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We develop analytic approximations of thermodynamic functions of fully ionized nonideal electron-ion
plasma mixtures. In the regime of strong Coulomb coupling, we use our previously developed analytic ap-
proximations for the free energy of one-component plasmas with rigid and polarizable electron background and
apply the linear mixing rule �LMR�. Other thermodynamic functions are obtained through analytic derivation
of this free energy. In order to obtain an analytic approximation for the intermediate coupling and transition to
the Debye-Hückel limit, we perform hypernetted-chain calculations of the free energy, internal energy, and
pressure for mixtures of different ion species and introduce a correction to the LMR, which allows a smooth
transition from strong to weak Coulomb coupling, in agreement with the numerical results.
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I. INTRODUCTION

We study the equation of state �EOS� of fully ionized
nonideal electron-ion plasmas �EIPs�. In previous work �1,2�,
hypernetted chain �HNC� calculations were performed and
analytic formulas were proposed for EOS calculations of
EIPs containing a single ion species. For mixtures of differ-
ent ion species, the EOS was calculated using the linear mix-
ing rule �LMR�, whose high accuracy at ��1 was previ-
ously confirmed in a number of studies �3–7�. However, the
LMR is inaccurate for weakly coupled plasmas. Some con-
sequences of its violation were studied by Nadyozhin and
Yudin �8�, who showed that the differences between the lin-
ear and nonlinear mixing at moderate Coulomb coupling
�0.1���1� can shift the nuclear statistical equilibrium at
the final stage of a stellar gravitational collapse.

In this paper, we perform HNC calculations of the free
energy, internal energy, and pressure for mixtures of various
kinds of ions in the weak, intermediate, and strong coupling
regimes, and suggest an analytic correction to the LMR. In
Sec. II we define the basic plasma parameters. In Sec. III we
calculate the EOS of ion mixtures and propose an analytic
formula for the EOS of multicomponent EIPs, applicable at
any � values. The summary is given in Sec. IV.

II. PLASMA PARAMETERS

Let ne be the electron number density and nj the number
density of ion species j=1,2 , . . ., with mass and charge num-
bers Aj and Zj, respectively. The total number density of ions
is nion=� jnj. The electric neutrality implies ne= �Z�nion. Here
and hereafter the angular brackets �¯� denote averaging of
the type �f�=� jxj f j, where xj �nj /nion.

The state of a free electron gas is determined by the elec-
tron number density ne and temperature T. Instead of ne it is

convenient to introduce the dimensionless density parameter
rs=ae /a0, where ae= � 4

3�ne�−1/3 and a0 is the Bohr radius.
At stellar densities it is convenient to use, instead of rs,

the relativity parameter �10,11� xrel= pF /mec=0.014rs
−1,

where pF=��3�2ne�1/3 is the electron Fermi momentum. The
Fermi kinetic energy is �F=c	�mec�2+ pF

2 −mec
2, and the

Fermi temperature TF��F /kB=Tr��r−1�, where Tr

�mec
2 /kB=5.93�109 K, �r�	1+xrel

2 , and kB is the Boltz-
mann constant.

The ions are nonrelativistic in most applications. The
strength of the Coulomb interaction of ion species j is char-
acterized by the Coulomb coupling parameter

� j = �Zje�2/�ajkBT� = �eZj
5/3, �1�

where aj =aeZj
1/3 is the ion sphere radius and �e

�e2 / �aekBT�. In a multicomponent plasma, it is useful to
introduce the mean ion-coupling parameter �=�e�Z5/3� �3�.
At a melting temperature Tm, corresponding to �
175 �e.g.,
�2��, the plasma freezes into a Coulomb crystal.

An important scale length is the thermal de Broglie wave-
length 	 j = �2��2 /mjkBT�1/2, where mj is the ion mass. The
electron thermal length 	e is given by the same expression
with mj replaced by me.

The quantum effects on ion motion become important at
T
Tp, where Tp���p /kB and �p= �4�e2nion�Z2 /m��1/2 is
the ion plasma frequency. In this paper we consider only the
classical Coulomb liquid, which implies T�Tp and T�Tm.

III. EQUATION OF STATE

Assuming commutativity of the kinetic and potential op-
erators and separation of the traces of the electronic and ionic
parts of the Hamiltonian, the total Helmholtz free energy F
can be conveniently written as

F = Fid
ion + Fid

�e� + Fee + Fii + Fie, �2�

where Fid
ion and Fid

�e� denote the ideal free energy of ions and
electrons, and the last three terms represent an excess free
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energy arising from the electron-electron, ion-ion, and ion-
electron interactions, respectively.

The pressure P, the internal energy U, and the entropy S
of an ensemble of fixed number of plasma particles in vol-
ume V can be obtained using the thermodynamic relations
P=−��F /�V�T ,S=−��F /�T�V, and U=F+TS. The second-
order thermodynamic functions are derived by differentiating
these first-order ones. The decomposition �2� induces the
analogous decomposition of P, U, S, the heat capacity CV
= ��S /� ln T�V, and the logarithmic pressure derivatives T
= �� ln P /� ln T�V and �=−�� ln P /� ln V�T. Other second-
order functions can be expressed through these by Maxwell
relations �e.g., �12��.

A. Ideal electron-ion plasmas

The free energy of a gas of Nj =njV nonrelativistic classi-
cal ions of the jth kind is

Fid
�j� = NjkBT�ln�nj	 j

3/gj� − 1� , �3�

where gj is the spin multiplicity. The total free energy is
given by the sum Fid

ion=� jFid
�j�. Analogous sums give U, S, P,

and CV. Since Eq. �3� contains nj under a logarithm, these
sums for F and S naturally include the entropy of mixing,
Smix=−kB� jNj ln xj.

The free energy of the electron gas is given by

Fid
�e� = �eNe − Pid

�e�V , �4�

where �e is the electron chemical potential. The pressure Pid
�e�

and the number density ne=Ne /V are functions of �e and T,
which can be written through the Fermi-Dirac integrals
I��e ,��, where e=�e /kBT and �=1 /2, 3 /2, and 5 /2. In
Ref. �1� we gave analytic approximations for the Fermi-
Dirac integrals, based on fits �9� to electron-positron thermo-
dynamic functions. The chemical potential at a given density
can be found either from a numerical inversion of function
ne�e ,T� or using the analytic approximation �1�. The
electron-gas contributions to T, CV, and S tend to zero at
T
TF. Related numerical problems and their cure will be
discussed elsewhere �13�.

B. Nonideal plasmas containing one type of ion

Let us recall the fit formulas for nonideal EIPs containing
a single kind of ion.

�a� Electron exchange and correlation. Electron-electron
�exchange-correlation� effects have been studied by many
authors. For the reasons explained in Refs. �1,13�, we adopt
the fit to fee�Fee / �NekBT� presented in Ref. �17�.

�b� One-component plasma. The internal energy of the
liquid one-component plasma �OCP� at any values of � is
given by �2�

uii = �3/2� A1

	A2 + �
+

A3

1 + �
� +

B1�2

B2 + �
+

B3�2

B4 + �2 , �5�

where uii�Uii /kBTNion, and

A3 = − 	3/2 − A1/	A2 �6�

ensures the correct transition to the Debye-Hückel limit. The
parameters A1=−0.907 347, A2=0.628 49, B1=0.0045, B2

=170, B3=−8.4�10−5, and B4=0.0037 allow one to repro-
duce the best available Monte Carlo �MC� simulations of
liquid OCPs at 1���190 �14� with an accuracy matching
the numerical MC noise. From Eq. �5� one obtains the ana-
lytic expression for f ii�Fii /kBTNion by integration, and then
the Coulomb contributions to the other thermodynamic func-
tions by differentiation �2�.

�c� Electron polarization. Electron polarization in Cou-
lomb liquids was studied by perturbation �15,16� and HNC
�1,2,4� techniques. The results for f ie�Fie /NionkBT have
been fitted by the expression �2�

f ie = − �e

cDH
	�e + cTFa�e

�g1�rs,�e�g3�xrel�

1 + �b	�e + ag2�rs,�e��e
�/rs��r

−1
. �7�

The coefficients cDH, cTF, a, b, � and functions g1,2�rs ,�e�
and g3�xrel� parametrically depend on the ion charge Z. Here
the coefficients cDH and cTF are not free fit parameters, be-
cause

cDH = �Z/	3���1 + Z�3/2 − 1 − Z3/2� �8�

ensures the transition of the excess free energy to the Debye-
Hückel limit at small �, and cTF at large Z is given by the
Thomas-Fermi theory �11�.

C. Nonideal mixtures of ions

A common approximation for the excess �nonideal� free
energy of the strongly coupled ion mixture is the LMR,

fex
LM��� 
 �

j

xj fex�� j,xj = 1� , �9�

where the superscript “LM” denotes the linear mixing ap-
proximation, and all � j correspond to the same �e �assuming
that the pressure is given almost totally by the strongly de-
generate electrons�: � j =�Zj

5/3 / �Z5/3�. In Eq. �9�, fex is the
reduced nonideal part of the free energy: fex= f ii for the
“rigid” �uniform� charge-neutralizing electron background
and fex= f ii+ f ie+Zjfee for the polarizable background. The
high accuracy of Eq. �9� for binary ionic mixtures in the rigid
background was first demonstrated by calculations in the
HNC approximation �3� and confirmed later by MC simula-
tions �e.g., �5–7��.

The validity of the LMR in the case of an ionic mixture
immersed in a polarizable finite-temperature electron back-
ground has been examined by Hansen et al. �3� in the first-
order thermodynamic perturbation approximation and by
Chabrier and Ashcroft �4� by solving the HNC equations
with effective screened potentials. These authors found that
the LMR remains accurate when the electron response is
taken into account in the interionic potential, as long as the
Coulomb coupling is strong ���1�.

On the other hand, the LMR is invalid at �
1. Indeed, in
this case the Debye-Hückel theory gives

fee
DH = − �e

3/2/	3, f ii
DH = fee

DH�ii
DH, �10�

and for the EIP

fex
DH = f ii

DH + f ie
DH + �Z�fee

DH = fee
DH�EIP

DH, �11�

where
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�ii
DH =

�Z2�3/2

�Z�1/2 , �EIP
DH =

��Z2� + �Z��3/2

�Z�1/2 . �12�

However, the LMR at �
1 gives another result:

f ii
LM  fee

DH�ii
LM, fex

LM  fee
DH�EIP

LM, �13�

where

�ii
LM = �Z5/2�, �EIP

LM = �Z�Z + 1�3/2� . �14�

Nadyozhin and Yudin �8� considered several possible
modifications of the LMR at intermediate � and found that
such modification can appreciably shift the statistical nuclear
equilibrium at the conditions typical of the final stage of a
stellar gravitational collapse. They considered the rigid back-
ground and advocated a modification of every term in Eq. �9�
by multiplying the leading fit coefficient at small � by a
factor dj =	�Z2� /Zj�Z�. It corresponds to replacing 	3 /2 in
Eq. �6� by dj

	3 /2 �and a possible simultaneous change of
A2�. For a compressible background an analogous modifica-
tion implies additionally replacement of Eq. �8� by

cDH
�j� =

Zj

	3
�� �Z2�

�Z�
+ 1�3/2

−
�Z2�3/2

�Z�3/2 − 1� . �15�

Hereafter modifications of this type will be called corrected
linear mixing �CLM�.

The result of such modifications is shown by dot-dashed
lines in Figs. 1 and 2, where we plot the ratios �uii /uii

LM and
�fex / fex

LM as functions of �. Here �f � f − fLM and �u�u
−uLM are the deviations of the reduced free and internal en-
ergies, respectively, from the LMR. In Fig. 1 the electron

response is neglected �rigid background�. We see that, for
example, at �
10 the CLM prescription gives �u and �f
corrections of about 1% in Fig. 1 and several percent in Fig.
2, whereas they must be much smaller according to the MC
results �6,7�. Moreover, �u and �f in the CLM approxima-
tion have the incorrect sign at ��1 �note that according to
Ref. �3� �u /u and �f / f are negative at any ��. Additional
modifications of the coefficient A2 in Eq. �9� also do not
solve the problem.

An alternative to the CLM, named “complex mixing” in
Ref. �8�, maintains the correct sign of �f and �u, but leads
to still larger absolute values of these corrections �i.e., still
slower recovery of the LMR� at large �.

In order to find a more accurate approximation, we have
performed HNC calculations of Fii, Uii, and Pii for binary
ionic mixtures in the rigid background for a broad � range
and various values of the charge number ratios Z2 /Z1 and
fractional abundances x2=1−x1. Some of the results are
shown by triangles in Figs. 1 and 2. In agreement with the
previous studies �e.g., �3��, our numerical results show
monotonically decreasing fractional deviations from the
LMR with increasing �. The results agree to at least five
digits with those published in �6� �crosses in Fig. 1�. At �
�1, the HNC results tend to a constant residual within 1%,
which is due to the intrinsic inaccuracy of the HNC approxi-
mation for strongly coupled plasmas because of the lack of
the bridge functions in the diagrammatic representation of
this approximation. To prove this statement, in Fig. 1 we plot
by dots the values of �uii /uii

LM from MC simulations �6�. The
latter simulations give tiny deviations from the LMR at �
�3, which are invisible on the figure scale.

Asterisks in Fig. 2 correspond to the HNC calculations for
mixtures in the polarizable electron background �4�, which
give qualitatively the same results as the calculations for the

FIG. 1. �Color online� Fractional difference between the Cou-
lomb part of the internal energy �Uii� in different approximations
and the LMR prediction as a function of the average ion Coulomb
coupling parameter � for binary mixtures of ions with Z2 /Z1=2 and
x2=1−x1=0.05 and 0.2 in the rigid background. Dashed lines �DH�,
Debye-Hückel formula; dot-dashed lines �CLM�, corrected linear
mixing �8�; dots, MC results of Ref. �6� for x2=0.05; crosses, HNC
results of Ref. �6�; triangles, present HNC results; solid lines,
present fit.

FIG. 2. �Color online� Fractional differences between the non-
ideal part of the free energy due to the ion-ion and ion-electron
interactions �Fii+Fie� in different approximations and the LMR pre-
diction for a mixture of ions with Z1=1 and Z2=8 and x2=1−x1

=0.25 in the rigid and polarizable electron background, as functions
of �. Dashed lines, DH; dot-dashed lines, CLM �8�; asterisks, HNC
results of Ref. �4�; solid lines, present fit.
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rigid background. The second dot-dashed curve in this figure
shows the CLM result for the polarizable background, ac-
cording to Eq. �15�.

A correction to the linear mixing rule, which exactly re-
covers the Debye limit at �→0 and the LMR at ��1, and
which agrees with the HNC data, can be expressed by the
following analytic fitting formula:

�f = fee
DH �DH − �LM

�1 + a�b�c , �16�

where �=�ii or �EIP for the rigid or polarizable background,
respectively, and the parameters a, b, and c depend on
plasma composition as follows:

a =
2.2� + 17�4

1 − b
, � =

�LM − �DH

�Z5/2�
,

b = d−0.2, c = 1 + d/6, d = �Z2�/�Z�2.

Thanks to the simple form of this formula, its derivatives are
also rather simple. For example, the corrections to the re-
duced internal energy and heat capacity read, respectively,

�u = �3

2
−

abc�b

1 + a�b��f , �17�

�c = � abc�b

1 + a�b −
1

2
��u −

ab2c�b

�1 + a�b�2�f . �18�

This approximation has been compared with our HNC
calculations for binary ionic mixtures in the rigid electron
background at Z2 /Z1=2, 5, 8, 12, and 16, with x2=1−x1
ranging from 0.01 to 0.7. Some of the results are shown in
the figures. In all figures the Debye-Hückel approximation is

drawn by dashed lines for comparison. In Figs. 1 and 2,
discussed above, and in Figs. 3 and 5 our approximation is
drawn by solid lines. Figure 3 shows the fractional difference
between the different results for internal energy and the LMR
approximation for binary ionic mixtures with Z2 /Z1=8 and
x2=0.01, 0.05, 0.2, 0.25, 0.5, and 0.7 �marked near the
curves�. In Fig. 4 we show the case of the highest considered
charge asymmetries: long-dash–dotted lines show the ap-
proximation �16� for Z2 /Z1=12 and solid lines for Z2 /Z1

FIG. 3. �Color online� Fractional difference between the Cou-
lomb part of the internal energy in different approximations and the
LMR prediction for a binary mixture of ions with Z2 /Z1=8 in the
rigid background. Dashed lines �DH�, Debye-Hückel formula; sym-
bols, present HNC results; solid lines, present fit. Different symbols
correspond to different x2 values: 0.01 �squares�, 0.05 �solid tri-
angles�, 0.2 �dots�, 0.25 �asterisks�, 0.5 �empty triangles�, and 0.7
�empty circles�.

FIG. 4. �Color online� Fractional difference between the Cou-
lomb part of the free energy and the LMR prediction for binary
ionic mixtures with Z2 /Z1=12 and Z2 /Z1=16, and with x2=0.01,
0.05, and 0.2. Dashed lines �DH�, Debye-Hückel formula; symbols,
present HNC results; solid lines, present fit for Z2 /Z1=16; long-
dash–dotted lines, present fit for Z2 /Z1=12. Different symbols cor-
respond to different combinations of x2 and Z2 /Z1 values.

FIG. 5. �Color online� Fractional difference between the Cou-
lomb part of the internal energy and the LMR prediction for binary
ionic mixtures at �1=0.03 as function of the ion charge ratio Z2 /Z1.
Dashed lines �DH�, Debye-Hückel formula; symbols, present HNC
results; solid lines, present fit. Different symbols correspond to dif-
ferent x2 values: x2=0.01 �triangles�, 0.05 �dots�, and 0.2
�asterisks�.
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=16. Finally, in Fig. 5 we show the dependence of �f ii / f ii
LM

on the charge ratio Z2 /Z1 at �1=0.03. Here different symbols
correspond to the HNC results for different values of x2.

The difference between the HNC results and formula �16�
for fex lies within 0.013 and within 1%. The internal energy
calculated using the analytic derivative of the fit �16� devi-
ates from the HNC results by not more than 0.017 and not
more than 1.5%. These maximal deviations are attained for
the extremely asymmetric mixtures with Z2 /Z1=16. The ana-
lytic formula �16� has also been compared to available HNC
results for binary ionic mixtures in the polarizable electron
background �4� and found to be satisfactory within the accu-
racy of the latter results �an example is shown in Fig. 2�.

We have also performed calculations for mixtures of ions
of three different types on the rigid electron background and
compared the results with Eq. �16�. The results of the com-
parison are shown in Figs. 6 and 7. Solid lines show the
difference of the Coulomb free energy from the LMR ac-
cording to Eq. �16� for three-component mixtures; for com-
parison, dot-dashed and dotted lines are plotted for two-
component mixtures with the same charge ratios; symbols
represent the HNC results. In all considered cases, adding a
third component to a binary mixture increases the deviations

of Eq. �16� from HNC results by less than a factor of 1.5. We
conclude that the agreement between the fit and numerical
results remains satisfactory.

IV. CONCLUSIONS

We have performed HNC calculations of the free energy,
internal energy, and pressure for various ionic mixtures with
different fractional abundances of the ion species in a broad
range of Z and � values. We have constructed an analytic
approximation to the deviation from the LMR, which recov-
ers the Debye-Hückel formula for multicomponent plasmas
at �
1 and the LMR at ��1, and which describes our
calculations at any � values, as well as the HNC and MC
results for the internal energy of plasma mixtures, available
in the literature, with an accuracy better than 2%.
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