. Let us discuss the
results of previous works in more detail.

Assume that the neutrons and protons are in a superfluid
state. In this case, three independent velocities can exist in
nucleon matter. Two of them are the velocities V sn and V sp of
neutron and proton superfluid components, respectively. The
other is the velocity V qp of “normal” (nonsuperfluid) neutrons
and protons, as well as electrons and muons (it is assumed
that, due to collisions, it is the same for all normal particles).

The physical meaning of the phenomenological superfluid
velocities V sn and V sp can be understood on the basis of
microphysics (see, e.g., Ref. [16] and Sec. II B). It turns out
that the velocity V si is related to a Cooper pair momentum
2 Qi of nucleon species i = n, p by the equality

V si = Qi

mi

, (1)

where mi is the mass of a free particle species i.
The nonrelativistic expressions for the mass current density

of neutrons Jn and protons Jp have the form (see, e.g.,
Refs. [16–18])

Jn = (ρn − ρnn − ρnp)V qp + ρnnV sn + ρnpV sp, (2)

Jp = (ρp − ρpp − ρpn)V qp + ρppV sp + ρpnV sn. (3)

Here ρn and ρp are the neutron and proton density, respec-
tively; ρik = ρki is the symmetric 2 × 2 entrainment matrix,
also termed Andreev-Bashkin or mass-density matrix (i, k =
n, p). It follows from Eqs. (2) and (3) that superfluid motion
of, for example, neutrons contributes not only to Jn but also to
Jp (and the same for protons). For the first time this effect was
predicted, as applied to superfluid solutions of 3He in 4He, by
Andreev and Bashkin [19]. The prefactors in front of V qp in
Eqs. (2) and (3) can be interpreted as the densities of normal
neutrons and protons, respectively. Since at zero temperature
(T = 0) all particles are paired, these densities vanish, and we
have [16–18]

ρn = ρnn + ρnp, (4)

ρp = ρpp + ρpn. (5)

More strictly, these conditions can be obtained from the re-
quirement of Galilean invariance of the equations of superfluid
hydrodynamics at T = 0 [17,18].

The matrix ρik was calculated for the case of T = 0 in
Refs. [17,18] and for arbitrary temperatures in Ref. [16]. In
both cases, the authors used the nonrelativistic Fermi-liquid
theory of Landau. Though neutrons and especially protons in
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the cores of low-mass neutron stars can be (with a reasonable
accuracy) considered as nonrelativistic, more self-consistent
(and necessary in the case of massive neutron stars) is the
approach, in which nucleons are treated in the frame of
relativistic theory. Following Refs. [20–23], the relativistic
analog of Eqs. (2) and (3) can be presented in the form

j i =
(

ni −
∑

k

µkYik

)
u + c2

∑
k

Yik Qk. (6)

Here j i is the particle current density (i = n, p); c is the speed
of light; u is the spatial component of the four-velocity uµ,
normalized by the condition uµuµ = −c2, and describing the
motion of normal part of liquid; ni and µi are, respectively, the
number density and relativistic chemical potential of particle
species i, measured in the frame where uµ = (c, 0, 0, 0).
Finally, the symmetric matrix Yik is the relativistic analog of
the entrainment matrix ρik . In the nonrelativistic limit, Eq. (6)
is equivalent to Eqs. (2) and (3) under conditions that

u = V qp, ρik = mimkc
2Yik, (7)

The prefactor in front of u in Eq. (6) can be interpreted (by
analogy with the nonrelativistic case) as the number density of
normal (nonsuperfluid) particle species i. At zero temperature,
this number density vanishes. This imposes a condition on the
matrix Yik [21] ∑

k

µkYik = ni. (8)

Taking into account this condition, Eq. (6) can be rewritten (at
T = 0) in the form

j i = c2
∑

k

Yik Qk. (9)

The matrix Yik for matter composed of neutrons and protons
was calculated at T = 0 in Ref. [24] (the authors of Ref. [24]
used a somewhat different formalism, see, e.g., the review [25]
and references therein). The calculation was done in the frame
of the relativistic σ -ω mean-field model.

This paper is a natural continuation of the research
described above. Our aim is to calculate the relativistic entrain-
ment matrix Yik at zero temperature for matter composed not
only of nucleons, electrons, and muons, but also of hyperons.
We consider only two types of hyperons, namely, � and �−
hyperons (to be denoted by � and �, respectively). In most
of the calculations, presented in the literature, they appear
first in the neutron-star matter with increasing density (see,
however, Ref. [26]). We wish to emphasize that analytical
results, obtained in this paper, can be (in principle) applied to
any number of superfluid baryon species.

At this point it is convenient to make a few remarks con-
cerning the hyperon interactions and superfluidity. First, recent
experiments indicate that the interaction of �−-hyperons with
nucleons is repulsive (see, e.g., Ref. [26]). For a sufficiently
strong repulsion, it is possible that �− hyperons may not
appear in the neutron stars at all. In this case, they can be (in
some models) “replaced” by �− hyperons (see the discussion
of Fig. 11 in Ref. [26]). However, in the case of not very
strong repulsion, �− hyperons can appear rather close to a

density threshold for � hyperons (see, e.g., Refs. [27,28].
The repulsion can also shift the critical temperature of
�− hyperons from about (5 × 1010)–(5 × 1011) K (see, e.g.,
Refs. [13,29,30]) to a lower value.

Second, as suggested by the Nagara event [31], ��

attraction can be weaker than it was assumed before. This
may result in substantial decreasing of critical temperature of
� hyperons (from 109–1010 K to a temperature much less
than 108 K, see Ref. [13]). However, it is too early to draw
a final conclusion (see, e.g., the criticism of this result on
p. 23 of Ref. [13]). The real interaction may be stronger than
that deduced from the event (and, of course, new experimental
evidence is necessary).

Even if we assume the weak attraction of � hyperons and
the repulsion between �− hyperons and nucleons, it is possible
that the inclusion of in-medium effects or three-body forces
may significantly influence (increase or further decrease) the
hyperon critical temperatures. Moreover, the exotic pairing
of � and �− hyperons may take place [32]. Taking into
account the above discussion, it is reasonable to treat hyperon
critical temperatures as free parameters. Since in this paper we
consider the case of zero temperature, below we assume that
all baryon species are superfluid.

The phenomenological equations (1) and (6)–(9), which
are discussed in this section in the context of nucleon
matter, remain unchanged for nucleon-hyperon matter. The
only difference is that now the indices i and k run over
i, k = n, p,�,� (see also Ref. [23]). Thus, now Yik is a 4 ×
4 matrix.

The paper is organized as follows. In Sec. II, the relativistic
Landau Fermi-liquid theory [33] is generalized to the case of
superfluid mixtures. In the frame of this theory, we calculate the
matrix Yik and express it through the Landau parameters f ik

1
of nucleon-hyperon matter. In Sec. III, the general results of
Sec. II are illustrated with a particular example of the σ -ω-ρ
mean-field model with scalar self-interactions [34]. Namely,
we (i) calculate the matrix Yik , (ii) determine all (spin-
averaged) Landau parameters corresponding to this model,
and (iii) analyze the stability of the ground state of nucleon-
hyperon matter with respect to small perturbations. Section IV
contains a summary of our results.

II. RELATIVISTIC ENTRAINMENT MATRIX AT ZERO
TEMPERATURE FROM THE LANDAU FERMI-LIQUID

THEORY

A. Relativistic Landau theory for mixtures of Fermi liquids

In this section, we briefly discuss how to generalize the
Landau Fermi-liquid theory to the case of a nucleon-hyperon
mixture composed of neutrons, protons, and � and �− hyper-
ons. The original nonrelativistic Landau Fermi-liquid theory
(e.g., Refs. [35,36]) was extended to the case of mixtures
of protons and neutrons in the paper by Sjöberg [37] (see
also Ref. [17]). The relativistic generalization of the Landau
Fermi-liquid theory was given by Baym and Chin [33] (who
considered a Fermi-liquid composed of identical particles).

The generalization of the Landau theory to the case of
relativistic mixtures composed of more than one component
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can be made in the same way as in Refs. [33,37]. Thus, we
only briefly describe the main formulas of the theory which
will be used subsequently. Notice, that the results obtained
below in Sec. II can be applied to a Fermi-liquid composed
of any number of baryon species (not necessarily four). In
this case, the particle indices in equations should run over all
baryon species.

Unless stated otherwise, throughout the rest of this paper
we use the system of units in which the Planck constant h̄, the
Boltzmann constant kB, and the speed of light c equal unity,
h̄ = kB = c = 1. We also imply that the subscripts i and k

refer to baryons.
As demonstrated in Ref. [33], generally, the structure of

the relativistic Landau theory of Fermi liquids is the same
as that of the nonrelativistic theory. The only results of both
theories that differ are those obtained using Lorentz (Galilean)
transformation properties of various quantities (in particular,
the energy and momentum). For instance, we will show that
the relativistic expression for the effective mass of particle
species i differs from its nonrelativistic analog.

Let us consider a system in the ground state with the
energy E0 at temperature T = 0. The distribution function
of quasiparticle species i is then a Fermi sphere,

ni0( p) = θ (pFi − p), (10)

where p is the quasiparticle momentum; θ (x) is the step
function, θ (x) = 1, if x > 0 and 0 otherwise. A small deviation
δni( p) of the distribution function from ni0( p) changes the
system energy by

E − E0 =
∑
psi

εi0( p)δni( p)

+ 1

2

∑
p p′ss ′ik

f ik( p, p′) δni( p)δnk( p′). (11)

Addition of one more quasiparticle of a species i, with the
momentum p, to the system, increases the total energy E by
the energy εi( p) of the quasiparticle. From Eq. (11), it follows
that

εi( p) = εi0( p) +
∑
p′s ′k

f ik( p, p′) δnk( p′). (12)

In Eqs. (11) and (12), p and p′ are the particle momenta;
s and s ′ are the spin indices; i, k = n, p,�, and � are the
baryon species indices. Furthermore, εi0( p) is the energy of
a quasiparticle of species i, corresponding to the distribution
function ni0( p). It can be expanded into a series near the Fermi
surface in powers of the quantity p − pFi and presented in the
linear form

εi0( p) ≈ µi + vFi(p − pFi), (13)

where pFi is the Fermi momentum of (quasi)particle species
i; µi = εi0(pFi) is the relativistic chemical potential or,
equivalently, the Fermi energy of quasiparticle species i;
vFi = [∂εi0( p)/∂ p]p=pFi

is the velocity of quasiparticles on
the Fermi surface. It can also be expressed as vFi ≡ pFi/m∗

i ,
where m∗

i is the effective mass of quasiparticle species i.
Finally, the function f ik( p, p′) in Eq. (12) is the spin-
averaged Landau quasiparticle interaction. (Here and below

we disregard the spin dependence of this interaction, since it
does not affect our results.) In the vicinity of the Fermi surface,
the arguments of the function f ik( p, p′) can be approximately
put equal to p ≈ pFi and p′ ≈ pFk , while the function itself
can be expanded into Legendre polynomials Pl(cos θ),

f ik( p, p′) =
∑

l

f ik
l Pl(cos θ ), (14)

where θ is the angle between p and p′ and f ik
l are the

(symmetric) Landau parameters, f ik
l = f ki

l .
As in the nonrelativistic case, the effective mass m∗

i in the
relativistic theory can be expressed in terms of the Landau
parameters f ik

1 . To find this relation, let us consider, following
Ref. [33], two frames K and K and assume that the frame
K moves with velocity V with respect to K . Below in this
section, the quantities marked with an overline will refer to
the frame K; while those without the overline, to the frame
K . The total energy of nucleon-hyperon mixture E (E) and its
momentum P(P) are related by the Lorentz transformation

E = (E + P V )γ, (15)

P = P − eV
(
eV P

)
(1 − γ ) + EVγ. (16)

In Eqs. (15) and (16), γ = (1 − V 2)−1/2; eV is the unit vector
along V .

Now imagine that we add a quasiparticle of a species i,
of momentum p and energy εi( p), to the system. Then the
total momentum and energy in the frame K become equal to
P + p and E + εi( p), respectively. On the other hand, the
momentum and energy in the frame K will be P + p and
E + εi( p). Consequently, using Eqs. (15) and (16), one obtains
the transformation rules for the quasiparticle momentum and
energy

εi( p) = [εi( p) + pV ]γ, (17)

p = p − eV (eV p) (1 − γ ) + εi( p)Vγ. (18)

We need to know also how the distribution function of
quasiparticle species i transforms from one frame to another.
The answer is given by the standard formula

ni( p) = ni( p). (19)

Assume now, that V satisfies the inequality, V � vFi . Then we
have also V � 1 and, as follows from Eqs. (17)–(19), keeping
linear terms in V , one gets

εi( p) = εi( p) + ∂εi( p)

∂ p
εi( p)V − pV , (20)

ni( p) = ni( p) + ∂ni( p)

∂ p
εi( p)V . (21)

In the case of noninteracting relativistic particles, the sum of
the two last terms on the right-hand side of Eq. (20) equals
zero, hence εi( p) = εi( p).

In addition to Eq. (20), there is one more condition relating
εi( p) and εi( p). In fact, it follows from Eq. (12) that for any
chosen momentum p the quasiparticle energy εi( p) in the
frame K will differ from the energy εi( p) in the frame K only
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to the extent that ni( p) differs from ni( p). In other words,

εi( p) = εi( p) +
∑
p′s ′k

f ik( p, p′)
[
nk( p′) − nk( p′)

]
. (22)

Substituting into Eq. (22), εi( p) and ni( p) from Eqs. (20) and
(21), respectively, one obtains[

∂εi( p)

∂ p
εi( p) − p

]
V −

∑
p′s ′k

f ik( p, p′)
∂nk( p′)

∂ p′ εk( p′)V =0.

(23)

For a system in its ground state, one has ni( p) = ni0( p) and
εi( p) = εi0( p) [see Eqs. (10) and (13)]. At p = pFi , Eq. (23)
relates the effective mass m∗

i and the Landau parameters f ik
1

µi

m∗
i

= 1 −
∑

k

µkGik

ni

. (24)

Here the number density of particle species i is given by

ni = p3
Fi

3π2
, (25)

while the symmetric matrix Gik equals

Gik = 1

9π4
p2

Fip
2
Fkf

ik
1 . (26)

For a liquid composed of identical particles, Eq. (24) trans-
forms into the equation (13) of Ref. [33]. The nonrelativistic
limit of Eq. (24) can be obtained if one replaces µi by mi .
Applying then this formula to a mixture of two species of
baryons, one reproduces the result of Sjöberg [37] (see also
Refs. [17,18]).

B. Calculation of the relativistic entrainment matrix

Let us employ the theory described above to calculate the
relativistic entrainment matrix Yik at zero temperature. At
first glance, this theory seems inappropriate for calculation
of superfluid properties of nucleon-hyperon matter because it
describes the normal Fermi fluid. However, as was demon-
strated by Leggett [38,39] in the context of superfluid 3He, the
particle current density j i of particle species i in superfluid
nucleon-hyperon matter is given by the same equation as in
the case of normal (nonsuperfluid) matter, namely,

j i =
∑

ps

∂εi( p)

∂ p
ni( p). (27)

All that we need to know is how the superfluid motions modify
the distribution function ni( p) of quasiparticles. One also has
to take into account that a change of ni( p) results in a change
of the quasiparticle energy εi( p). Leggett [38] showed that this
energy can be calculated from the same formula (12) as for
normal matter (see also Refs. [16–18,24]).

As already mentioned in Sec. I, the superfluid current
is generated in the system when the Cooper pairs acquire
a nonzero momentum 2 Qi . In this case, they are formed
by pairing of quasiparticles with momenta (− p + Qi) and
( p + Qi) (rather than with strictly opposite momenta − p
and p, as it would be in the system without currents). The

distribution function ni( p) for a system with currents can be
especially easily found at zero temperature. In this case, all
quasiparticles are paired and, up to small terms of the order of
O[(
/µ)2 + ( Qi/µ)2] (where 
 is some characteristic value
of an energy gap in the dispersion relation for baryons; µ is the
characteristic chemical potential of baryons), ni( p) is a Fermi
sphere, shifted by the vector Qi in momentum space (see, e.g.,
Refs. [17,18,24]),

ni( p) = θ (pFi − | p − Qi |). (28)

Here and below we assume that Qk � pFi . In this case, we
may restrict ourselves to a linear in Qk terms when calculating
j i . Using the distribution function (28) as well as Eq. (12)
for the energy of quasiparticle species i in which δni( p) ≡
θ (pFi − | p − Qi |) − ni0( p) ≈ −[∂ni0( p)/∂ p] Qi , one gets
from Eq. (27)

j i = −
∑

ps

∂εi0( p)

∂ p

[
∂ni0( p)

∂ p
Qi

]

−
∑

ps

∂

∂ p

⎡
⎣∑

p′s ′k

f ik( p, p′)
∂nk0( p′)

∂ p′ Qk

⎤
⎦ ni0( p).

(29)

The first term in the right-hand side of Eq. (29) equals I =
ni/(m∗

i ) Qi . Integrating by parts the second term, one has II =∑
k Gik Qk , where the matrix Gik is defined by Eq. (26). Thus,

one finds for the particle current density j i

j i = ni

m∗
i

Qi +
∑

k

Gik Qk. (30)

Comparison of this result with Eq. (9) allows one to determine
the expression for relativistic entrainment matrix Yik(δik is the
Kronecker symbol)

Yik = ni

m∗
i

δik + Gik. (31)

Using Eq. (24) we verified that the matrix Yik satisfies the
condition (8).

The energy of nucleon-hyperon matter with superfluid
currents can be also expressed through the matrix Yik . From
Eq. (11) it follows that

E − E0 = 1

2

∑
ik

Yik Qi Qk. (32)

An analogous formula, valid for an arbitrary temperature
(not only for T = 0) was obtained for a mixture of two
nonrelativistic superfluids by Andreev and Bashkin [19].
Notice that the difference (E − E0) can be interpreted as
the energy of superfluid motion. For a stable superfluid
ground state, E − E0 > 0, and hence the quadratic form in the
right-hand side of Eq. (32) should be positively defined. This
leads to a set of conditions on the matrix Yik or, equivalently,
on the Landau parameters f ik

1 . Here we will write only the
simplest two of them (see also [18,19])

Yii � 0, YiiYkk − Y 2
ik � 0 (i �= k). (33)
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III. RELATIVISTIC ENTRAINMENT MATRIX AT ZERO
TEMPERATURE FROM THE σ -ω-ρ MODEL WITH

SCALAR SELF-INTERACTIONS

Let us apply the general results obtained in Sec. II to
a specific model describing the interaction of baryons, the
σ -ω-ρ mean-field model with scalar self-interactions. Our aim
will be to calculate in the frame of this model the relativistic
entrainment matrix Yik as well as the Landau parameters f ik

l

of nucleon-hyperon mixture.
We choose the σ -ω-ρ model rather than, for example, a

more elaborate mean-field model including hidden strangeness
σ ∗ and φ mesons (which mediate interaction between hyper-
ons) for two reasons. First of all, it is a relatively simple yet still
realistic model to start with. Second, the hidden strangeness
mesons were originally proposed to simulate strong hyperon-
hyperon interaction. However, the Nagara event [31] suggests
that �� interaction in 6

��He can be weak. To explain such
a weak interaction, the σ -ω-ρ model is sufficient (see, e.g.,
Ref. [40]). Bearing this in mind and taking into account that
the hyperon-meson coupling constants are known with large
uncertainty, our choice of the model seems justifiable.

To present a quantitative example supporting our simple
model, let us refer to a specific model of neutron star cores
[27]. This model assumes a weak �� interaction and includes
the σ ∗ and φ mesons. As seen in Fig. 6 of Ref. [27], the
contribution of the σ ∗ meson to the hyperon effective masses
is at most a few percent of that resulting from the σ meson.
Similarly, the φ meson potential in which hyperons move is
at most a few percent of the contribution resulting from the ω

meson. This example suggests that the contribution of the σ ∗
meson to the hyperon entrainment matrix is small, while that
of the φ meson may be expected to be small.

A. σ -ω-ρ mean-field model with scalar self-interactions:
General equations

The σ -ω-ρ model with scalar self-interactions is described
in detail in the monograph by Glendenning [41] (see also
Ref. [34]). Here we briefly discuss its main equations which
will be used below to calculate the relativistic entrainment
matrix Yik . Let us consider a system of baryons n, p,�, and
� in some uniform state. Interactions among those baryons
are mediated by three different kinds of meson fields: scalar
σ field, vector ω field, and an isospin triplet of charged vector
�ρ fields. The mean-field approximation assumes that the σ, ω,
and �ρ fields are replaced by their mean expectation values
in the chosen state. We denote these values by σ, ωµ, and
�ρµ = (ρµ

1 , ρ
µ

2 , ρ
µ

3 ), respectively (µ is the space-time index).
These mean values are to be calculated from the following
(averaged) Euler-Lagrange equations [41]:

m2
σ σ = −bmngσn(gσnσ )2 − cgσn(gσnσ )3

+
∑
psi

gσ i

mi − gσiσ√
( p − gωiω − gρiI3iρ3)2 + (mi − gσiσ )2

× ni( p), (34)

ωµ =
∑

i

gωi

m2
ω

j
µ

i , (35)

ρ
µ

1 = ρ
µ

2 = 0, (36)

ρ
µ

3 =
∑

i

gρi

m2
ρ

I3ij
µ

i . (37)

One sees that only the third isospin component ρ
µ

3 of the �ρ
field, which corresponds to the neutral ρ meson, has nonzero
mean value. In Eqs. (34)–(37) the summation is performed
over the baryon species i = n, p,�, and �; ml is the mass of
meson species l = σ, ω, or ρ1,2,3; gli is the coupling constant
of meson l and baryon i; and I3i is the isospin projection
for baryon species i. Furthermore, ni( p) is (as in Sec. II A)
a distribution function of particle species i; b and c are some
dimensionless constants describing the self-interaction of the
scalar σ field; and ω and ρ3 are the spatial components of
four-vectors ωµ and ρ

µ

3 , respectively. The ω and ρ3 fields are
generated by the baryon four-currents j

µ

i on the right-hand
side of Eqs. (35) and (37). They are given by

j 0
i = ni =

∑
ps

ni( p), (38)

j i =
∑

ps

∂Ei( p)

∂ p
ni( p), (39)

where the number density ni and the particle current density
j i are measured in the laboratory frame; Ei( p) is the energy
of a baryon species i

Ei( p) = gωiω
0 + gρiI3iρ

0
3

+
√

( p − gωiω − gρiI3iρ3)2 + (mi − gσiσ )2. (40)

In Eqs. (34), (38), and (39), the summation is performed over
the momentum states occupied by the particles. If our system is
not only uniform but also isotropic, then (at zero temperature)
the distribution function ni( p) is a Fermi sphere centered at
p = 0 in the momentum space, so that we have [see Eq. (10)]

ni( p) = ni0( p). (41)

Substituting the distribution function (41) into Eq. (38),
one obtains that the time component j 0

i = ni is given by
Eq. (25). Moreover, in this special case the spatial components
of four-vectors ωµ, ρ

µ

3 , and j
µ

i vanish, ω = ρ3 = j i = 0
(there is no preferred direction!), while the σ field and the
time components are still given by Eqs. (34), (35), and (37)
with ni( p) and j 0

i taken from Eqs. (41) and (25), respectively.
The chemical potential µi of baryon species i is presented in
the form

µi = gωiω
0 + gρiI3iρ

0
3 +

√
p2

Fi + (mi − gσiσ )2. (42)

It is the energy of a particle on the Fermi surface.

B. Relativistic entrainment matrix from the σ -ω-ρ
mean-field model

A derivation of the matrix Yik in the frame of the σ -ω-ρ
mean-field model with scalar self-interactions is completely
analogous to the derivation presented in Sec. II B for the case
of relativistic Landau Fermi-liquid theory. In nucleon-hyperon
matter in which the superfluid currents are generated, the
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FIG. 1. Normalized symmetric matrix Yik/Y as
a function of nb for the third equation of state
of Glendenning [34]. The normalization constant
Y = 3n0/µn(3n0) = 2.48 × 1041 erg−1cm−3. Solid
lines show the elements of the matrix Yik/Y ; each
curve is marked by the corresponding symbol ik
(i, k = n, p,�, �). Vertical dotted lines indicate
the thresholds for the appearance of (from left to
right) � and �− hyperons.

distribution function for baryon species i is approximately
described by Eq. (28).

The superfluid current density j i is given by Eq. (39) with
the energy Ei( p) calculated from Eq. (40) with the help of
Eqs. (34), (35), and (37).

As mentioned in Sec. II B, we restrict ourselves to a
linear approximation when calculating j i as a function of
Qk . In this approximation, the scalar σ field as well as the
time components ω0 and ρ0

3 remain the same (their variation
∼ Qi Qk), whereas the spatial components ω and ρ3 depend on
some linear combinations of the vectors Qk . It follows from
Eqs. (39) that

j i =
∑

ps

∂Ei( p)

∂ p
θ (pFi − | p − Qi |)

=
∑

ps

∂Ei( p + Qi)

∂ p
ni0( p)

=
∑

ps

∂

∂ p

[√
p2 + (mi − gσiσ )2

+ p( Qi − gωiω − gρiI3iρ3)√
p2 + (mi − gσiσ )2

]
ni0( p)

= ni√
p2

Fi + (mi − gσiσ )2
( Qi − gωiω − gρiI3iρ3). (43)

This equation should be supplemented by the expressions (35)
and (37) for ω and ρ3, respectively,

ω =
∑

i

gωi

m2
ω

j i , (44)

ρ3 =
∑

i

gρi

m2
ρ

I3i j i . (45)

Solving the system of six equations (43)–(45) one can find j i

and the vectors ω and ρ3 as functions of Qk . In this way the
relativistic entrainment matrix Yik can be determined at zero
temperature. The analytic expression for Yik is given in the
Appendix. It is easy to verify that the matrix Yik satisfies the
condition (8).

Note that, in the limiting case considered by Comer and
Joynt [24], our results for the matrix Yik do not reproduce
theirs. Their results do not satisfy condition (8). Let us recall
that the authors of Ref. [24] considered asymmetric nuclear

matter composed of neutrons, protons, and electrons. They
assumed that nucleons interact through σ and ω fields (the
neutral ρ3 field and self-interactions of the σ field were
neglected). The criticism of such an assumption can be found
in Ref. [42].

Figure 1 presents the normalized elements Yik/Y of
symmetric matrix Yik , calculated using Eq. (A1), as functions
of the baryon number density nb = nn + np + n� + n� for
the third equation of state of Glendenning [34]. The constant
Y equals Y = 3n0/µn(3n0) = 2.48 × 1041 erg−1cm−3, where
n0 = 0.16 fm−3 is the normal nuclear density; µn(3n0) =
1.94 × 10−3 erg is the neutron chemical potential at nb = 3n0.
Each curve on the figure is plotted for some normalized
element of the matrix Yik and marked with two particle species
indices ik. For instance, symbols n� on the figure (right panel)
mark a curve plotted for the element Yn�/Y (= Y�n/Y ). The
chosen equation of state predicts first the appearance of �

hyperons at nb = nb� = 0.310 fm−3 and then �− hyperons
at nb = nb� = 0.319 fm−3. One sees that at nb < nb� (no
hyperons), all the components of Yik related to hyperons
become zero.

C. Calculation of Landau parameters

The σ -ω-ρ model described above can be reformulated
in terms of the relativistic Landau theory of Fermi liquids
(see Sec. II). For that, it is necessary to calculate the Landau
parameters of nucleon-hyperon matter. For nucleon matter,
the Landau parameters were calculated for various relativistic
mean-field models in a series of papers (see, e.g., Refs. [43–
48]) The derivation of these parameters for nucleon-hyperon
matter is quite similar. The main idea of the derivation is
to consider a small deviation of the distribution function of
baryon species i from ni0( p) [see Eq. (10)] and to analyze
how it modifies the energy of baryon species k. Then the
result should be compared with the corresponding Eq. (12)
for the energy variation in the frame of the Landau theory. In
this way, one obtains the function f ik( p, p′) or, equivalently,
the parameters f ik

l . In Refs. [43–48], dealing with the case
of nucleon matter, it is shown that only the first two Landau
parameters are nonzero: f ik

0 and f ik
1 . We checked that the same

is true for nucleon-hyperon matter, f ik
l = 0 at l � 2. In view of

this observation, it is enough to find only the parameters f ik
0

and f ik
1 .

Strictly speaking, the parameters f ik
1 have already been

calculated in the previous section. Indeed, it follows from
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FIG. 2. Normalized Landau effective masses m∗
i /mi(i =

n, p,�, �) vs nb for the third equation of state of Ref. [34]. Vertical
dotted lines indicate thresholds for the appearance of (from left to
right) � and �− hyperons.

Eq. (31) that

f ik
1 = 9π4

p2
Fip

2
Fk

(
Yik − ni

m∗
i

δik

)
, (46)

where Yik is given by Eq. (A1), and the Landau effective masses
m∗

i (not to be confused with the Dirac effective mass!) equal

m∗
i = pFi

|∂Ei( p)/∂ p|p=pFi

=
√

p2
Fi + (mi − gσiσ )2. (47)

Figure 2 illustrates the dependence of normalized Landau
effective mass m∗

i /mi(i = n, p,�,�) on nb for the third
equation of state of Glendenning [34].

Now let us calculate the parameters f ik
0 . For that we slightly

vary the Fermi momentum pFi by a small quantity 
pFi . This
will alter ni0( p) by

δni( p) = θ (pFi + 
pFi − p) − ni0( p), (48)

while the variation of the energy of baryon species i (on the
Fermi surface) will be [see Eq. (12)]

δεi(pFi) =
∑

k

f ik
0 δnk. (49)

Here δnk = p2
Fk
pFk/π

2 is the variation of the number density
of particle species i. On the other hand, if we consider the
σ -ω-ρ model, the variation of the baryon energy on the Fermi
surface will be [in the first approximation, see Eq. (40)]

δEi(pFi) = gωiδω
0 + gρiI3iδρ

0
3 − gσi(mi − gσiσ )

m∗
i

δσ. (50)

The small terms δσ, δω0, and δρ0
3 can be expressed through

δnk from Eqs. (34), (35), and (37), respectively,

δσ = 1

L(σ )

∑
k

gσk(mk − gσkσ )

m∗
k

δnk, (51)

δω0 =
∑

k

gωk

m2
ω

δnk, (52)

δρ0
3 =

∑
k

gρk

m2
ρ

I3kδnk. (53)

The function L(σ ) in Eq. (51) is given by

L(σ ) = ∂

∂σ

⎡
⎣m2

σ σ + bmngσn(gσnσ )2 + cgσn(gσnσ )3

−
∑
psi

gσ i(mi − gσiσ )√
p2 + (mi − gσiσ )2

ni0( p)

⎤
⎦ . (54)

Substituting now Eqs. (51)–(53) into Eq. (50) and comparing
the resulting expression with Eq. (49), one finds the Landau
parameters f ik

0

f ik
0 = gωigωk

m2
ω

+ gρiI3igρkI3k

m2
ρ

− 1

L(σ )

gσi(mi − gσiσ )

m∗
i

gσk(mk − gσkσ )

m∗
k

. (55)

It follows from Eqs. (46) and (55) that the parameters f ik
0 and

f ik
1 are indeed symmetric in the indices i and k.

Just as the parameters f ik
1 must guarantee the positive

definiteness of the quadratic form (32), the parameters f ik
0

must satisfy a number of conditions. These conditions are
related to stability of a charged multicomponent mixture with
respect to density fluctuations and were carefully analyzed
for nucleon matter (see, e.g., Refs. [49–53]). They depend
essentially on the matter composition and on the applied
perturbation. Here we consider an equilibrated matter of
massive neutron stars composed of not only nucleons (n and
p) and hyperons (� and �) but also electrons (e) and muons
(µ). As an example, we analyze the stability of such matter
with respect to long-wavelength density fluctuations.

The stability conditions follow from the requirement of
a minimum of the free energy F ≡ E − ∑

j µjnj (at fixed
µj ; j = n, p,�,�, e, µ) for the system in thermodynamic
equilibrium, at T = 0. Using Eq. (11) for the variation of
energy of baryons, it is easy to find a variation δF = δE −∑

j µj δnj caused by a small change of δnj ( p) [see Eq. (48)
with j instead of i]:

δF = 1

2

∑
ik

(
1

Ni

δik + f ik
0

)
δniδnk

+ 1

2

∂µe

∂ne

(δne)2 + 1

2

∂µµ

∂nµ

(δnµ)2. (56)

Here Ni ≡ m∗
i pF i/π

2 is the density of states of particle
species i on the Fermi surface; µl and nl are, respectively, the
relativistic chemical potential and number density of electrons
(l = e) and muons (l = µ). To derive Eq. (56), we presented
the variation δEl of the energy El of leptons, in the form
(l = e, µ)

δEl = ∂El

∂nl

δnl + 1

2

∂2El

∂n2
l

(δnl)
2 = µlδnl + 1

2

∂µl

∂nl

(δnl)
2.

(57)

As it should be, the expansion of F begins with the terms of
the second order in δnj . The requirement of a minimum of F

means that δF � 0; that is, the quadratic form in the right-hand
side of Eq. (56) must be positively defined.
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FIG. 3. Dimensionless Landau parameters F ik
0

vs nb for the third equation of state of Ref. [34].
Other notations are the same as in Figs. 1 and 2.

In Eq. (56) for the variation δF of the free energy, we
neglected a positive term related to the Coulomb energy of
the perturbed matter. However, it must be taken into account
if the perturbed matter acquired a nonzero charge, which is
the case when δnp − δne − δnµ − δn� �= 0. The contribution
of the Coulomb energy to δF is then ∼q−2 (see, e.g.,
Refs. [49,50,52]), where q is the wave number of plane-wave
density fluctuation. Here we are interested only in the limit of
long wavelengths, for which q → 0. In this limit, the positive
Coulomb energy can be arbitrarily large, so that the matter
is stable against the long-wavelength density perturbations at
any density. To exclude the “stabilizing” contribution of the
Coulomb energy, we consider only those variations δnj of the
number densities that preserve the charge neutrality,

δnp − δne − δnµ − δn� = 0. (58)

Expressing δne using this equation and substituting it into
Eq. (56), one finds

δF = 1

2

∑
jm

Ajmδnj δnm, (59)

where the indices j and m run over all particle species except
for electrons. The 5 × 5 matrix Ajm is given by

Ajm =
(

δjm

Nj

+ f
jm

0

)
δjbδmb + ∂µe

∂ne

qjqm + ∂µµ

∂nµ

δjµδmµ.

(60)

Here δjb and δmb equal 1 if j and m = n, p,�,� and 0
otherwise; qj and qm are, respectively, the electric charges
of particle species j and m in units of proton charge (e.g.,
qe = −1).

The requirement of positive definiteness of the quadratic
form (59) imposes a set of conditions on the matrix elements
Ajm or, equivalently, on the parameters f ik

0 ; we write out only
the simplest two of them:

Ajj � 0, (61)

AjjAmm − (Ajm)2 � 0 (j �= m). (62)

These conditions are very well known in the literature devoted
to stability of nucleon matter (see, e.g., Refs. [49,50,52]). For
a mixture composed of neutral strongly interacting baryons,
they can be simplified and presented in the form (see, e.g.,
Refs. [51])

1 + F ii
0 � 0, (63)(

1 + F ii
0

)(
1 + Fkk

0

) − (
F ik

0

)2 � 0 (i �= k), (64)

where the indices i and k refer to baryons, and we introduced
the dimensionless Landau parameters F ik

l ,

F ik
l ≡

√
NiNk f ik

l . (65)

Our results are illustrated in Figs. 3 and 4, where the param-
eters F ik

0 and F ik
1 are presented for the third equation of state of

Glendenning [34] as functions of nb. The Landau parameters
for neutrons and protons are plotted on the left panels in
Figs. 3 and 4 (i, k = n, p). The right panels demonstrate
the Landau parameters related to hyperons (i = �,�; k =
n, p,�,�).

We checked that the nucleon-hyperon matter is stable down
to baryon number density nb = 0.34n0 = 0.055 fm−3 where
the instability occurs (there are no hyperons and muons at
such nb). Mathematically, the occurrence of instability means

FIG. 4. Same as Fig. 3, but for F ik
1 .
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that the inequality (62) is not satisfied at nb < 0.34n0 =
0.055 fm−3. Thus, the matter is unstable with respect to
long-wavelength density fluctuations. All other criteria, which
are necessary for positive definiteness of the quadratic forms
(32) and (59), are obeyed.

This type of instability is related to the crust-core phase
transition and is carefully analyzed in the neutron-star lit-
erature (see, e.g., Refs. [49,50,52–54]). Since we study the
stability of matter only in the extreme long-wavelength limit
and under the condition of microscopic charge neutrality,
our result for the baryon number density of the crust-
core interface is just the lower bound for the real value.
Precise calculations would give a slightly higher value.
For example, using the extended Thomas-Fermi approach,
Cheng et al. [54] found the crust-core boundary at 0.058–
0.073 fm−3, depending on the choice of the σ -ω-ρ model
parameters.

IV. SUMMARY

In this paper, we calculated the relativistic entrainment
matrix Yik at zero temperature for a nucleon-hyperon mixture
[see Eq. (31)]. This matrix is a relativistic analog of the
entrainment matrix ρik (also termed the mass-density matrix
or Andreev-Bashkin matrix) and is related to ρik in the
nonrelativistic limit by Eq. (7). The calculation is done in
the frame of relativistic Landau Fermi-liquid theory [33],
generalized to the case of mixtures. We show that, similar to
ρik (see, e.g., Refs. [17,18]), the matrix Yik can be expressed
through the Landau parameters f ik

1 of nucleon-hyperon matter
(i, k = n, p,�,�). If the number of baryon species is more
than four, then the indices i and k in Eq. (31) should run over
all these species.

The general results for Yik , following from the relativistic
Landau Fermi-liquid theory, are illustrated with an example
of the σ -ω-ρ mean-field model with scalar self-interactions.
Using this model, we obtain the analytic expression (A1)
for the matrix Yik . Comparison of this expression with
Eq. (31) allows us to determine the Landau parameters f ik

1
corresponding to the chosen mean-field model. Furthermore,
we calculate the parameters f ik

0 and find that all other (spin-
averaged) Landau parameters equal zero, f ik

l = 0 at l � 2.
In addition, we formulate a number of stability criteria for

β-equilibrated nucleon-hyperon matter [the positive definite-
ness of quadratic forms (32) and (59)]. Employing the third
equation of state of Glendenning [34], which is one of the
versions of the σ -ω-ρ model with scalar self-interactions, we
demonstrate that the nucleon-hyperon matter of neutron stars
is stable down to the crust-core interface.

Our results can be used to model the pulsations of cold
massive neutron stars with superfluid nucleon-hyperon cores.
The generalization of these results to the case of finite
temperatures will be given in a subsequent publication.
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APPENDIX

Using Eqs. (43)–(45), one can express the particle current
densities j i as functions of momenta Qk , and thus derive
the coefficients of relativistic entrainment matrix Yik at zero
temperature:

Yik = ni

m∗
i

[
δik − gωi

A

nk

m∗
k

(
gωk

m2
ω

a22 − gρkI3k

m2
ρ

a12

)

− gρiI3i

A

nk

m∗
k

(
gρkI3k

m2
ρ

a11 − gωk

m2
ω

a21

)]
. (A1)

Here m∗
i is given by Eq. (47), while the coefficients

a11, a12, a21, a22, and A are given by

a11 = 1 +
∑

i

g2
ωi

m2
ω

ni

m∗
i

, (A2)

a12 =
∑

i

gωigρiI3i

m2
ω

ni

m∗
i

, (A3)

a21 =
∑

i

gωigρiI3i

m2
ρ

ni

m∗
i

, (A4)

a22 = 1 +
∑

i

g2
ρiI

2
3i

m2
ρ

ni

m∗
i

, (A5)

A = a11a22 − a12a21. (A6)

In formulas (A2)–(A5) the summation is assumed over all
baryon species.
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