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Abstract. Neutrino-pair bremsstrahlung by relativistic degen-
erate electrons in a neutron-star crust at densities109 g cm
−3 <∼ ρ <∼ 1.5 × 1014 g cm−3 is analyzed. The processes taken
into account are neutrino emission due to Coulomb scattering
of electrons by atomic nuclei in a Coulomb liquid, and electron-
phonon scattering (the phonon contribution) and Bragg diffrac-
tion (the static-lattice contribution) in a Coulomb crystal. The
static-lattice contribution is calculated including the electron
band-structure effects for cubic Coulomb crystals of different
types and also for the liquid crystal phases composed of rod-
and plate-like nuclei near the bottom of the neutron-star crust
(1014 g cm−3 <∼ ρ <∼ 1.5 × 1014 g cm−3). The phonon contri-
bution is evaluated with proper treatment of the multi-phonon
processes which removes a jump in the neutrino bremsstrahlung
emissivity at the melting point obtained in previous works. Gen-
erally, bremsstrahlung in the solid phase does not differ signif-
icantly from that in the liquid. Atρ <∼ 1013 g cm−3, the re-
sults are rather insensitive to the nuclear form factor, but results
for the solid state near the melting point are affected signifi-
cantly by the Debye–Waller factor and multi-phonon processes.
At higher densities the Debye–Waller factor and multi-phonon
processes become less important but the nuclear form factor
becomes more significant. With growingρ, the phonon con-
tribution becomes smaller. Near the bottom of the neutron star
crust bremsstrahlung becomes less efficient due to the reduction
of the effective electron–nucleus matrix element by the electron
band-structure effects and the nuclear form factor. A compari-
son of the various neutrino generation mechanisms in neutron
star crusts shows that electron bremsstrahlung is among the most
important ones.
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1. Introduction

Neutrino-pair bremsstrahlung of electrons in liquid and crys-
talline phases of dense matter is one of the major neu-
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trino energy-loss mechanisms in neutron star crusts. Here, by
bremsstrahlung we mean neutrino emission due to electromag-
netic interaction of electrons with atomic nuclei. The process
can be written schematically as

e + (Z, A) → e + (Z, A) + ν + ν̄. (1)

It proceeds via neutral and charged electroweak currents and
leads to emission of neutrinos of all flavors.

For practical application to the thermal evolution of neu-
tron stars, one needs to know the neutrino energy emission
rate (emissivity)Q in the density range from about109 g cm−3

to 1.5 × 1014 g cm−3 (the core-crust interface) at temperatures
T <∼ 5 × 109 K (at which the nuclei are not dissociated). Under
these conditions, the electrons are strongly degenerate and ultra-
relativistic, and the nuclei form either a Coulomb liquid, or a
Coulomb crystal. For densities higher than1012- 1013 g cm−3,
the melting temperature of the crystal exceeds5 × 109 K, and
the case of a Coulomb liquid is of no practical importance. In
the density range from about1014 g cm−3 to1.5×1014 g cm−3,
the nuclei resemble rods and plates, rather than spheres (Lorenz
et al. 1993; Pethick & Ravenhall 1995).

The neutrino-pair bremsstrahlung process (1) in a crystal
is formally different from that in a liquid. In the liquid state,
neutrinos are generated due to Coulomb scattering of electrons
by nuclei. In the solid state, there are two contributions to the
process, electron–phonon scattering (electron scattering by the
nuclear charge fluctuations due to lattice vibrations, referred to
as thephonon contribution), and the Bragg diffraction of elec-
trons, which is commonly called thestatic-lattice contribution.

Neutrino-pair bremsstrahlung has been analyzed by a num-
ber of authors (see, e.g., Itoh et al. 1989, 1996; Pethick & Thors-
son 1997, and references therein). The case of a Coulomb liq-
uid has been thoroughly studied by Festa & Ruderman (1969),
Dicus et al. (1976), Soyeur & Brown (1979), Itoh & Kohyama
(1983), and, most recently, by Haensel et al. (1996). The phonon
contribution in the crystalline lattice has been analyzed by Flow-
ers (1973), Itoh et al. (1984b, 1989), and also by Yakovlev &
Kaminker (1996). Notice, however, that all these authors have
made use of the so-called one-phonon approximation, whereas,
as we shall demonstrate below, multi-phonon scattering pro-
cesses can give a noticeable contribution especially near the
melting point. The static-lattice contribution has been consid-
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ered by Flowers (1973) and by Itoh et al. (1984a) neglecting the
electron band-structure effects (the presence of gaps in the elec-
tron dispersion relation). However, Pethick & Thorsson (1994,
1997) have shown that the band structure can suppress strongly
the static-lattice contribution and is thus very important. In par-
ticular, Pethick & Thorsson (1997) derived a general expression
for the static-lattice contribution.

In the present article, we give an overall analysis of neutrino-
pair bremsstrahlung by electrons in neutron star crusts, and
obtain formulae convenient for applications. In Sect. 2 we de-
scribe briefly physical conditions in neutron star crusts. In
Sect. 3 we summarize the formalism for calculating neutrino-
pair bremsstrahlung in the liquid and solid phases. While study-
ing the solid phase we consider the ordinary body-centered-
cubic (bcc) crystals, as well as face-centered-cubic (fcc) and
hexagonal-close-packed (hcp) cubic crystals which can also be
formed in neutron-star crusts. The phonon contribution will be
calculated using a new approach (Baiko et al. 1998) incorpo-
rating multi-phonon effects. It eliminates a jump in the neu-
trino emissivity at the melting point obtained in previous arti-
cles. The static-lattice contribution will be analyzed not only
for the traditional phase of spherical nuclei, but also for the
‘exotic’ phases of nonspherical nuclei. In Sec. 4 we examine
the main properties of neutrino-pair bremsstrahlung at various
densities and temperatures in neutron-star crusts, and compare
bremsstrahlung with other neutrino emission mechanisms. We
present also a simple analytic fit for practical evaluation of the
neutrino bremsstrahlung energy loss rate.

2. Physical conditions

Let us outline physical conditions in a neutron star envelope at
densities109 g cm−3 <∼ ρ <∼ 1.5×1014 g cm−3, and at temper-
aturesT <∼ 5 × 109 K (Sect. 1). Matter in these layers consists
of electrons and atomic nuclei (ions). At densities higher than
the neutron drip density,ρd ≈ 4.3×1011 g cm−3, free neutrons
appear between the nuclei (e.g., Negele & Vautherin 1973). At
ρ >∼ 1014 g cm−3, the nuclei are likely to form nonspherical
clusters (Lorenz et al. 1993; Oyamatsu 1993; Pethick & Raven-
hall 1995).

The state of degenerate electrons is characterized by the
Fermi momentumpF ≡ ~kF or the relativistic parameterx:

pF = ~(3π2ne)
1/3, x =

pF

mec
≈ 100.9 (ρ12Ye)

1/3
, (2)

whereYe = ne/nb is the number of electrons per baryon,ne

is the number density of electrons,nb the number density of
baryons, andρ12 is mass density in units of1012 g cm−3. In
the density range under study the electrons are ultra-relativistic
(x � 1). The electron degeneracy temperature is

TF = (
√

1 + x2 − 1) T0, T0 =
mec

2

kB
≈ 5.930 × 109 K, (3)

wherekB is the Boltzmann constant. In our caseT <∼ 5×109 K,
and the electrons are strongly degenerate.

The nuclear composition of neutron-star envelopes is not
very well known, although it is quite certain that light ele-
ments such as H and He transform into heavier ones at densi-
ties which are lower than the densities of interest. For simplic-
ity, we assume that only one nuclear species is present at any
fixed density (pressure). This leads to discontinuous variations
of the nuclear composition with density (pressure). The temper-
ature dependence of the nuclear composition can be ignored at
T < 5 × 109 K (e.g., Haensel et al. 1996). For illustration, we
shall make use of two models of matter in a neutron-star crust:
ground-state (cold-catalyzed) matter and accreted matter. For
describing ground-state matter, we shall use the following data:
the results of Haensel & Pichon (1994) atρ < ρd based on new
laboratory measurements of nuclear masses with large neutron
excess, the results of Negele & Vautherin (1973) for spherical
nuclei atρd <∼ ρ <∼ 1.5 × 1014 g cm−3 derived by a modi-
fied Hartree-Fock method, and model I of Oyamatsu (1993),
which takes into account nonspherical nuclei. We shall adopt
the composition of accreted matter calculated by Haensel &
Zdunik (1990) forρ <∼ 1013 g cm−3, and we shall not consider
accreted matter at higher densities. Accreted matter consists of
lighter nuclei, and neutron drip is shifted to higher density as
compared to ground-state matter (Fig. 1).

The state of spherical nuclei is determined by the ion-
coupling parameter

Γ =
Z2e2

akBT
≈ 0.225 x

Z5/3

T8
, (4)

whereZe is the nuclear charge,a = [3/(4πni)]
1/3 is the ion-

sphere (Wigner–Seitz cell) radius,ni = ne/Z is the number
density of nuclei, andT8 is the temperature in units of108 K. For
the densities and temperatures of interest, the spherical nuclei
constitute either a strongly-coupled Coulomb liquid (1 < Γ <
Γm), or a Coulomb crystal (Γ > Γm), whereΓm=172 corre-
sponds to solidification of a classical one-component Coulomb
liquid into a bcc lattice (Nagara et al. 1987). Thus the melting
temperature is

Tm =
Z2e2

akBΓm
≈ 1.32 × 107Z5/3 (ρ12Ye)

1/3
K. (5)

The density profiles ofTm for the ground-state and accreted
matter are presented in Fig. 1. The melting temperature of ac-
creted matter is systematically lower due to the lower values
of Z. If ρ > 1013 g cm−3, one hasTm >∼ 5 × 109 K for the
ground-state model, and matter is always solid for the condi-
tions under study. A classical bcc lattice is bound most tightly
(see, e.g., Brush et al. 1966). Therefore, it is widely assumed
that neutron-star crusts are composed of such crystals. However,
an fcc or hcp crystal is bound only slightly more weakly, so fcc
and hcp crystals may well occur in dense stellar matter along
with the bcc ones (e.g., DeWitt et al. 1993; Baiko & Yakovlev
1995), and we shall also consider this possibility.

An important parameter for a Coulomb crystal is the ion
plasma temperature

Tp =
~ωp

kB
≈ 7.83 × 109

(

ZYeρ12

Ai

)1/2

K, (6)
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Fig. 1. Density dependence of the melting temperatureTm and the ion
plasma temperatureTp, and also neutron drip density (vertical dotted
lines) for ground-state matter and accreted matter

which is determined by the ion plasma frequencyωp =
(

4πZ2e2ni/mi

)1/2
, wheremi ≈ Aimu is the ion mass and

mu = 1.66 × 10−24 g is the atomic mass unit. The plasma
temperature characterizes ion vibrations. IfT >∼ Tp/8 the vi-
brations can be treated classically (the high-temperature case)
while atT � Tp they should be treated quantum-mechanically
(the low-temperature case). In neutron-star crusts, a transition
from the high-temperature to the low-temperature regime takes
place at temperatures which are lower thanTm (Fig. 1).

We shall consider ion vibrations in a purely Coulomb lat-
tice. Forρ > ρd there are neutrons in the space between ions
(nuclei). How to include the effect of these neutrons on the lat-
tice dynamics is at present an unsolved problem, and we shall
ignore this effect.

The effective interaction between electrons and nuclei de-
pends on a number of effects. One is the character of the
Coulomb interaction itself, a second is screening of the interac-
tion by electrons, a third is the shape of the nuclear charge distri-
bution, and a fourth is the effect of thermal vibrations effectively
smearing out the nuclear charge, an effect taken into account by
inclusion of the Debye–Waller factor. Thus the Fourier trans-
form of the effective electron-ion interaction may be written
as

Vq =
4πeρZ F (q)

q2 ε(q)
e−W (q), (7)

whereρZ is the ion charge per unit volume,F (q) is the form
factor which reflects the charge distribution within one nucleus,
ε(q) is the static longitudinal dielectric factor (Jancovici 1962),
andW (q) is the Debye–Waller factor. For a crystal of spheri-
cal nuclei, we haveρZ = Zeni ; Eq. (7) is valid also for non-

spherical nuclei. The Debye–Waller factor in a crystal of spher-
ical nuclei can be written as

W (q) =
~q2

4mi

〈

coth(~ωs/2kBT )

ωs

〉

, (8)

whereωs is a phonon frequency,s enumerates phonon modes
and brackets〈. . .〉 denote averaging over phonon wave vectors
and polarizations (e.g., Eq. (8) in Yakovlev & Kaminker 1996).
In a Coulomb crystalW = W (q) is accurately fitted by Baiko
& Yakovlev (1995):

W =
α

2

(

q

2kF

)2

, α = α0

(

1

2
u−1 e−9.1tp + tpu−2

)

, (9)

wheretp = T/Tp and

α0 =
4m2

ec
2

kBTpmi
x2 ≈ 1.683

√

x

AiZ
. (10)

The quantitiesu−1 andu−2 are the frequency moments of the
phonon spectrum,un = 〈(ωs/ωp)n〉. For the bcc lattice, the
frequency moments are well known (see, e.g., Pollock & Hansen
1973). For the fcc and hcp crystals, they are easily derived by
calculating the phonon spectrum from the Ewald transformation
of the lattice sums. The phonon spectra of the bcc, fcc, and hcp
lattices appear to be quite similar. Accordingly the properties of
these crystals are very similar. In particular,u−1 = 2.798, 2.720
and 2.703;u−2 = 12.972, 12.143 and 12.015, for bcc, fcc and hcp
lattices, respectively. Note that the frequency moments for the
fcc lattice calculated by Baiko & Yakovlev (1995) and used by
Baiko & Yakovlev (1996) and Yakovlev & Kaminker (1996) are
inaccurate due to erroneous boundaries of the Brillouin zone for
this lattice implemented in the momentum averaging scheme.
Improved calculations show that Eq. (9) remains valid with the
accurate frequency moments for all the lattice types under study.
The Debye–Waller factor is important if ion vibrations (either
thermal or zero-point ones) are strong.

The simplest nuclear form factor in Eq. (7) corresponds to
a spherical atomic nucleus with a uniform proton core of radius
Rc:

F (q) =
3

(qRc)3
[sin(qRc) − qRc cos(qRc)] . (11)

At ρ < ρd, the radii of the nuclei do not change under the am-
bient pressure of neighbouring particles, and one can use the
standard formulaRc = 1.15 A1/3 fm. At these densities the
ratio η ≡ Rc/a � 1, and the effect of the atomic form factor
is generally negligible (F (q) ≈ 1 for q <∼ 2kF). At densities
ρd < ρ <∼ 1013 g cm−3 the simplest form factor remains ade-
quate, but the proton core radius becomesRc ≈ 1.83 Z1/3 fm as
deduced by Itoh & Kohyama (1983) from the results of Negele
& Vautherin (1973). In this case,η can be as high as 0.2–0.3 and
the effect of the form factor is important. For higherρ, the pro-
ton charge distribution becomes smoother, and the form factor
should be modified.

In order to describe accurately all layers of the neutron star
crusts we make use of the results by Oyamatsu (1993) who
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calculated the local neutron (n) and proton (p) number density
distributions within a Wigner–Seitz cell and fitted them in the
form

nj(r) =







(nin
j − nout

j )

[

1 −
(

r
Rj

)tj

]3

+ nout
j , r < Rj ,

nout
j , r ≥ Rj ,

(12)

wherej =n or p, andnin
j , nout

j , tj andRj are the fit param-
eters. These parameters, as well as the sizes of Wigner–Seitz
cells, are presented in Table 6 in Oyamatsu (1993) for several
selected values of the baryon number densitynb for spherical
and nonspherical nuclei.

In particular, Oyamatsu (1993) gives the fit parameters
for spherical nuclei at three values of baryon number density
nb=0.01, 0.03 and 0.055 fm−3 (i.e.,ρ = 1.66×1013,4.98×1013

and9.13 × 1013 g cm−3) in the inner neutron-star crust. These
parameters are quite consistent with those presented by Negele
& Vautherin (1973) for nearly the samenb. Some of these pa-
rameters can also be deduced from Figs. 3 and 4 and from Ta-
ble 3 of Negele & Vautherin (1973) for several other values
of nb in the inner crust. The parameters appear to be smooth
functions ofnb, so we interpolated between the given points at
ρd ≤ ρ ≤ 1.4 × 1014 g cm−3. This interpolation smears out
jumps in the nuclear composition with increasingρ, but these
have little effect on the neutrino-pair bremsstrahlung. The inter-
polation allows us to calculate easily the parameters of spherical
nuclei at any density in the inner crust. In particular,nout

n gives
the number density of free neutrons outside the nuclei (r > Rn)
whileRn may be called the nuclear radius. There are no protons
outside nuclei,nout

p = 0, in this regime, and the proton core ra-
diusRp is somewhat smaller thanRn. The nuclear massmi is
assumed to be that of all nucleons withinRn. The parameters
tn andtp range from about 4 to 6 and decrease with increasing
ρ. Note that the proton core radiusRp in Eq. (12) is somewhat
larger than the proton coreRc in the simplified model (11).

We have obtained also an analytical description of atomic
nuclei for lower densities,108 g cm−3 ≤ ρ ≤ ρd in the outer
neutron-star crust making use of the results by Haensel & Pi-
chon (1994). We have adopted the same parameterization (12)
and constructed simple analytic expressions for the nuclear pa-
rameters of the ground-state matter as a function ofnb in the
outer crust. In this casenout

n = 0. At low density in the outer
crust these expressions yield56Fe-nuclei.

According to model I of Oyamatsu (1993), the phase with
spherical nuclei in the inner crust is realized up to a density
nb = 0.0586 fm−3 (ρ = 0.973×1014 g cm−3). This is followed
by the phase with rod-like nuclei up to a densitynb = 0.0749
fm−3 (ρ = 1.24 × 1014 g cm−3), and the phase with slab-like
nuclei (up tonb = 0.0827 fm−3, ρ = 1.37 × 1014 g cm−3).
Subsequently there are two phases with the roles of nuclear
matter and neutron matter reversed, the rod-like one (up tonb =
0.0854 fm−3, ρ = 1.42×1014 g cm−3), and the “Swiss cheese”
(inverted-spheres) one, which is the analog of the phase with
spherical nuclei and is the last phase in the neutron-star crust
(up tonb = 0.0861 fm−3, ρ = 1.43 × 1014 g cm−3). At higher

density the nuclei dissolve to give the uniform matter of the
neutron star core.

In each crystalline phase of matter the Wigner–Seitz cell
has its own geometry, but we shall assume that in the case of
bcc phases it may be approximated by a sphere, and in rod-
like phases by a right circular cylinder. We shall assume that
the nucleon density distributions may be described by Eq. (12),
wherer is the distance from the cell center (e.g., from the axis
of a rod in the rod-like phase, or from the symmetry plane in the
slab-like case). We interpolate these parameters as functions of
nb within each phase separately. In the phases with spheres, rods
and slabs,nout

p = 0, andnout
n describes the number density of

free neutrons, and the regionr < Rn is occupied by the nucleus
itself (withnin

n > nout
n ). In the two last “bubble” phases with the

roles of nuclear matter and neutron matter reversed,nout
p /= 0,

andnout
j > nin

j , i.e., the local number density of neutrons and
protons increases with distancer from the center of the Wigner–
Seitz cell. With increasing density the nucleon density profiles
become smoother, approaching that for uniform matter.

Thus we have obtained a simple analytic description of the
neutron and proton local density profiles for the ground-state
matter throughout the outer and inner neutron-star crusts in-
cluding non-spherical phases of atomic nuclei. This description
will be used below and will be referred to as thesmooth compo-
sition (SC) model of ground-state matter. Using this model one
may easily determine the nuclear form factorF (q) numerically
by calculating the Fourier transform ofnp(r). Unfortunately,
vibrational properties are known only for crystals composed of
spherical nuclei, apart from recent work on the elastic constants
(Pethick & Potekhin 1998). Thus in phases with non-spherical
nuclei we know neither the Debye–Waller factor nor the phonon
spectrum.

3. General formalism

The general expression for the neutrino emissivityQ due to the
neutrino-pair bremsstrahlung (1) of relativistic degenerate elec-
trons in a plasma of spherical nuclei can be written as (Haensel
et al. 1996)

Q =
8πG2

FZ2e4C2
+

567~9c8
(kBT )6niL

≈ 3.229 × 1011 ρ12 ZYe T 6
8 L erg s−1 cm−3, (13)

whereGF = 1.436×10−49 erg cm3 is the Fermi weak coupling
constant, andL is a dimensionless function to be determined.
Furthermore,C2

+ = C2
V + C2

A + 2(C
′2
V + C

′2
A ), whereCV and

CA are the vector and axial-vector constants of weak interaction,
respectively. We haveCV = 2 sin2 θW + 0.5 andCA = 0.5,
for the emission of electron neutrinos, to which both charged
and neutral currents contribute, andC ′

V = 2 sin2 θW − 0.5 and
C ′

A = −0.5, for the emission of muonic and tauonic neutrinos,
which is due only to neutral currents. In this case,θW is the
Weinberg angle,sin2 θW ' 0.23. Eq. (13) withC2

+ ≈ 1.675 is
obtained taking into account the emission of the three neutrino
flavors (νe, νµ, andντ ).
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Thus the problem reduces to evaluating the functionL. In
the liquid of atomic nuclei,L = Lliq is determined by the
Coulomb scattering of electrons by nuclei (Sect. 3.1). In the
Coulomb solid,L consists of two parts,

L = Lsol = Lph + Lsl, (14)

whereLph describes the phonon contribution (Sect. 3.2) andLsl

describes the static-lattice contribution (Sect. 3.3).
The non-spherical nuclei at the bottom of the neutron-star

crust form a liquid crystal at the temperatures of interest. How-
ever, since the vibrational properties of these phases are largely
unknown, we shall not consider the phonon contribution for
this case. The static-lattice contribution for such a solid will be
analyzed in Sect. 3.3.

3.1. Liquid phase

The factorLliq is a slowly varying function of the plasma param-
eters and it has basically the same significance as the Coulomb
logarithm in calculations of transport processes in plasmas. The
most general expression for it was obtained by Haensel et al.
(1996), who found

Lliq =
~c

kBT

∫ 2kF

0

dqt q3
t

∫

∞

0

dqr
S(q)|F (q)|2

q4|ε(q)|2
×RT (qt, qr) RNB(qt), (15)

whereq = qt + qr is the momentum transfer from an electron
to a nucleus in a collision event,qt corresponding to purely elas-
tic Coulomb scattering whileqr takes into account inelasticity
due to the neutrino emission;F (q) is the nuclear form factor,
ε(q) is the static longitudinal dielectric function (Sect. 2),S(q)
is the ion-ion structure factor (e.g., Itoh et al. 1983; Young et al.
1991), andRNB(qt) includes non-Born corrections. The func-
tion RT (qt, qr) is given by Eq. (20) in Haensel et al. (1996) and
describes the effects concerned with the thermal smearing of
the electron distribution function.

In the ultra-relativistic limit, the Coulomb logarithm de-
pends actually on three dimensionless parameters:Lliq =
Lliq(Z, η, tF), η = Rc/a, tF = kBT/(2pFc) ≈ T/(2TF),
whereTF is given by Eq. (3).

Haensel et al. (1996) calculated the Coulomb logarithm (15)
with the form factor (11) atZ ≤ 50, tF <∼ 0.1 andη <∼ 0.2 and
fitted the results by an analytic formula (their Eq. (25)). In this
article, we shall calculateLliq from the starting equation (15)
since we shall not restrict ourselves to the simple form factor
(11) (Sect. 2). We shall use the structure factorS(q) obtained by
Rogers & DeWitt (unpublished) and accurately fitted by Young
et al. (1991).

Notice that if we neglect the thermal smearing of the electron
distribution, then Eq. (15) reduces to the familiar expression
(e.g., Festa & Ruderman 1969)

Lliq =

∫ 1

0

dy
S(q)|F (q)|2

y|ε(q)|2
(

1 +
2y2

1 − y2
ln y

)

RNB(q), (16)

wherey = q/(2kF). As shown by Haensel et al. (1996), it is
a good approximation forT � ~cqs, whereqs ∼ a−1 is the
Coulomb screening momentum.

The factorRNB(q) represents (Haensel et al. 1996) the ra-
tio of the electron scattering cross sections by atomic nucleus
calculated exactly and in the Born approximation. It describes
the non-Born correction to the Born approximation. To simplify
consideration of the non-Born corrections we have introduced
the mean non-Born correction factorR̄NB defined as

R̄NB = LNB
liq /LBorn

liq , (17)

whereLNB
liq andLBorn

liq are given by Eq. (15) calculated with an
accurate factorRNB and withRNB = 1, respectively. We have
evaluated̄RNB using the form factor (11) for wide ranges of the
parametersZ, η, tF (or Γ) typical for neutron star envelopes.
R̄NB appears to be a very slow function ofη andΓ. Since our
treatment of the non-Born corrections is rather phenomenolog-
ical anyway, we have setΓ = 150 andη = 0.1 and neglected
the thermal smearing of the electron distribution function. Then
R̄NB is a function of the only remaining parameter,Z. The nu-
merical results forZ <∼ 60 are accurately fitted by

R̄NB = 1 + 0.00554 Z + 0.0000737 Z2. (18)

This formula enables us to calculateLliq from Eq. (15) or (16)
withRNB(q) = 1, i.e., in the Born approximation, and introduce
the mean non-Born correction (18) using Eq. (17).

An accurate calculation of the non-Born corrections in crys-
talline matter (Sects. 3.2 and 3.3) is a difficult task which goes
beyond the scope of the present paper. However, we shall see
(Sect. 4) that neutrino bremsstrahlung in crystalline matter is
quite similar to that in a Coulomb liquid. Thus we adopt the
same factor (18) to account for the non-Born corrections in
Coulomb crystals.

3.2. Phonon contribution

The phonon contribution in a Coulomb crystal of spherical nu-
clei was studied by a number of authors (e.g., Flowers 1973;
Itoh et al. 1984b; Yakovlev & Kaminker 1996). So far, all ar-
ticles have been restricted to consideration of one-phonon pro-
cesses (absorption or emission of one phonon). To allow for
the background lattice vibrations the one-phonon reaction rate
has usually been multiplied bye−2W , whereW = W (q) is the
Debye–Waller factor introduced in Eq. (8).

Under astrophysical conditions at not too low temperatures,
the main contribution to electron–phonon scattering comes from
umklapp processes, in which the electron momentum transfer
~q in a scattering event lies outside the first Brillouin zone.
Then the phonon (quasi)momentum is determined by reduction
of q to the first Brillouin zone. The umklapp processes require
q >∼ q0, contrary to the normal processes in whichq remains in
the first Brillouin zone andq <∼ q0, whereq0 ≈ (6π2ni)

1/3 is
the radius of the Brillouin zone in the approximation in which
it is treated as a sphere. Umklapp processes dominate since the
parametery0 = q0/(2kF) = (4Z)−1/3 is typically small (due
to the largeZ). Accordingly the phase space associated with
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umklapp processes is much larger than that for the normal ones
(e.g., Raikh & Yakovlev 1982) and, in most cases, it is sufficient
to consider umklapp processes alone.

Let us rederive the expression forLph with a proper treat-
ment of multi-phonon processes. We start from the general inte-
gral expression (Eq. (18) of Flowers 1973) for the neutrino emis-
sivity due to electron-phonon scattering. The integrand contains
the inelastic partSd(q, Ω) of the dynamical structure factor of
ions in a Coulomb crystal. It is the inelastic part that is responsi-
ble for the electron-phonon scattering. Baiko et al. (1998) have
obtained its expression forq >∼ q0 by accurate summation of
multi-phonon diagrams:

Sd(q, Ω) =

∫ +∞

−∞

dt eiΩt S(q, t),

S(q, t) = e−2W
(

eΦ(t) − 1
)

, (19)

where

Φ(t) =
~q2

2mi

〈

cos [ωs(t + i~/2kBT )]

ωs sinh (~ωs/2kBT )

〉

. (20)

In these calculations the density operators are calculated to all
orders in the phonon creation and annihilation operators, but the
phonon dynamics is treated in the harmonic approximation.

We now use the approach of Flowers (1973) with the dy-
namical structure factor (19) and make the same simplifications
as in deriving the expression forLph by a semianalytical method
described by Yakovlev & Kaminker (1996). Then we obtain

Lph =

∫ 1

y0

dy
Seff(q)|F (q)|2

y|ε(q)|2
(

1 +
2y2

1 − y2
ln y

)

. (21)

In this case

Seff(q) =
63~

6

16π7 (kBT )6

∫

∞

0

dω ω4

∫ +∞

−∞

dΩ

∫ +∞

−∞

dt

× Ω + ω

e~(Ω+ω)/kBT − 1
eiΩtS(q, t), (22)

where ~ω is the neutrino-pair energy. As in Yakovlev &
Kaminker (1996) the lower integration limity0 excludes the
low-momentum transfers in which the umklapp processes are
forbidden.

Comparing Eqs. (21) and (16) we see thatSeff(q) plays the
role of an effective static structure factor that defines the phonon
contribution to the neutrino bremsstrahlung. The expression
(22) for it can be easily simplified. First we can integrate over
Ω andω which leaves us with a single integration overt:

Seff(q) = −189

2π5

(

~

kBT

)4

e−2W

×Im

∫ +∞

−∞

dt
eΦ(t) − 1

t5 sinh2(πtkBT/~)
. (23)

The latter integration is non-trivial since the integrand is singular
at t = 0. However, the singularity is easily removed by using
the theory of functions of a complex variable. Since the function

Φ(t) is analytic, the integrand allows us to shift the integration
path into the complext plane. The appropriate shift ist =
t′ −i~/(2kBT ). It transforms Eq. (23) into a rapidly converging
integral

Seff(q) = 189

(

2

π

)5

e−2W

∫

∞

0

dξ
1 − 40ξ2 + 80ξ4

(1 + 4ξ2)5 cosh2(πξ)

×
(

eΦ(ξ) − 1
)

, (24)

whereξ = t′kBT/~ and

Φ(ξ) =
~q2

2 mi

〈

cos(ωst
′)

ωs sinh (~ωs/2kBT )

〉

. (25)

The phonon averaging〈. . .〉 can be performed using the
method of Mochkovitch & Hansen (1979). Afterwards the inte-
gral (24) can be calculated numerically. The behaviour ofSeff(q)
depends on temperature, and may be characterized by the di-
mensionless parametertp = T/Tp introduced in Eq. (9). First
consider the asymptotes fortp � 1 andtp >∼ 1.

In the low-temperature case,tp � 1, it is sufficient to set
eΦ − 1 = Φ in Eqs. (19), (22) or (24). This case corresponds
to the familiar one-phonon approximation adopted in previous
articles. In the notation introduced by Yakovlev & Kaminker
(1996) one finds in this case that

S1ph
eff (q) = α0 y2 tp G(tp) e−2W ≈ α0 y2 b t2p e−2W , (26)

whereα0 is defined in Eq. (10),G(tp) is the function deter-
mined by Eq. (12) in Yakovlev & Kaminker (1996), andb is
a numerical factor specified by the low-temperature asymptote
G(tp) = b tp. For a bcc Coulomb crystal, one hasb ≈ 231. This
value is more accurate thanb ≈ 202 given by the numerical fit
(15) in Yakovlev & Kaminker (1996) since the latter authors did
not intend to produce a fitting formula which would be highly
accurate fortp <∼ 0.01.

Therefore, the results obtained in the previous articles are
strictly valid for T � Tp. The Debye–Waller exponente−2W

included into the one-phonon approximation takes into account
renormalization of the one-phonon interaction by background
lattice vibrations. Notice that recent calculations ofG(tp) in
Yakovlev & Kaminker (1996) for the fcc lattice are inaccurate
due to an error in specifying the boundaries of the first Brillouin
zone (Sect. 2). After correcting this error, we obtain a result for
G(tp) very close to that for the bcc lattice. Note also a misprint
in Eq. (18) for the functionF1 in Yakovlev & Kaminker (1996):
in the second term(1.5 + α)3/4 is erroneously printed instead
of (1 + α)3/4 although all calculations were made using the
correct expression.

In the opposite case of high temperatures,tp >∼ 1, the
asymptotic form of Eq. (24) is very simple,

Seff(q) = 1 − e−2W . (27)

ThusSeff(q) becomes noticeably larger than in the one-phonon
approximation, as a result of multi-phonon processes.

We have also calculatedSeff(q) for a wide range of tem-
peraturesT and density parametersα0 defined in Eq. (10). We
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Fig. 2. The effective structure factorSeff(q) which enters the nor-
malized neutrino emissivity (21), produced by the electron-phonon
scattering, for the density parameterα0 = 0.1 and three temperatures
tp = 0.1, 1, 10 in bcc, fcc and hcp lattices. The curves for fcc and
hcp crystals almost coincide. Dots show the effective structure factor
which corresponds to the one-phonon approximation

have verified that, under the conditions in a neutron-star crust,
α0 ≤ 0.2. For suchα0 and alltp the numerical results are fitted
by a simple expression

Seff(q) =
(

e2W1 − 1
)

e−2W , (28)

where

W1 =
α0 y2 b u−2 t2p

2
√

(b tp)2 + u2
−2 exp(−7.6 tp)

, (29)

and b ≈ 231, for a bcc lattice. Notice thatW1 ≈ W ≈
0.5 α0y

2u−2tp for tp >∼ 1. Notice also thatSeff(q) given
by Eq. (28) reproduces quite accuratelyS1ph

eff (q) if we replace
e2W1 − 1 by 2W1. The effect of multi-phonon processes on
neutrino bremsstrahlung emission will be described in Sect. 4.

Fig. 2 shows the dependence ofSeff(q) on y at α0 = 0.1
and three temperaturestp = 0.1, 1, and 10 for three types of
Coulomb crystals, bcc, fcc, and hcp. The results are seen to be
almost independent of lattice type, and the curves for fcc and
hcp lattices are indistinguishable. Iftp >∼ 1, the one-phonon
approximation appears to be highly inaccurate fory >∼ 0.4.

Note that the present treatment of phonon scattering is valid
as long asT >∼ Tu, whereTu ∼ Tp Z1/3e2/(~vF) is the tem-
perature below which umklapp processes are frozen out (see,
e.g., Raikh & Yakovlev 1982), andvF ≈ c is the electron
Fermi velocity. IfT >∼ Tu the electron–phonon scattering can
be described in the free electron approximation, and the main
contribution to the scattering comes from umklapp processes
(Yakovlev & Urpin 1980; Raikh & Yakovlev 1982). The den-
sity dependence ofTu is shown in Fig. 1 of the article by Baiko &

Yakovlev (1996);Tu is so low that a study of neutrino emission
at lower temperatures is of no practical importance.

3.3. Static-lattice contribution

This contribution corresponds to neutrino emission due to Bragg
diffraction of electrons in a crystal. It was widely assumed for a
long time that the process could be studied in the free-electron
approximation (e.g., Flowers 1973; Itoh et al. 1984a). However,
recently Pethick & Thorsson (1994) have pointed out the impor-
tance of electron band-structure effects. The gaps in the elec-
tron dispersion relation at the boundaries of the Brillouin zones
can reduce noticeably the static-lattice contribution as com-
pared to that obtained in the free-electron approximation. The
general formalism for evaluating the static-lattice contribution
for strongly degenerate relativistic electrons with proper treat-
ment of band-structure effects has been developed by Pethick
& Thorsson (1997). Their Eq. (28) is valid for spherical and
nonspherical nuclei and can be written as

Qsl =
2πG2

FkFC2
+

567~9c8
(kBT )8J

≈ 1.254 × 109 (ρ12Ye)
1/3T 8

8 J erg s−1 cm−3, (30)

where

J =
∑

K /=0

y2

t2V
I(y, tV ) (31)

is a dimensionless function given by a sum over all reciprocal
lattice vectorsK /= 0 for which K/2 lies within the elec-
tron Fermi surface;y = K/(2kF) (with y < 1). The function
I(y, tV ) is given by Eq. (29) in Pethick & Thorsson (1997),
which can be rewritten as

I(y, tV ) =
63

8π7

y

y4
⊥

∫

∞

0

∫

∞

0

dz1 dz2

E1E2

∫ w2

w1

dw
w2

ew − 1

×[(w2 − w)(w − w1)]
3/2, (32)

wherey⊥ =
√

1 − y2,

E1,2 =

√

1 +
(

z1 ∓ z2

2

)2

,

w1,2 =
E1 + E2 ∓ y⊥

√

(E1 + E2)2 − z2
2

tV y2
; (33)

tV is defined in terms of the Fourier transform of the lattice
potential (7) withq=K by

1

tV
=

|VK |y⊥

kBT
=

4πeρZ

K2kBT

|F (K)|
|ε(K)| y⊥ e−W (K), (34)

and other notations were introduced in Eq. (7).
For a lattice of spherical nuclei, we can use Eq. (13) with

Lsl =
πZ2

3Γ2
(9πZ/4)1/3 J

=
1

12Z

∑

K /=0

y2
⊥

y2

|F (K)|2
|ε(K)|2 I(y, tV ) e−2W (K). (35)
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According to Eqs. (9), (34) and (35), the Debye–Waller factor
suppresses the electron–lattice interaction at large reciprocal lat-
tice vectorsK and weakens the neutrino emission. Computing
Qsl directly as a sum of 3D integrals (32) is time consuming
since the number of reciprocal lattice vectorsK involved is
generally large (∼ 4Z terms). We simplify computation by pro-
ducing an analytic fit toI(y, tV ).

Analytical asymptotes ofI(y, tV ) can be derived in the
limiting cases of high and low temperatures. In the high-
temperature limit,tV � 1, Pethick & Thorsson (1994, 1997)
obtained

I =
1

y2
⊥

y

(

1 +
2 y2

y2
⊥

ln y

)

. (36)

Inserting this asymptote into Eqs. (35) and (13) one immedi-
ately reproduces the well-known result of Flowers (1973) and
Itoh et al. (1984a) for the static-lattice contribution when band-
structure effects are neglected. Replacing the sum overK by
an integral overq, we arrive at the expression

L
(0)
sl =

∫ 1

y0

dy
|F (q)|2e−2W

y|ε(q)|2
(

1 +
2y2

1 − y2
ln y

)

, (37)

which is similar to Eqs. (16) and (21) in the liquid and for
the phonon contribution in the solid, respectively. The Debye–
Waller exponente−2W is seen to play the role of the diffraction
part of an “effective static structure factor” that defines the static-
lattice contribution (smoothed over diffraction peaks due to re-
placing summation by integration). Thus the sumLph +L

(0)
sl in

a crystal can be written in the same form (16) asLliq in a liquid,
with an effective structure factorSsol(q) = e−2W +Seff(q). We
have verified thatSsol(q) resembles the structure factorS(q) in a
strongly coupled liquid (Young et al. 1991) for ion coupling pa-
rameters100 <∼ Γ <∼ 225 if we smear out the familiar diffraction
peaks inS(q); the integral contributions of the two factors are
nearly the same. This elucidates the similarity of neutrino-pair
bremsstrahlung in a liquid and a crystal (Sect. 4).

The asymptote (36) is temperature-independent. The
lowest-order thermal correction can be taken into account by
introducing the factor[1 + (63/40)(πtV y)−2].

The low-temperature asymptote fortV � y⊥/y2 is (Pethick
& Thorsson 1997)

I(y, tV ) =
189

2π11/2(1 − y⊥)1/2(1 + y⊥)2 (y⊥tV )5/2

× exp

(

− 2

tV (1 + y⊥)

)

, (38)

while for y⊥/y2 � tV � 1 the latter asymptote has to be
multiplied by

√
π[y⊥/(tV y2)]5/2.

We calculatedI(y, tV ) from Eq. (32) numerically for wide
ranges ofy andtV and derived an analytic fit which reproduces
numerical results and the asymptotes:

I(y, tV ) =
0.3088 (1 + 8.416y⊥tV )

y (1 + y⊥)3/2 (y⊥tV )5/2 D
exp

[

− 2

tV (1 + y⊥)

]

+
1

y2
⊥

y

(

1 +
0.4031

t2V y2 + 0.5tV + 0.2678

)

×
(

1 +
2y2

y2
⊥

ln y

)

exp

(

− 2

tV H

)

, (39)

whereD = u5 + 0.7124 u4 − 1.689 u3 + 5.237 u2 − 0.2 u +
1.772, H = 1 + y⊥ + 8.212 tV y2, andu = y

√

tV /y⊥. The
mean error of the fit is2%, and the maximum error of7.4%
occurs attV = 0.045 andy = 0.987. The fit permits a rapid
and accurate evaluation of the static-lattice contribution from
Eqs. (30) and (31) or (13) and (35) for any plasma parameters
of practical interest.

For a lattice of spherical nuclei, we can use Eq. (35) with
the Debye–Waller factor and the nuclear form factor, and cal-
culate the sum over reciprocal lattice vectors for bcc, fcc and
hcp crystals. In the case of non-spherical nuclei, we use the
more general Eqs. (30) and (31) including the form factor but
settingW = 0, since the Debye–Waller factor is unknown. The
sum over reciprocal lattice vectors in Eq. (31) for a lattice of
non-spherical nuclei is different from that for ordinary crys-
tals. In the case of rod-like phases, the lattice is the simplest
two-dimensional triangular one, for slab-like nuclei the lattice
is purely one-dimensional, and in the case of the Swiss-cheese
phase with neutron drops immersed in nuclear matter we shall
assume that the lattice is bcc.

4. Results and discussion

Let us outline the main properties of neutrino-pair
bremsstrahlung by relativistic degenerate electrons in
neutron-star crusts. The results of Sect. 3 allow us to calculate
the neutrino emission for bcc, fcc and hcp Coulomb crystals of
atomic nuclei. However, in all three cases the emission appears
to be practically the same because of the close similarity of
the crystals. For simplicity we therefore consider bcc crystals
throughout this section.

Figs. 3 and 4 show the temperature dependence of the nor-
malized neutrino emissivityL for two densities,ρ = 1010 and
1012 g cm−3, in the outer and inner crusts, respectively. Fig. 3
is plotted for matter composed of iron (Z = 26, A = 56),
while Fig. 4 corresponds to the ground-state matter composed
of 250

40 Zr nuclei (Z = 40, A = 250, whereA is the number of
nucleons per Wigner–Seitz cell, see Negele & Vautherin 1973).
Vertical dotted lines separate liquid and solid phases. The upper
(dashed) line in the liquid phase is obtained from Eq. (15) with
the non-Born corrections included in the functionRNB (Haensel
et al., 1996). The lower (solid) line is also obtained from Eq. (15)
but in the Born approximation (RNB = 1). Solid lines in the
crystalline phase show the phonon contribution (Sect. 3.2), the
static-lattice contribution (Sect. 3.3), and the total functionLsol

given by Eq. (14). The dotted line also gives the total func-
tion but neglecting the band structure effects in the static-lattice
contribution (by using the asymptote (36) in Eq. (35)). Finally,
the dot-dashed line displays the phonon contribution calculated
in the one-phonon approximation adopted in previous articles
(Sect. 3.2).

The temperature profiles ofL in Figs. 3 and 4 are simi-
lar. The phonon contribution is generally several times smaller
than the static-lattice one. Each term in the static-lattice sum
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Fig. 3. Temperature dependence of the normalized neutrino emissivity
L for iron matter atρ = 1010 g cm−3. Solid lines: Born results for the
liquid phase; phonon and static-lattice contributions, as well as the total
function (14) for the crystalline phase. Dotted line: the total function
for crystalline phase but without band-structure effects. Dashed line:
non-Born result in the liquid phase. Dot-dashed line: one-phonon ap-
proximation for the phonon contribution (Yakovlev & Kaminker 1996).
All curves but one in the liquid phase are obtained in the Born approx-
imation
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Fig. 4. Same as in Fig. 3 but for ground-state matter composed of250
40 Zr

nuclei atρ = 1012 g cm−3

(35) is suppressed exponentially with decreasing temperature
but the sum itself decreases more like a power law because,
for the smallest reciprocal lattice vectors|K|, the exponential
decrease of the contribution starts to operate at much higher tem-
perature than that for larger reciprocal lattice vectors (Pethick
& Thorsson 1997). At very low temperatures, the reduction of
contributions from all reciprocal lattice vectors becomes ex-
ponential, and the total static-lattice contribution is suppressed
exponentially. However, such low temperatures are of no practi-
cal importance. Generally, the static-lattice neutrino emission is

usually partially suppressed by band-structure effects, and these
effects are substantial.

All calculations of neutrino-pair emission in the crystalline
phase have been made in the Born approximation. On the other
hand, Haensel et al. (1996) calculatedLliq beyond the Born
approximation. For comparison of the results in the crystalline
and liquid phases, we present also the Coulomb logarithmLliq

determined in the Born approximation. This curve matches the
function Lsol in the solid phase much better and makesL an
almost continuous function of temperature at the melting point.
We believe that the non-Born curve in the solid phase (which
is difficult to calculate exactly) would match equally well the
non-Born curve in the liquid phase, because of the similarity
of the bremsstrahlung in a liquid and in a crystal, mentioned
in Sect. 3.3. The state of a Coulomb system (liquid or solid) is
expected to have little effect on neutrino-bremsstrahlung, since
in both cases neutrino emission occurs due to scattering of elec-
trons by fluctuations of electric charge produced by ions (nu-
clei). In the solid phase near the melting point both the phonon
and the static-lattice contributions must be included for the total
emission rate to match the results in the liquid phase. The one-
phonon approximation is seen to be generally quite accurate at
low temperatures,T � Tm (actually atT � Tp, as discussed
in Sect. 3.2) but underestimates the phonon contribution near
the melting point. It is the proper inclusion of multi-phonon
processes that makes the phonon contribution larger and almost
removes the jump of the total neutrino emissivity at the melting
point. Notice that the phonon and static-lattice contributions at
the melting become nearly equal. The physical properties of a
Coulomb liquid and a Coulomb solid near the melting point are
nearly the same. To verify this statement we have shifted arti-
ficially the melting temperature (which actually corresponds to
Γ = Γm = 172, Sect. 2). We have considered the cases of a
supercooled liquid by takingΓm = 225, for which the liquid-
state structure factors of Young et al. (1991) are available, and
the case of a superheated crystal by takingΓm = 100. In all
the cases the total normalized neutrino emissivitiesL do not
differ noticeably from those obtained atΓm = 172, and the
discontinuity ofL at the melting point is minor.

Fig. 5 compares the present results for56Fe matter atρ =
109 g cm−3 with the familiar results by N. Itoh and his group
reviewed recently by Itoh et al. (1996) and with the results
by Yakovlev & Kaminker (1996) for the phonon contribution
obtained in the one-phonon approximation.1 The temperatures
displayed are rather low, so the one-phonon approximation al-
most coincides with the multi-phonon calculation. One can see a
transition from power-law to exponential decrease in our static-
lattice curve with decreasing temperature atT ∼ 107 K. For

1 Note that Yakovlev & Kaminker (1996), while comparing their
results for the one-phonon contribution in the iron and carbon plasmas
at ρ = 109 g cm−3 (their Figs. 3 and 4) with the results of Itoh et al.
(1996), inaccurately plotted (by long dashes) the fit expressions of Itoh
et al. (1996). The correct curves are closer to the results by Yakovlev
& Kaminker (1996) and are plotted in the present Figs. 5 and 6. Two
of the authors (DY and AK) are grateful to Prof. N. Itoh for pointing
out this omission.
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solid

Fig. 5. Phonon (ph), static-lattice (sl) and total normalized neutrino
emissivitiesLph, Lsl, Lsol vs T (lower horizontal scale) ortp (upper
horizontal scale) for a crystal of56Fe nuclei atρ = 109 g cm−3 calcu-
lated in the Born approximation. Solid curves show the present results,
dashes show the phonon contribution in the one-phonon approximation
(Yakovlev & Kaminker 1996) while dots are the results of Itoh et al.
(1996)

lower T , the phonon contribution dominates over the static-
lattice one. The static-lattice contribution given by Itoh et al.
(1996) is underestimated by several orders of magnitude. The
authors calculated this contribution neglecting the electron band
structure and multiplied this result by a factor which should ap-
proximately take into account the suppression of the neutrino
emission due to band structure. The latter factor was chosen on
the assumption that one particular reciprocal lattice vector gave
the dominant contribution at all temperatures. If this were the
case, the suppression would be exponential. However, as shown
above, the suppression of contributions from the various recip-
rocal lattice vectors sets in at different temperatures, and the re-
sulting suppression of the total rate is much weaker than given by
the approximation of Itoh et al. (1996). In fact, the approximate
suppression factor introduced by Itoh et al. (1996) makes the
static-lattice contribution negligible at all densities and temper-
atures of practical interest. Since the actual static-lattice emis-
sion is commonly several times larger than the phonon one, the
approach of Itoh et al. (1996) systematically underestimates the
total neutrino emissivity in the solid phase of dense matter. In
addition, the phonon contribution given by Itoh et al. (1996)
appears to be overestimated forT <∼ 107 K (Fig. 5) as a result
of the analytic fits proposed by Itoh et al. (1996) being insuffi-
ciently accurate (Yakovlev & Kaminker 1996).

Fig. 6 presents a similar comparison of the results but for car-
bon. The case of carbon at high density is extreme since zero-
point vibrations of the light carbon ions become very strong.
Nuclear reactions and beta captures tend to transform carbon
into heavier elements. The Debye–Waller factor is very large

solid

Fig. 6. Same as in Fig. 5 but for carbon crystal

ground-state matter

accreted matter

Fig. 7. Density dependence of the neutrino bremsstrahlung emissiv-
ity at T = 108, 108.5 and109 K for ground-state and accreted matter
calculated with the form factor (11). Solid and dashed lines show the to-
tal and phonon emissivities, respectively, for ground-state matter; dots
present the same total emissivity but obtained neglecting the electron
band-structure effects. Dot-dashed lines display the total emissivity for
accreted matter

owing to zero-point vibrations (α ∝ u−1/
√

AiZ at tp � 1,
see Eq. (9)). It suppresses drastically the static-lattice contribu-
tion and makes it generally smaller than the phonon contribu-
tion. The simplified treatment of the band-structure effects by
Itoh et al. (1996) damps the static-lattice contribution especially
strongly, by several orders of magnitude, makingLsol ≈ Lph.

Fig. 7 shows the density dependence (109 g cm−3 ≤ ρ ≤
1013 g cm−3) of the neutrino emissivity at three values ofT for
the ground-state and accreted matter. Here and in all subsequent
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figures the emissivities are calculated in the Born approxima-
tion and multiplied by the non-Born correction factor (18) as
discussed in Sect. 3.1. Note that self-consistent models of ac-
creted matter (e.g., Miralda-Escudé et al. 1990) correspond to
T ∼ 108 K. We use the accreted model for higherT to il-
lustrate how variations of nuclear composition affect the neu-
trino emission. For a particular temperature and density, matter
will be either liquid or solid. In the liquid state, we calculate
Q using Eq. (15). In the solid state, we present the total and
phonon neutrino emissivities for ground-state matter and the
total emissivity for the accreted matter. In accreted matter the
ratio of the total emissivity to the phonon one is qualitatively the
same as in ground-state matter. We show also the total neutrino
emissivity for ground-state matter neglecting band-structure ef-
fects. In the displayed density range, matter is entirely solid
for T = 108 K; there is one melting point forT = 108.5 K
(lg ρm [g cm−3] = 9.17, for ground-state matter) which sep-
arates liquid (atρ < ρm) and solid (atρ > ρm); and there
is a series of melting points atT = 109 K due to the non-
monotonic behaviour of the melting curvesTm = Tm(ρ) asso-
ciated with strong variations of the nuclear composition. The
positions of the melting points can be deduced from Fig. 1. For
ground-state matter, these positions can also be traced in Fig. 7
from the appearance of the phonon contribution (dashed lines).
With decreasing temperature the solidification front shifts to-
ward lower densities. The accreted matter solidifies at higher
densities than does ground-state matter due to the lower atomic
number. At the melting points the neutrino emissivities exhibit
some jumps, but these are small because, as we remarked earlier,
neutrino bremsstrahlung does not change qualitatively while
passing from liquid to solid matter. Other, stronger jumps are
associated with variations of the nuclear composition (Sect. 2).
Notice that the jumps of both types may be ignored in practi-
cal applications. The reduction of the neutrino emission by the
band-structure effects becomes stronger with decreasing tem-
perature and reaches one order of magnitude forT ∼ 108 K and
ρ >∼ 1011 g cm−3. The band-structure reduction is power-law
(non-exponential) for the parameters displayed in Fig. 7. The
ratio of the phonon contribution to the static-lattice one remains
nearly constant for a wide range of temperatures much below the
melting temperature, and the static-lattice contribution is several
times larger than the phonon one. The neutrino bremsstrahlung
in the accreted matter is lower than in the ground-state matter
due to the lower atomic number, but the difference is not large.

The effects of various physical factors on the density depen-
dence of the bremsstrahlung emissivity in the lattice of ground-
state matter atT = 3 × 108 K is shown in Fig. 8. We present
the total emissivity, and also the static-lattice and phonon emis-
sivities. In addition, we show the total emissivity calculated ne-
glecting either the effects of band-structure, the Debye–Waller
factor, or the nuclear form factor. Here by the phrase “neglecting
the Debye–Waller factor” we mean the one-phonon approxima-
tion in which the Debye–Waller factor is set to zero. One can
see that the phonon contribution is noticeably smaller than the
static-lattice one, and the ratio of the static-lattice and phonon
contributions increases slowly with density, reaching a factor
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Fig. 8. Density dependence of the neutrino bremsstrahlung emissivity
at T = 3 × 108 K for ground-state matter calculated with the form
factor (11). Solid line: total emissivity. Also shown are: static-lattice
contribution (sl), phonon contribution (ph) and the total contributions
obtained neglecting either band-structure effects (no band) or Debye–
Waller factor (no DW) or nuclear form factor (no ff)

of about 5 atρ = 1013 g cm−3. The effect of the form factor
also increases with density while the effect of the Debye–Waller
factor becomes lower.

The neutrino emissivities presented in Figs. 3–8 are calcu-
lated with the simplified atomic form factor (11) appropriate for
a step-like proton distribution within the nuclei. We have veri-
fied that the simplified form factor gives quite accurate results
for ρ <∼ 1013 g cm−3. However, at higherρ the neutrino emis-
sivity becomes sensitive to the shape of the proton distribution.
Then the form factor based on the proton-density distribution
(12) seems to be more reliable, as discussed in Sect. 2. We have
made a series of calculations with this more realistic form fac-
tor making use of the smooth-composition (SC) model of the
ground-state matter (Sect. 2). Fig. 9 is an extension of Fig. 8
to higher densities (1012 g cm−3 ≤ ρ ≤ 8 × 1013 g cm−3)
for matter containing spherical nuclei. The highest density,
ρ = 8×1013 g cm−3, is close to the transition to the phases with
nonspherical nuclei. We now compare the neutrino emissivities
calculated with the realistic and step-like form factors. The re-
alistic form factor is included in both the phonon contribution
(through Eq. (21)) and the static-lattice contribution (Sect. 3.3).
The emissivities obtained with the realistic form factor for the
SC model are compared with those obtained with the step-like
form factor for the SC and Negele–Vautherin models of mat-
ter. The total emissivities (upper curves) are seen to be close
to the static-lattice emissivities (lower curves), which indicates
that the static-lattice contribution is dominant. The emissivities
in the Negele–Vautherin model show the familiar jumps (e.g.,
Figs. 7 and 8) associated with variations of the nuclear com-
position. After averaging over these jumps, they reproduce the
emissivities derived in the SC model (with the same form fac-
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Fig. 9. Density dependence of the bremsstrahlung emissivity atT =
3 × 108 K for the ground-state matter composed of spherical nuclei.
Long-dashed lines are calculated with the step-like form factor (ff)
given by Eq. (11) for the nuclear composition by Negele & Vautherin
(NV,1973). Short-dashed lines are calculated with the same form factor
but for the smooth-composition (SC) model of matter (Sect. 2). Solid
lines correspond to the SC model and more realistic form factor for the
proton distribution (12). Upper lines show the total emissivities, while
the lower ones give the static lattice contribution alone

tor). The emissivities obtained with the realistic and step-like
form factors are seen to be close forρ <∼ 1013 g cm−3. However,
when the density becomes higher than1013 g cm−3 the realistic
form factor decreases the electron-nucleus interaction and re-
duces noticeably the neutrino emission compared with the case
of the step-like form factor.

Fig. 10 is an extension of Figs. 7–9 towards higher densities.
It shows the density dependence of the neutrino bremsstrahlung
emissivities through all five phases of spherical and nonspheri-
cal nuclei forT = 3 × 108 K. In order to display all the phases
we use a linear density scale rather than a logarithmic one;ρ14

is the density in units of1014 g cm−3. Densities in excess of
1.43×1014 g cm−3 correspond to uniform matter in the neutron
star core. The emissivities are calculated using the SC model. In
the spherical phase, the phonon contribution is included and the
Debye–Waller factor is taken into account. In the nonspherical
phases, we neglect the Debye–Waller factor and the phonon con-
tribution (see above). This circumstance is partly responsible for
the jumps in the neutrino emissivities atρ = 9.73×1013 g cm−3,
the interface between the phases with spherical and cylindri-
cal nuclei. All the curves are calculated with the realistic form
factor. The long-dashed curve is obtained assuming the nuclei
remain spherical up to the highest densities at the very bottom
of the neutron star crust and by including the phonon contri-
bution and the Debye–Waller factor. The parameters of such
nuclei are appropriate to the Negele–Vautherin model of dense
matter, smoothed over jumps. We also present the emissivities
calculated for all phases of nonspherical nuclei neglecting ei-
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Fig. 10. Density dependence of the bremsstrahlung emissivity at
T = 3 × 108 K for five phases of spherical and nonspherical atomic
nuclei at the bottom of a neutron star crust for the SC model of matter
calculated with the realistic form factor. Long-dash line is obtained by
assuming the nuclei to be spherical to the crust bottom. Short-dash line
is calculated for all phases neglecting the band structure, while dotted
line is obtained neglecting the band structure and the form factor

ther the band-structure effects, or both the band structure and
the form factor. The neutrino emission atρ ∼ 1014 g cm−3 is
very sensitive to the proton charge distribution. A neglect of the
form factor leads to overestimation of the neutrino emissivity by
1–1.5 orders of magnitude. The effects of nonspherical phases
are also rather important. Non-sphericity of the nuclei mainly
lowers the neutrino emission by reducing the dimension of the
sums over reciprocal lattice vectors in Eq. (31). The reduction
can exceed one order of magnitude (cf the solid and dashed
curves near the cylinder–slab interface). More work is required
to calculate the Debye–Waller factor and the phonon contri-
bution and determine accurately the bremsstrahlung emission
for nonspherical nuclei. However the spherical–nucleus model
probably represents a reasonable upper limit to this emissivity
for densities where the nuclei can be nonspherical.

Fig. 11 shows the density dependence of neutrino
bremsstrahlung for the ground-state matter of the neutron-star
envelopes at six temperatures, from108 K to 1.8 × 109 K, in
the density range1010 g cm−3 ≤ ρ ≤ 1.4 × 1014 g cm−3. The
ρ − T domain displayed is the most important one for appli-
cation to neutron-star cooling. The dotted curves are calculated
using the Negele–Vautherin model of matter and the step-like
form factors (11). The dashed lines are obtained for the SC
model with the realistic form factor and on the assumption that
nuclei are spherical to the bottom of the crust. The solid lines
are also derived for the SC model with the realistic form factor
but with allowance for the phases of nonspherical nuclei. Sharp
decreases of the curves atρ >∼ 1014 g cm−3 occur because the
nuclei become nonspherical (see Fig. 10).
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Fig. 11. Density dependence of the bremsstrahlung emissivity for the
ground-state matter of the neutron-star crust at six temperaturesT in
the model by Negele & Vautherin (NV, dots) (1973) with the step-like
form factor (ff), and in the SC model with the realistic form factor
assuming either the nuclei are spherical to the crust bottom (dashes)
or including non-spherical phases (solid lines). Filled circles show our
fits (40) to dashed lines

Our calculations for spherical nuclei with the realistic form
factor in wide density and temperature ranges,109 g cm−3 ≤
ρ ≤ 1.5 × 1014 g cm−3 and5 × 107 K ≤ T ≤ 2 × 109 K can
be fitted by the expression

lg Q [ erg cm−3 s−1] = 11.204 + 7.304 τ + 0.2976 r

−0.370 τ2 + 0.188 τr − 0.103 r2 + 0.0547 τ2r

−6.77 lg (1 + 0.228ρ/ρ0) , (40)

whereτ = lg T8, r = lg ρ12, andρ0 = 2.8 × 1014 g cm−3

is the standard nuclear-matter density. The relative error of
this fit formula generally does not exceed 1% (inlg Q) over
the indicatedρ − T domain. The accuracy of the fit is seen
from Fig. 11. The fitting formula reproduces the main fea-
tures of the neutrino bremsstrahlung radiation in a very wide
density domain109 g cm−3 ≤ ρ ≤ 1014 g cm−3, where the
atomic nuclei are expected to be spherical, and it probably
gives a realistic estimate of the emissivity for higher densities,
1014 g cm−3 ≤ ρ ≤ 1.4 × 1014 g cm−3, where the nuclei be-
come nonspherical. This fit formula should be quite sufficient
for many applications.

Finally, in Figs. 12 and 13 we compare neutrino
bremsstrahlung by electrons in the neutron-star crust with other
neutrino emission mechanisms forT = 109 K and 108 K, re-
spectively. The other mechanisms considered are neutrino emis-
sion due to plasmon decay (e.g., Itoh et al. 1996) and due to the
nucleon Cooper-pair formation under the action of nucleon su-
perfluidity (e.g., Yakovlev et al. 1998). The SC model of ground-
state matter is used. In principle, some contribution at lowT may
come from neutrino emission due to scattering of electrons by
charged impurities (e.g., Haensel et al. 1996). We ignore this
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Fig. 12. Density dependence of the neutrino emissivities produced in
a neutron star crust and core atT = 109 K by various neutrino gener-
ation mechanisms: electron bremsstrahlung (e-brems), plasmon decay
(plasma), Cooper pairing of nucleons (Cooper pairs) in the models of
strong (s) and weak (w) neutron superfluidity (SF), and standard neu-
trino generation mechanisms (N-stand.) in strongly (s) and weakly (w)
superfluid uniform matter (see text for details)
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Fig. 13. Same as in Fig. 12 but forT = 108 K. Plasmon decay, standard
neutrino emission from uniform mater and Cooper-pairing emission in
the strongly superfluid matter become negligible

mechanism here since it is determined by impurity parameters
which are largely unknown. We show also the neutrino emis-
sion produced by some mechanisms in uniform matter of the
neutron-star core: the standard neutrino energy losses and the
nucleon Cooper-pair neutrinos in superfluid uniform matter. It
is assumed that uniform matter has a moderately stiff equation
of state proposed by Prakash et al. (1988) (the same version as
was used by Page & Applegate 1992). The standard neutrino
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processes include the modified Urca reactions and nucleon-
nucleon bremsstrahlung. All the standard reactions are partially
suppressed by the combined action of the neutron and proton su-
perfluids in uniform matter. The reaction rates and suppression
factors are taken in the form described by Levenfish & Yakovlev
(1996). The proton and neutron superfluid critical temperatures
depend on density. We assume singlet-state pairing of protons,
and either singlet-state or triplet-state pairing of neutrons. Neu-
tron pairing is expected to occur in a singlet state in matter at
densities less than roughly that of the core-crust interface, and
in a triplet state at higher densities. For any density we adopt
the type of neutron pairing that corresponds to the higher criti-
cal temperature. The strong density dependence of the neutrino
emissivities in uniform matter (Figs. 12 and 13) is due to the
pronounced density dependence of the neutron and proton crit-
ical temperatures atρ ∼ ρ0. Since critical temperatures are
very sensitive to the microscopic model of the nucleon interac-
tion, we have considered two cases, corresponding to strong (s)
and weak (w) nucleon superfluids (SFs). The strong superfluid
model is based on the rather large superfluid gaps calculated by
Elgarøy et al. (1996) for singlet-state pairing (with maximum
gap of about 2.5 MeV as a function of nucleon number density)
and by Hoffberg et al. (1970) for triplet-state pairing. The weak
superfluid model makes use of the small superfluid gaps de-
rived by Wambach et al. (1993) (with a maximum gap of about
1 MeV) for the singlet superfluid and by Amundsen & Østgaard
(1985) for the triplet neutron superfluid. For singlet pairing we
regard the weak pairing case to be the more realistic because
the calculations of Wambach et al. (1993) included the effects
of induced interactions.

The mechanism of neutrino production due to Cooper pair-
ing of nucleons was proposed by Flowers et al. (1976) and in-
dependently by Voskresensky & Senatorov (1986, 1987) for
uniform matter. A critical comparison of these works has been
done by Yakovlev et al. (1998) who considered also the case of
triplet neutron pairing. The theory predicts a powerful maximum
of the Cooper-pair neutrino emission when the temperature falls
below the critical temperatureTc for neutrons or protons. How-
ever, at still lower temperatures,T � Tc, the emission falls
exponentially. The emission is much stronger for neutrons than
for protons due to the smallness of axial-vector electroweak
currents for protons (Yakovlev et al. 1998). In spite of its long
history, this process was forgotten for a long time, and it has
been included in cooling simulations only recently (Page 1997,
1998; Schaab et al. 1997; Levenfish et al. 1998; Yakovlev et al.
1998). We make use of the results by Yakovlev et al. (1998)
for uniform matter and for the crust. In the uniform matter,
we take into account neutrino emission due to pairing of neu-
trons and protons. In the crust, the Cooper neutrino emission is
evaluated including the contribution from free nucleons alone
(from free neutrons in all phases of matter in the inner crust,
and from free protons in the phases with cylinders and spheres
of neutrons surrounded by nuclear matter). In principle, there
can be a substantial contribution (Yakovlev et al. 1998) from the
non-uniform distribution of the nucleons within atomic nuclei

(Sect. 2). We neglect this effect here but we intend to discuss it
in a separate article.

In a high temperature plasma,T = 109 K, at ρ <∼
1011 g cm−3 (Fig. 12), the process most competitive with elec-
tron bremsstrahlung is the well-known plasmon decay (Itoh et
al. 1996). However its rate falls exponentially with decreasingT ,
and the process almost dies out atT = 108 K (Fig. 13). The stan-
dard neutrino emission from uniform matter is greatly reduced
by the nucleon superfluidity. It decreases exponentially when the
temperature becomes much smaller than the superfluid critical
temperatures of nucleons. For instance, the standard emission
is quite substantial atT = 109 K but becomes much less signif-
icant atT = 108 K (practically negligible for the case of strong
superfluid). Neutrino emission by Cooper pairing in the uniform
matter and in the inner crust is also exponentially suppressed
when the temperature is much lower than the critical tempera-
tures of neutrons and protons. Accordingly the temperature and
density dependence of the Cooper-pair neutrino emissivity is
very strong. IfT = 109 K and the superfluidity is strong, we
have two peaks of Cooper-pair neutrinos: one near the neutron
drip point (atρ ∼ 1012 g cm−3), and a very narrow peak near
the core-crust interface (ρ ≈ 1.4 × 1014 g cm−3). Both peaks
are produced by neutron pairing, and are pronounced since the
neutron critical temperature is sufficiently small (only slightly
exceedsT ) in the indicated density ranges even for strong super-
fluidity. The smallness ofTc in the first density range is associ-
ated with a low number density of free neutrons near the neutron
drip point, and the smallness in the second density range corre-
sponds to the transition from singlet to triplet neutron pairing.
Outside these density ranges the neutron critical temperature is
too high and the emissivity of the Cooper neutrinos is exponen-
tially suppressed. When the temperature decreases the emissiv-
ity becomes smaller, and the process dies out atT = 108 K (cf.
Figs. 12 and 13).

If T = 109 K and the superfluidity is weak, the Cooper
pairing appears to be the dominant neutrino emission process
in a large fraction of the neutron star crust since the neutron
critical temperature is not much higher thanT . However, the
process is practically switched off at low densitiesρ <∼ 2 ×
1012 K, because a weak neutron superfluid has not yet occurred
at these densities (Tc < T = 109 K). When the temperature
drops to108 K, the neutrino emission due to Cooper pairing
is suppressed. Nevertheless, two high peaks of the emissivity
survive (similar to those for a strong superfluid atT = 109 K).
The first one corresponds to lowρ ∼ 1012 g cm−3 (Tc is not
much higher than108 K), and the second corresponds toρ ∼
1.4 × 1014 g cm−3, whereTc is low, which corresponds to the
transition from a singlet to a triplet neutron superfluid.

We conclude that the main contribution to neutrino emis-
sion from a neutron-star crust comes from two processes,
the neutrino-pair bremsstrahlung and Cooper pairing of neu-
trons. The bremsstrahlung neutrino emission has been calcu-
lated rather reliably, excluding possibly in the phases of non-
spherical nuclei near the core-crust interface. The mechanism
operates in a wide ranges of densities and temperatures, and the
density dependence of the emissivity is generally smooth. The
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neutrino emission due to the Cooper pairing of nucleons is ex-
tremely sensitive to the model adopted for the superfluid gaps
in the nucleon spectra. This mechanism is more important for
lower gaps (weaker superfluid). The emissivity can be a sharp
function of density and temperature. We remark that the micro-
scopic models that correspond to weak superfluidity are likely
the more reliable since they incorporate the effects of induced
processes (screening) in the effective neutron-neutron interac-
tion. In addition, in the phases with non-spherical nuclei, the
neutron superfluid gap in the matter is expected to be reduced
by the presence of nuclei, in which the matter has a higher
density, and a smaller pairing interaction, than in the neutrons
outside nuclei. We expect to consider the Cooper-pair process
in more detail in a future publication.

5. Conclusions

We have analyzed the neutrino pair emission (1) due to the
bremsstrahlung of degenerate relativistic electrons at densities
from 109 g cm−3 to 1.5 × 1014 g cm−3 and temperatures from
5 × 107 to 5 × 109 K in the neutron-star crusts. We have pre-
sented the expressions for the neutrino emissivity from a plasma
of liquid and solid atomic nuclei taking into account the effects
of finite sizes (the nuclear form factor) of the nuclei. In solid mat-
ter, we have studied the static-lattice and phonon contributions
to the neutrino bremsstrahlung with allowance for the electron
band-structure and multi-phonon processes. We have consid-
ered bcc, fcc and hcp Coulomb crystals, and showed that the
neutrino emission is insensitive to the lattice type. We have made
use of two models of matter in the neutron star crusts: ground-
state matter and accreted matter. We have proposed a smooth-
composition model of ground-state matter to analyze the neu-
trino bremsstrahlung near the bottom of the crust, where the
shapes of the local nucleon density distributions over Wigner–
Seitz cells become important. This smooth-composition model
can be applied also for calculating the electron transport prop-
erties (thermal and electric conductivities) in the deep layers
of the crust. We have calculated the static-lattice contribution
for nonspherical nuclei at the very crust bottom, at densities
ρ >∼ 1014 g cm−3. We have analyzed (Sect. 4) the neutrino
emissivity as a function of density, temperature, and nuclear
composition. We have obtained a simple analytic fit (40) to the
bremsstrahlung emissivity for ground-state matter composed of
spherical nuclei in the neutron-star crusts. We expect the fit to
give reliable values of the neutrino bremsstrahlung emissivity
for densitiesρ ≤ 1014 g cm−3, where the nuclei are certainly
spherical, and to give a reliable upper limit of the emissivity
for 1014 g cm−3 ≤ ρ ≤ 1.4 × 1014 g cm−3, where the nuclei
become nonspherical.

Our results can be used, for instance, to study cooling of iso-
lated neutron stars. A not too old star (of age lower than about
105–106 yr) cools mainly via neutrino emission from its inte-
rior (e.g., Pethick 1992). The main contribution to the neutrino
luminosity comes usually from the stellar core. However, neu-
trino emission from the crust can also be important. In young
neutron stars it plays a significant role in thermal relaxation of

the stellar interiors. It can also be important in rather old neutron
stars during the transition from the neutrino cooling stage to the
photon one. The neutrino luminosity of the stellar core decays
generally somewhat faster than the luminosity of the crust, and
the crustal luminosity survives longer. Moreover, the neutrino
emission from the crust can dominate the emission from the
core in the neutron stars with highly superfluid cores and/or in
stars with a stiff equation of state. In the latter case, the crust
can be quite massive and its neutrino luminosity can be substan-
tial. Finally, low-mass neutron stars always possess relatively
massive crusts, and their neutrino luminosities can be mainly
determined by their crusts.

A number of problems remain to be solved in connection
with the calculation of neutrino pair bremsstrahlung in the crust.
One of these is the influence on the phonon spectrum of neutrons
outside nuclei when matter is made up of spherical nuclei. Intu-
itively one would expect the neutron liquid to make the effective
mass of nuclei larger, thereby decreasing phonon frequencies.
This in turn would increase the bremsstrahlung from phonon
processes at least at low temperatures. Another is the nature of
the collective excitations of the phases with non-spherical nu-
clei. There are a number of these that have low frequencies, and
these will give a“phonon contribution”, while at the same time
affecting the static lattice contribution.
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