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Relativistic entrainment matrix of a superfluid nucleon-hyperon mixture.
II. Effect of finite temperatures

Mikhail E. Gusakov,1 Elena M. Kantor,1 and Pawel Haensel2
1Ioffe Physical Technical Institute, Politekhnicheskaya 26, RU-194021 Saint-Petersburg, Russia

2N. Copernicus Astronomical Center, Bartycka 18, PL-00-716 Warsaw, Poland
(Received 22 April 2009; published 9 July 2009)

We calculate the important quantity of superfluid hydrodynamics, the relativistic entrainment matrix for a
nucleon-hyperon mixture at arbitrary temperature. In the nonrelativistic limit this matrix is also termed the
Andreev-Bashkin or mass-density matrix. Our results can be useful for modeling the pulsations of massive
neutron stars with superfluid nucleon-hyperon cores and for studies of the kinetic properties of superfluid baryon
matter.
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I. INTRODUCTION

It is generally accepted that observations of pulsating
neutron stars may potentially provide unique information on
properties of superdense matter. For a correct interpretation of
the observations one has to develop a hydrodynamic theory
describing global pulsations.

In this paper we mainly focus on the hydrodynamics of
superfluid nucleon-hyperon matter of massive neutron-star
cores. More specifically, we study the important set of quanti-
ties of such hydrodynamics, the relativistic entrainment matrix.
We assume the following matter composition: electrons (e),
muons (µ), neutrons (n), protons (p), �-, and �−-hyperons
(� and �, respectively). According to majority of calculations,
� and �− are the hyperons, which appear first in the stellar
matter with the increasing density (see, however, Ref. [1] and
the discussion in Sec. I of Ref. [2]).

Let us explain the physical meaning of the relativistic
entrainment matrix. It is well known, that any baryon species
i (i = n, p,�, or �) becomes superfluid when temperature
T falls below some critical value Tci . The microscopic
calculations [3–10] predict that protons and hyperons pair in
the spin singlet (1S0) state, while neutrons in the core pair
in the spin triplet (3P2) state. In the most general case, when
all baryon species are superfluid, we have four condensates
and a normal (nonsuperfluid) liquid component. The normal
component includes electrons, muons, and baryon Bogoliubov
excitations. We assume that, because of collisions, all these
‘normal’ particles have the same hydrodynamic velocity.
Below in this paper we always work in the frame, comoving
with the normal liquid component.

If there are no superfluid currents in the system, then
Cooper pairs are formed by particles with strictly opposite
momenta (e.g., p and − p). The presence of superfluid currents
corresponds to a situation when pairing occurs between
particles with momenta ( p + Qi) and (− p + Qi). The total
momentum of a Cooper pair is then 2 Qi . In this case the
particle current density j i of a species i can be written as [2,11]

j i = c2
∑

k

Yik Qk. (1)

Here the summation is performed over all baryon species,

k = n, p,�, and �; c is the speed of light. Finally, Yik is the
4 × 4 relativistic entrainment matrix. It is symmetric, Yik =
Yki , and generally depends on the four baryon number densities
ni and temperature T . It follows from Eq. (1) that the superfluid
motion of one species contributes to particle current density of
another species (and vice versa). This ‘entrainment’ effect was
first suggested by Andreev and Bashkin [12] in the context of
superfluid solutions of 3He in 4He.

In the nonrelativistic limit the matrix Yik (more precisely,
its analog, the matrix ρik) was analyzed for a neutron-proton
mixture at zero temperature in Refs. [13–15] and at arbitrary
temperature in Ref. [16]. In our recent paper [2] (hereafter
GKH09) we calculate the relativistic entrainment matrix Yik

for the nucleon-hyperon matter in the approximation of zero
temperature. The aim of the present study is to extend the
analysis of GKH09 to finite temperatures. For that, the strongly
interacting nucleon-hyperon mixture is considered in the frame
of relativistic Landau theory of Fermi liquids, generalized to
allow for possible superfluidity of baryons.

In Eq. (1) it is assumed that the matrix elements Yik are
scalars. Strictly speaking, this is the case only if the matter is
isotropic in the absence of superfluid currents, i.e., if all baryon
species pair in the spin singlet (1S0) state. Meanwhile, neutrons
undergo triplet-state pairing. This leads to anisotropic neutron
energy gap �

(n)
p and to appearance of the preferred direction

along the neutron quantization axis. As a consequence, the
matrix elements Yik are tensors with respect to spatial rotations
(rather than scalars, as in the isotropic case). This makes the
problem of calculation of the matrix Yik much more complex
and model dependent [16].

To avoid this difficulty we assume, following Refs. [16,17],
that the unperturbed matter can be treated as a collection
of microscopic domains with chaotically directed neutron
quantization axis. After averaging over the large number of
such domains, the elements Yik will become scalars. One
can obtain then qualitatively correct results for the averaged
matrix elements Yik , assuming 1S0 pairing of neutrons, and
introducing an effective isotropic energy gap �

(n)
eff (T ) in the

neutron dispersion relation

�
(n)
eff (T ) = min{�(n)(| p| = pFn)}. (2)

0556-2813/2009/80(1)/015803(7) 015803-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.015803


GUSAKOV, KANTOR, AND HAENSEL PHYSICAL REVIEW C 80, 015803 (2009)

Here �
(n)
eff (T ) is defined as the minimum of the angle-

dependent gap �
(n)
p on the neutron Fermi surface, see

Refs. [16,17] for more details. Below in this paper we follow
this strategy.

The paper is organized as follows. In Sec. II we formu-
late a relativistic Hamiltonian describing superfluid nucleon-
hyperon mixture. In Sec. III we diagonalize this Hamiltonian,
determine baryon dispersion relations in the presence of
superfluid currents, and calculate the relativistic entrainment
matrix Yik . Section IV presents the summary.

Throughout the paper, unless otherwise stated, indices i and
k refer to baryons, i, k = n, p,�, and �. We use the system
of units in which the Planck constant h̄, the speed of light c,
and the Boltzmann constant kB equal unity, h̄ = c = kB = 1.

II. THE CHOICE OF A HAMILTONIAN

Let us obtain a model Hamiltonian for a homogeneous
system of relativistic, degenerate, strongly interacting baryons
with superfluid currents. A natural way to obtain such a
Hamiltonian is to use the framework of Landau Fermi-liquid
theory, generalized to account for superfluidity by Larkin
and Migdal [18] and Leggett [19]. Following Ref. [19],
the Hamiltonian H describing a superfluid nucleon-hyperon
mixture can be generally presented in the form

H −
∑

i

µiNi = HLF + Hpairing. (3)

Here, Ni and µi are, respectively, the number density operator
and the chemical potential for baryon species i = n, p,�,�;
HLF is the Fermi-liquid Hamiltonian for the mixture; Hpairing

is the pairing Hamiltonian.
If our system were nonrelativistic, HLF would be given by

(see, e.g., [16,19])

HLF =
∑
psi

ε
(i)
0 ( p)

(
a(i)†

p a(i)
p − θ (i)

p

)

+ 1

2

∑
p p′ss ′ik

f ik( p, p′)
(
a(i)†

p a(i)
p − θ (i)

p

)(
a

(k)†
p′ a

(k)
p′ − θ

(k)
p′

)
.

(4)

Here p and p′ are the particle momenta; s and s ′ are the spin
indices; a

(i)
p ≡ a

(i)
ps = a

(i)
p↑ or a

(i)
p↓ is the annihilation operator

of a Landau quasiparticle (not the Bogoliubov excitation)
of a species i in a state ( ps). We restrict ourselves to a
spin-unpolarized nucleon matter. This allows us to simplify the
notations by suppressing the spin indices, whenever possible.
Furthermore, θ

(i)
p = θ (pFi − | p|), where θ (x) is the step

function; ε
(i)
0 ( p) = vFi(| p| − pFi), where vFi = pFi/m∗

i and
pFi are, respectively, the Fermi-velocity and Fermi-momentum
with m∗

i being the effective mass. Finally, f ik( p, p′) is the
spin-averaged Landau quasiparticle interaction (we disregard
the spin-dependence of this interaction since it does not affect
our results). In the vicinity of the Fermi surface the arguments
of the function f ik( p, p′) can be approximately put equal
to p ≈ pFi and p′ ≈ pFk , while the function itself can be

expanded into Legendre polynomials Pl(cos θ ),

f ik( p, p′) =
∑

l

f ik
l Pl(cos θ ), (5)

where θ is the angle between p and p′ and f ik
l are the

(symmetric) Landau parameters, f ik
l = f ki

l .
The Landau theory was extended to relativistic Fermi-

liquids by Baym and Chin [20]. These authors showed that
the formal structure of the theory remains practically the same
as in the nonrelativistic case. In particular, the expression for
the variation of the energy density has the same form. Thus,
we assume that the Hamiltonian describing the relativistic
mixture is still given by Eq. (4). We emphasize that this is our
assumption; it would be interesting to derive this Hamiltonian
from the microscopic theory in analogy to what was done by
Leggett [19] for the case of nonrelativistic Fermi-liquid.

The relativistic effects affect only those properties of
the theory which are related to transformation of various
quantities from one frame to another. For example, as it is
demonstrated in Ref. [20], the transformation law for the
Landau quasiparticle interaction f ik( p, p′) is more complex
than that in the nonrelativistic theory. Also, in the relativistic
theory the expression for the effective mass m∗

i as a function
of Landau parameters f ik

1 should be modified [2,20],

µi

m∗
i

= 1 −
∑

k

µkGik

ni

. (6)

To reproduce the nonrelativistic result, one has to replace
everywhere in this equation µi with the mass of a free particle
mi . In Eq. (6) ni is the number density of particle species i,

ni = p3
Fi

3π2
(7)

and the symmetric matrix Gik is defined by

Gik ≡ 1

9π4
p2

Fip
2
Fkf

ik
1 . (8)

Let us obtain now an expression for the relativistic
Hamiltonian Hpairing, describing pairing between the Landau
quasiparticles. The pairing in relativistic systems was studied
in the literature mainly with application to quark matter (see,
e.g., the early review [21] and a recent review [22] and
references therein). However, there are also several papers
that explore the importance of relativistic effects in terrestrial
superconducting materials (see, e.g., Refs. [23–30]).

We start with the analysis of a pairing Hamiltonian for a
mixture of relativistic noninteracting baryons. In other words,
we neglect for a moment the Landau quasiparticle interaction
f ik( p, p′) in Eq. (4) for HLF. As it is demonstrated in
Refs. [23,24,28,29], in the mean-field approximation the rela-
tivistic analog of the well-known nonrelativistic Hamiltonian,
responsible for 1S0 pairing of particles, has the form

Hpairing = 1

2

∑
i

∫
d3rd3r ′ �(i)(r,r ′)

[
�

(i)
(r)γ 5�

(i)
C (r ′)

− 1

2

〈∣∣� (i)
(r)γ 5�

(i)
C (r ′)

∣∣〉] + H.c. (9)
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Here �(i)(r,r ′) = �(i)(r ′,r) is the superfluid order parameter;
�(i)(r) is the relativistic fermion field operator and �

(i)
C (r) =

iγ 2γ 0[�
(i)

(r)]T is the charge conjugate field (see, e.g., the

textbook [31] for details). Furthermore, �
(i)

(r) = �(i)†(r)γ 0;
γ 5 = iγ 0γ 1γ 2γ 3, where γ l are the Dirac matrices (l = 0, 1, 2,
and 3). The second term in square brackets in Eq. (9) is
presented to avoid double counting in the expression for the
system energy. Terms of this kind is a typical feature of the
mean-field approach. Similar terms appear in the mean-field
formulation of the nonrelativistic pairing Hamiltonian (see,
e.g., a review [32]).

The Hamiltonian (9) can be simplified if we take into
account that for a homogeneous system with superfluid
currents the order parameter �(i)(r,r ′) can be written in the
form (see, e.g., [21])

�(i)(r,r ′) = �(i)(r − r ′) ei Qi (r+r ′)

=
∑

p

�(i)
p ei p(r−r ′) ei Qi (r+r ′). (10)

Here �
(i)
p is the Fourier component of the order parameter. It

is even in p,

�(i)
p = �

(i)
− p, (11)

since �(i)(r,r ′) is a symmetric function of r and r ′. Further-
more, 2 Qi is the momentum of a Cooper pair in condensate.
Below in this paper we always assume that Qi/pFk � 1 and
restrict ourselves to a linear approximation in Qi/pFk .

Substituting Eq. (10) into Eq. (9), one gets, after some
algebra [with an accuracy up to quadratic terms in Qi/pFk],

Hpairing = −
∑

pi

�(i)
p

[
a

(i)†
p+ Qi↑ a

(i)†
− p+ Qi↓−1

2

〈∣∣a(i)†
p+ Qi↑ a

(i)†
− p+ Qi↓

∣∣〉

+ c
(i)†
p+ Qi↑ c

(i)†
− p+ Qi↓−1

2

〈∣∣c(i)†
p+ Qi↑ c

(i)†
− p+ Qi↓

∣∣〉] + H.c.

(12)

The analogous derivation of a Hamiltonian for a homogeneous
system is explained in detail in Ref. [28] for the case of Qi = 0.
In Eq. (12) c

(i)†
p is the creation operator for antibaryons

of a species i. Generally, because Hpairing does not contain
‘interference’ terms (e.g, of the form a

(i)†
p+ Qi↑c

(i)†
p+ Qi↓), one may

diagonalize the Hamiltonian HLF + Hpairing by simply per-
forming the standard Bogoliubov transformation separately
for baryons and antibaryons (this procedure is very clearly
described in Ref. [28]; in this case the species index i in
Eq. (4) for HLF should also run over antibaryons). However,
since the conditions in the neutron-star cores are such that the
population of antibaryons is negligible, one can neglect them
and rewrite Hpairing in its final form

Hpairing = −
∑

pi

�(i)
p

[
a

(i)†
p+ Qi↑ a

(i)†
− p+ Qi↓

− 1

2

〈∣∣a(i)†
p+ Qi↑ a

(i)†
− p+ Qi↓

∣∣〉 ]
+ H.c. (13)

We see that the Hamiltonian Hpairing for a homogeneous
system of noninteracting relativistic baryons is given by the

same equation as in the nonrelativistic limit. Moreover, it
coincides [16,19] with the pairing Hamiltonian describing
strongly interacting nonrelativistic Fermi-liquid [the operators
in Eq. (13) refer then to Landau quasiparticles rather than to
real particles]. Thus, it is reasonable to assume, that Hpairing

for interacting relativistic baryon mixture is also given by
Eq. (13). All calculations below are made under such assump-
tion.

In the Appendix we give further arguments supporting the
form of the expression (13) for Hpairing. Namely, we apply
the consideration given in this section to a specific case of
relativistic mean-field model in which baryon interactions are
mediated by various types of meson fields. We show that for
this model the homogeneous Hamiltonian (13) can be directly
calculated from the general expression (9).

In view of Eq. (11), in the linear approximation the
superfluid order parameter �

(i)
p , entering Eq. (13), is the same

function of p as in the system without superfluid currents.
It can be chosen real, just as for the system with Qi = 0
(e.g., [33]). In this case �

(i)
p is the energy gap in the dispersion

relation for Bogoliubov quasiparticles (see below).

III. THE RELATIVISTIC ENTRAINMENT MATRIX AT
FINITE T

A. General equations

It follows from Eqs. (4) and (13) that the relativistic
expressions for HLF and Hpairing are essentially the same
as in the nonrelativistic case. Correspondingly, the further
consideration is quite similar to that in Ref. [16]. Thus, here
we only briefly sketch the main results, referring the reader to
Ref. [16] for more details.

Introducing the Bogoliubov operators b
(i)
ps

a
(i)
p+ Qi↑ = u(i)

p b
(i)
p+ Qi↑ + v(i)

p b
(i)†
− p+ Qi↓, (14)

a
(i)
p+ Qi↓ = u(i)

p b
(i)
p+ Qi↓ − v(i)

p b
(i)†
− p+ Qi↑, (15)

where u
(i)
p and v

(i)
p are even functions of p related by the

normalization condition

u(i)2
p + v(i)2

p = 1, (16)

one obtains for the system energy density E

E −
∑

i

µini =
∑
psi

ε
(i)
0 ( p + Qi)

(
N (i)

p+ Qi
− θ

(i)
p+ Qi

)

+ 1

2

∑
p p′ss ′ik

f ik
(

p + Qi , p′ + Qk

)
× (

N (i)
p+ Qi

− θ
(i)
p+ Qi

)(
N (k)

p′+ Qk
− θ

(k)
p′+ Qk

)
−

∑
pi

�(i)
p u(i)

p v(i)
p

(
1 − F (i)

p+ Qi
− F (i)

− p+ Qi

)
.

(17)

Here N (i)
p+ Qi

and F (i)
p+ Qi

are the distribution functions
for Landau quasiparticles and Bogoliubov excitations with
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momentum ( p + Qi), respectively,

N (i)
p+ Qi

= 〈∣∣a(i)†
p+ Qi↑a

(i)
p+ Qi↑

∣∣〉 = 〈∣∣a(i)†
p+ Qi↓a

(i)
p+ Qi↓

∣∣〉
= v(i)2

p + u(i)2
p F (i)

p+ Qi
− v(i)2

p F (i)
− p+ Qi

, (18)

F (i)
p+ Qi

= 〈∣∣b(i)†
p+ Qi↑b

(i)
p+ Qi↑

∣∣〉 = 〈∣∣b(i)†
p+ Qi↓b

(i)
p+ Qi↓

∣∣〉. (19)

Notice that, since the parameters u
(i)
p and v

(i)
p are even functions

of p, they do not depend on Qi in the linear approximation.
The entropy of the system is given by the standard

combinatorial expression

S = −
∑
psi

[(
1−F (i)

p+Qi

)
ln

(
1 −F (i)

p+Qi

) +F (i)
p+Qi

lnF (i)
p+Qi

]
.

(20)

Using Eqs. (16)–(20) and minimizing the thermodynamic
potential F = E − ∑

i µini − T S with respect to F (i)
p+ Qi

and

u
(i)
p , one gets

F (i)
p+ Qi

= 1

1 + e
E

(i)
p+ Qi

/T
, (21)

E
(i)
p+ Qi

= 1

2

(
H

(i)
p+ Qi

− H
(i)
− p+ Qi

)
+

√
1

4

(
H

(i)
p+ Qi

+ H
(i)
− p+ Qi

)2 + �
(i)2
p , (22)

u(i)2
p = 1

2

(
1 +

H
(i)
p+ Qi

+ H
(i)
− p+ Qi

2E
(i)
p+ Qi

+ H
(i)
− p+ Qi

− H
(i)
p+ Qi

)
. (23)

Here E
(i)
p+ Qi

is the energy of a Bogoliubov excitation of a

species i with momentum p + Qi ; H
(i)
p+ Qi

is the energy of a
Landau quasiparticle in normal (nonsuperfluid) matter,

H
(i)
p+ Qi

= ε
(i)
0 ( p + Qi) +

∑
p′s ′k

f ik( p + Qi , p′ + Qk)

× (
N (k)

p′+ Qk
− θ

(k)
p′+ Qk

)
. (24)

Since Qi � pFk , it can be expanded in powers of Qk ,

H
(i)
p+ Qi

= ε(i)( p) + �H (i)
p , (25)

where ε(i)( p) ≈ vFi(| p| − pFi) is the quasiparticle energy in
the absence of superfluid currents and �H

(i)
p is a small current-

dependent term. In the linear approximation �H
(i)
p can be

generally written as

�H (i)
p =

∑
k

γik p Qk, (26)

where γik is a 4 × 4 matrix to be determined below (notice,
that the definition of γik differs by a factor of mk from that used
in Ref. [16]). Substituting Eqs. (22) and (25) into Eq. (23) one
verifies that u

(i)
p (and v

(i)
p ) is indeed independent of Qk in the

linear approximation.
The distribution function N (i)

p+ Qi
can also be expanded in

powers of Qi . Using Eqs. (18) and (21)–(23), one obtains

N (i)
p+ Qi

= n(i)
p + ∂f

(i)
p

∂E
(i)
p

�H (i)
p . (27)

Here E
(i)
p , f

(i)
p , and n

(i)
p denote, respectively, the quantities

E
(i)
p+ Qi

,F (i)
p+ Qi

, and N (i)
p+ Qi

, in the absence of superfluid
currents. They are given by the following well-known expres-
sions:

E(i)
p =

√
ε(i)2( p) + �

(i)2
p , (28)

f(i)
p = 1

1 + eE
(i)
p /T

, (29)

n(i)
p = v(i)2

p + (
u(i)2

p − v(i)2
p

)
f(i)

p . (30)

B. Calculation of the matrix γi k

Let us calculate the matrix γik . Substituting Eqs. (25) and
(27) into Eq. (24), one obtains, with the accuracy to the terms
linear in Qi ,

�H (i)
p = p Qi

m∗
i

+
∑
p′s ′k

f ik( p, p′)

{
∂f

(k)
p′

∂E
(k)
p′

�H
(k)
p′ −∂θ

(k)
p′

∂ p′ Qk

}
.

(31)

The functions in curly brackets have sharp maximum near
the Fermi surface of particle species k (at p′ ∼ pFk), so that
the integrals in Eq. (31) can be approximately calculated and
presented in the form

∑
p′s ′

f ik( p, p′)
∂f

(k)
p′

∂E
(k)
p′

�H
(k)
p′ = −Gik

ni

m∗
k�k �H (k)

p , (32)

∑
p′s ′

f ik( p, p′)
∂θ

(k)
p′

∂ p′ Qk = −Gik

ni

p Qk. (33)

Here the matrix Gik is defined in Eq. (8) while the function �i

is given by

�i = − π2

m∗
i pFi

∑
ps

∂f
(i)
p

∂E
(i)
p

. (34)

It changes from �i = 0 at T = 0 to �i = 1 at T � Tci (we
remind that Tci is the critical temperature for transition of
particle species i to the superfluid state). Assuming that the
energy gap �

(i)
p does not depend on the momentum p, this

function was calculated numerically and fitted in Ref. [34].
The fitting formula and further details concerning �i can also
be found in Ref. [16].

Using Eqs. (26), (32), and (33) and equating prefactors in
front of the same Qk in Eq. (31), one obtains the following
system of 4 × 4 linear equations for the matrix γik:

γik = δik

m∗
i

+ Gik

ni

−
∑

l

Gil

ni

m∗
l �l γlk. (35)

Notice that this matrix is not symmetric, γik 	= γki . In
Eq. (35) for each k we have four equations (with i = n, p,�,
and �). These equations can be decoupled from the whole
system and solved separately. Thus, there are in fact four
independent systems of four linear equations. Their solutions
can be immediately found in a number of limiting cases:
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(i) For very low temperatures, when all �i = 0,

γik = δik

m∗
i

+ Gik

ni

. (36)

(ii) For nonsuperfluid matter, when all �i = 1,

γik = δik

m∗
i

. (37)

(iii) If the species in the mixture do not interact with each
other, that is f ik

l = 0 for i 	= k, one has [see Eqs. (6)
and (8)]

γik = ni δik

µi(ni + Giim
∗
i �i)

. (38)

(iv) If �i = 0 for all species except for the species j (i.e.,
�j 	= 0), then

γik = δik

m∗
i

+ Gik

ni

− Gij (Gjkm
∗
j + njδjk)�j

ni(nj + Gjjm
∗
j�j )

. (39)

(v) Finally, for any nonsuperfluid species j (for which
�j = 1), the matrix elements γij related to this species,
are given by the same Eq. (37) as in the case of a
completely nonsuperfluid mixture,

γij = δij

m∗
i

. (40)

The general solution for the matrix γik in case of four par-
ticle species is rather lengthy, but can be easily obtained from
Eq. (35) and, for example, incorporated into a computer code.
Here we present the solution for an important case of a mixture
of two particle species (e.g., neutrons and protons)

γii = (ni + Giim
∗
i )(nk + Gkkm

∗
k�k) − G2

ik m∗
i m

∗
k �k

m∗
i S

, (41)

γik = Giknk(1 − �k)

S
, (42)

where

S = (ni + Giim
∗
i �i)(nk + Gkkm

∗
k�k) − G2

ikm
∗
i m

∗
k�i�k.

(43)

In Eqs. (41)–(43) indices i and k refer to different particle
species, i 	= k. The presented solution agrees with that given
in Ref. [16] for the nonrelativistic case (we remind the reader
that the definition of γik in Ref. [16] slightly differs from ours,
see the comment to Eq. (26)). However, in contrast to Ref. [16],
in Eqs. (41)–(43) one should use the relativistic expression for
the effective masses given by Eq. (6).

C. Calculation of the matrix Yi k

To find the relativistic entrainment matrix Yik let us
calculate the particle current density j i . For that, we make
use of the fact that, as was emphasized by Leggett [19],
the expression for j i has the same form as in the case of
usual non-superfluid Fermi-liquid (see also Refs. [2,13–16]).

In other words,

j i =
∑

ps

∂H
(i)
p+ Qi

∂ p
N (i)

p+ Qi
. (44)

Substituting expressions (25) and (27) into this equation and
performing a simple integration, one obtains Eq. (1) with

Yik = ni γik (1 − �i). (45)

One may check that this matrix is symmetric, Yik = Yki . At
zero temperature this equation can be simplified with the help
of Eq. (36), so that one reproduces the result of GKH09,

Yik = ni

m∗
i

δik + Gik. (46)

Notice that, as follows from Eq. (6), in this limit the matrix Yik

satisfies the sum rule (see GKH09),∑
k

µkYik = ni. (47)

In the nonrelativistic limit the matrix Yik is related to the
nonrelativistic entrainment matrix ρik by the equation (see,
e.g., [11])

ρik = mimkYik. (48)

Using this equation and Eq. (45), one may reproduce the
various limiting formulas for ρik , presented in the literature
[13,16,19].

Our results are illustrated in Fig. 1. The normalized
symmetric matrix Yik/Y is shown as a function of temperature
T for the baryon number density nb = 3n0 = 0.48 fm−3. To
plot the figure we employed the third equation of state of Glen-
denning [35]. The Landau parameters f ik

1 of nucleon-hyperon
matter were calculated for this equation of state in GKH09. The
normalization constant Y is taken to be Y = 3n0/µn(3n0) =
2.48 × 1041 erg−1 cm−3, where n0 = 0.16 fm−3 is the normal
nuclear density and µn(3n0) = 1.94 × 10−3 erg is the neu-
tron chemical potential at nb = 3n0. We choose the baryon
critical temperatures Tci (i = n, p,�,�) equal to Tcn = 5 ×
108 K, Tcp = 2 × 109 K, Tc� = 3 × 109 K, and Tc� = 6 ×
109 K.

On the left panel we plot the ‘nucleon’ matrix elements;
the ‘hyperon’ matrix elements are shown on the right panel.
In agreement with Eq. (45), the matrix elements, involving a
non-superfluid species, vanish. For instance, if neutrons are
normal (i.e., T > Tcn), then �n = 1 and Yni = Yin = 0. At
T <∼ 108 K all the matrix elements approach their asymptotic
zero-temperature values [see Eq. (46)]. As follows from the
figure, the nondiagonal matrix elements are essentially smaller
than the diagonal ones and are all negative for the chosen
equation of state.

IV. SUMMARY

The present paper is a continuation of GKH09, where the
relativistic entrainment matrix Yik of nucleon-hyperon mixture
was calculated for the case of zero temperature. Here we
extend the results of GKH09 to finite temperatures. For that,
we employ the relativistic Landau Fermi-liquid theory [20],
generalized to allow for superfluidity of baryons [18,19].
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FIG. 1. Normalized symmetric matrix Yik/Y as a function of T for the third equation of state of Glendenning [35]. The normalization
constant Y = 3n0/µn(3n0) = 2.48 × 1041 erg−1 cm−3. Solid lines show the elements of the matrix Yik/Y ; each curve is marked by the
corresponding symbol ik (i, k = n, p,�, �). Vertical dotted lines indicate baryon critical temperatures.

We demonstrate that, as in the case of nonrelativistic
neutron-proton mixture [16], the matrix Yik is expressed
through the Landau parameters f ik

1 and the function of
temperature �i . The Landau parameters f ik

1 for the relativistic
nucleon-hyperon matter were derived in GKH09. The quantity
�i(T ) is the universal function of T under assumption that
the baryon energy gap �

(i)
p is independent of momentum p.

In the latter case the fitting formula for �i can be found in
Refs. [16,34].

Our consideration of Yik differs from the previous calcula-
tions of the entrainment matrix, available in the neutron-star
literature [13–16], by the following:

(i) we consider the problem in a fully relativistic frame-
work;

(ii) we allow for the presence of two hyperon species (�-
and �−-hyperons), in addition to neutrons and protons.

It should be noted that our results can be easily extended
to describe any number of baryon species (not necessarily
four). The main problem then will be to determine the Landau
parameters for these species.

The calculated relativistic entrainment matrix Yik is an
essential ingredient in hydrodynamics of superfluid mixtures
[36]. It can be important for studying the pulsations of massive
neutron stars with superfluid nucleon-hyperon cores (see
Ref. [37] for an example of such study). Also, since the matrix
Yik enters the expression (21) for the equilibrium distribution
function of Bogoliubov excitations, it can influence various
kinetic properties of superfluid baryon matter, for example,
the shear viscosity. The related problems will be analyzed in a
separate publication.
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APPENDIX

The general approach of Sec. II can be illustrated with
a specific example of a relativistic mean-field model in
which interactions between baryons are mediated by meson
fields. For definiteness, following GKH09, we consider σ -ω-ρ
version of the mean-field model with self-interactions of
scalar σ -field. However, our consideration remains essentially
unaffected if one allows for additional meson fields (e.g.,
δ-meson or hidden strangeness σ ∗ and φ-meson fields).

In GKH09 we reformulated the σ -ω-ρ mean-field model
in terms of the relativistic Landau Fermi-liquid theory. In
particular, we calculated the Landau quasiparticle interaction
function f ik( p, p′). Thus, we determined the Hamiltonian HLF

for this model [see Eq. (4)]. Let us now turn to the Hamiltonian
Hpairing. It is still given by Eq. (9) with

�(i)(r) =
∑

ps

1√
2Ei

(
a(i)

ps u(i)( p, s) ei pr

+ c(i)†
ps ν(i)( p, s) e−i pr), (A1)

�
(i)
C (r) =

∑
ps

i√
2Ei

(
a(i)†

ps ν(i)( p, s) e−i pr

+ c(i)
ps u(i)( p, s) ei pr). (A2)

The bispinors u(i)( p, s) and ν(i)( p, s) correspond, respectively,
to particles and antiparticles. For the mean-field model they
can be written out explicitly (see, e.g., Ref. [38]),

u(i)( p, s) =
(√

Ei + M∗
i ws√

Ei − M∗
i (nσ )ws,

)

(A3)

ν(i)( p, s) =
(√

Ei − M∗
i (nσ )w′

−s√
Ei + M∗

i w′
−s .

)
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In Eqs. (A1)–(A3) Ei =
√

P2 + M
∗2
i ; unit vector n is directed

along P ; σ = (σx, σy, σz) is the vector composed of Pauli
matrices; ws and w′

s are the spinors which are defined as in
Ref. [39] (see §23 of this reference). Furthermore,

P = p − gωiω − gρiI3iρ3, (A4)

M∗
i = mi − gσiσ, (A5)

where ω, ρ3, and σ are the meson fields that are generated by
baryon currents and densities; gωi, gρi , and gσi are the coupling

constants; and I3i is the isospin projection for baryon species
i (for more details, see, e.g., GKH09).

Substituting now field operators (A1) and (A2) into the
expression (9) for Hpairing, one verifies, that the homogeneous
pairing Hamiltonian for the mean-field σ -ω-ρ model is given
by the same expression as was obtained in Sec. II [see
Eq. (12) of this section or Eq. (13), if we neglect antibaryons].
This particular example presents an additional argument
supporting the conjecture that the general expression for
Hpairing in the relativistic Landau Fermi-liquid theory, is also
of the form (13).
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