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We consider sound waves in superfluid nucleon-hyperon matter of massive neutron-star cores. We

calculate and analyze the speeds of sound modes and their damping times due to the shear viscosity and

nonequilibrium weak processes of particle transformations. For that, we employ the dissipative relativistic

hydrodynamics of a superfluid nucleon-hyperon mixture, formulated recently [1]. We demonstrate that the

damping times of sound modes calculated using this hydrodynamics and the ordinary (nonsuperfluid) one,

can differ from each other by several orders of magnitude.
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I. INTRODUCTION

In recent years there is a growing interest in studies of
neutron-star pulsations. This is related to a number of
reasons. First of all, the recently discovered high frequency
oscillations of electromagnetic radiation during giant flares
may be associated with the pulsations of neutron stars
[2,3]. Second, the gravitational-wave detectors, which
will be able to detect gravitational radiation from isolated
pulsating neutron stars, are under construction [4–7].

For interpretation of the observations, it is important to
have a well-developed theory of neutron-star pulsations.
The construction of such a theory is complicated by the
fact that the baryons in neutron-star cores can be in a
superfluid state [8–13]. Thus, to study the pulsations, one
has to use a hydrodynamics describing mixtures of super-
fluid liquids. There is a substantial body of literature,
devoted to pulsations of superfluid neutron stars (see,
e.g., Refs. [14–27]). All these papers deal with the nucleon
npeð�Þ matter composed of neutrons (n), protons (p), and
electrons (e) with possible admixture of muons (�). Most
of them study pulsations at zero temperature (see, however,
Refs. [16,17]).

In this paper we for the first time investigate dynamic
properties of superfluid nucleon-hyperon matter in the
cores of massive neutron stars, composed, in addition to
neutrons, protons, electrons, and muons, of � and ��
hyperons (� and �, respectively). For that, we employ
the relativistic hydrodynamics [1], describing a superfluid
nucleon-hyperon mixture at arbitrary temperature. We
study the simplest pulsations in such matter—sound
modes, how they travel and how they damp. Within this
simple example we demonstrate, in particular, that the
characteristic damping times of pulsations, calculated
self-consistently in the frame of superfluid hydrodynamics,
can differ by several orders of magnitude from those
calculated using the nonsuperfluid hydrodynamics (in the
latter case the effects of superfluidity are taken into account
only at calculating kinetic coefficients).

The paper is organized as follows. In Sec. II, we give an
overview of the main reactions of particle mutual trans-

formations in the nucleon-hyperon matter. In Sec. III, we
briefly discuss the relativistic dissipative hydrodynamics
describing superfluid nucleon-hyperon mixture. In Sec. IV,
we analyze the sound modes in such matter neglecting
dissipation. In Sec. V, we calculate the damping times of
sound modes due to the nonequilibrium reactions (1)–(4)
[see Sec. II] and shear viscosity. Section IV presents a
summary.
Throughout the paper, unless otherwise stated, we use

the system of units in which the Planck constant @, the
speed of light c and the Boltzmann constant kB equal unity,
@ ¼ c ¼ kB ¼ 1.

II. THE MAIN PROCESSES OF PARTICLE
TRANSFORMATIONS IN NUCLEON-HYPERON

MATTER

The most effective weak processes in nucleon-hyperon
matter are the following nonleptonic reactions [28–31]

nþ n $ pþ ��; (1)

nþ p $ pþ�; (2)

nþ n $ nþ�; (3)

nþ� $ �þ�: (4)

The full thermodynamic equilibrium implies, in particular,
the equilibrium with respect to these reactions,

��1 � 2�n0 ��p0 ���0 ¼ 0; (5)

��2 ¼ ��3 ¼ ��4 � �n0 ���0 ¼ 0: (6)

In this case the average number of direct reactions in unit
volume per unit time is equal to the number of inverse
reactions. In Eqs. (5) and (6) �i0 are the chemical poten-
tials of particle species i ¼ n, p, �, and �, taken at
equilibrium; ��m (m ¼ 1; . . . ; 4) are the disbalances of
the chemical potentials for the reactions (1)–(4). In what
follows, we mark the equilibrium values of thermodynamic
quantities with the subscript 0. Accordingly, the thermody-
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namic quantities without the subscript 0 (e.g., �i) refer to
perturbed matter. Notice that the equilibrium conditions for
the reactions (2)–(4) coincide.

Equations (5) and (6) do not hold in the perturbed matter
(��1 � 0, ��2 ¼ ��3 ¼ ��4 � 0), so that the numbers
of direct and inverse reactions are not equal. The nonequi-
librium reactions (1)–(4) act to return the system to the
equilibrium state. This leads to dissipation of mechanical
energy, accumulated in the matter.

Along with the reactions (1)–(4) there is a number of
weak reactions with leptons. The leptonic reactions (e.g.,
the direct and modified Urca processes with electrons
or muons) are much slower in comparison to the reac-
tions (1)–(4). In the interesting range of parameters (tem-
peratures and pulsation frequencies), they cannot influence
substantially chemical composition of the perturbed matter
and will be neglected in what follows. However, we as-
sume that the unperturbed matter satisfies the equilibrium
conditions with respect to these reactions,

�n0 ¼ �p0 þ�e0; �e0 ¼ ��0; (7)

where�e0 and��0 are the equilibrium chemical potentials

for electrons and muons, respectively. In addition to the
processes described above, there is a fast nonleptonic
reaction due to the strong interaction of baryons,

nþ� $ pþ ��: (8)

We assume that the perturbed matter is always in equilib-
rium with respect to this reaction [1,30],

��fast � �n þ�� ��p ��� ¼ 0: (9)

It follows from the condition (9), that the chemical poten-
tial disbalances for all the four reactions (1)–(4) coincide,

�� � ��1 ¼ ��2 ¼ ��3 ¼ ��4: (10)

Now the equilibrium conditions (5) and (6) can be rewrit-
ten as

�� ¼ 0: (11)

Below we denote the difference between the average num-
ber of direct and inverse reactions (1)–(4), occurring in the
unit volume per unit time, by ��1; . . . ;��4, respectively.
In this paper we consider small deviations from the chemi-
cal equilibrium, �� � T. In this case the quantities ��m

(m ¼ 1; . . . ; 4) can be expanded in powers of �� and
presented in the linear approximation as (see, e.g.,
[1,29,30])

��m ¼ �m��; (12)

where �m are the rates of the reactions (1)–(4), some
functions of the number densities and temperature.

III. THE RELATIVISTIC HYDRODYNAMICS OF A
SUPERFLUID NUCLEON-HYPERON MIXTURE

In this and subsequent sections, the subscripts i and k
refer to baryons (i, k ¼ n, p, �, �). The summation is
assumed over repeated baryon indices i and k. The sub-
script l refers to leptons (l ¼ e, �); the subscript j runs
over all particle species (j ¼ n, p,�,�, e,�);� and � are
the space-time indices.
The relativistic hydrodynamics, describing a nucleon-

hyperon mixture, composed of superfluid neutrons, pro-
tons, � and �� hyperons, as well as normal electrons and
muons, has been formulated in Ref. [1]. It is a direct
generalization of the hydrodynamics of superfluid npe
matter [17]. In this section we briefly discuss the main
equations of this hydrodynamics.

A. The nondissipative hydrodynamics

Let us discuss first the nondissipative hydrodynamics of
superfluid nucleon-hyperon matter. Equations of superfluid
hydrodynamics include the continuity equations for parti-
cle species j

@�j
�
ðjÞ ¼ 0; (13)

where the particle four currents j
�
ðjÞ equal

j
�
ðiÞ ¼ niu

� þ Yikw
�
ðkÞ; j

�
ðlÞ ¼ nlu

�; (14)

energy-momentum conservation law

@�T
�� ¼ 0; (15)

where the energy-momentum tensor T�� equals

T�� ¼ ðPþ "Þu�u� þ P���

þ Yik½w�
ðiÞw

�
ðkÞ þ�iw

�
ðkÞu

� þ�kw
�
ðiÞu

��; (16)

the second law of thermodynamics

d" ¼ TdSþ�idni þ�edne þ��dn�

þ Yik

2
d½w�

ðiÞwðkÞ��; (17)

and a number of conditions for superfluid components,
which are specified below (see Eqs. (20) and (21)). In
Eqs. (13)–(17) ��� ¼ diagð�1;þ1;þ1;þ1Þ is the special
relativistic metric; nj is the number density of particle

species j; ", T, and S are the energy density, temperature,
and entropy density, respectively; P is the pressure, which
is defined by the same formula as for nonsuperfluid matter
[16,17]

P ¼ �"þ�ini þ�ene þ��n� þ TS; (18)

u� is the four velocity of the normal (nonsuperfluid) liquid
component, normalized so that

u�u
� ¼ �1: (19)
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(We assume that all the nonsuperfluid components move
with the same velocity u�.) Next, Yik is the symmetric
relativistic entrainment matrix of nucleon-hyperon mix-
ture, calculated in Ref. [32] for zero temperature and in
Ref. [33] for arbitrary temperature. The important property
is that if some particles (e.g., neutrons) are nonsuperfluid
then the related elements of this matrix vanish, Ynk ¼
Ykn ¼ 0 (k ¼ n, p, �, �). In the nonrelativistic limit this
4� 4 matrix is expressed through the nonrelativistic en-
trainment matrix �ik as [16,17] Yik ¼ �ik=ðmimkÞ, where
mi is the mass of a free baryon species i (the matrix �ik is a
generalization of the superfluid density to the case of
mixtures, see, e.g., Refs. [34–36]). The motion of super-
fluid component of a species i is described by the four
vector w�

ðiÞ, which meets the condition

u�w
�
ðiÞ ¼ 0: (20)

The potentiality of superfluid motion is expressed as

@�½w�
ðiÞ þ qiA

� þ�iu
�� ¼ @�½w�

ðiÞ þ qiA
� þ�iu

��;
(21)

where qi is the electric charge of particle species i; A� is
the four potential of the electromagnetic field. The poten-
tiality condition (21) is equivalent to a statement that there
is a scalar function �i, satisfying (see Refs. [1,17])

@��i ¼ w
�
ðiÞ þ qiA

� þ�iu
�: (22)

The scalar �i is related to the wave function phase of the
Cooper-pair condensate�i by the equality r�i ¼ r�i=2.
In the nonrelativistic limit the spatial parts u and wðiÞ of the
four vectors u� and w�

ðiÞ transform into

u ¼ Vq; wðiÞ ¼ miðVsðiÞ � VqÞ; (23)

where Vq and VsðiÞ ¼ ðr�i � qiAÞ=mi are, respectively,

the normal and superfluid velocities of the nonrelativistic
theory of superfluid liquids [37,38].

The hydrodynamics described above would be incom-
plete without an indication in what reference frame we
define (measure) the main thermodynamic quantities (i.e.,
what frame is comoving). As was demonstrated in
Ref. [17], the condition (20) dictates that the comoving is
the frame where the four velocity u� equals u� ¼
ð1; 0; 0; 0Þ. In this frame, the basic thermodynamic quanti-
ties ", nj, and wðiÞ (or r�i) are defined by [see Eqs. (14),

(16), and (20)]

j0j ¼ nj; (24)

j i ¼ YikwðkÞ ¼ Yikðr�k � qkAÞ; (25)

T00 ¼ ": (26)

All other thermodynamic quantities in nonequilibrium
matter are the same functions of ", nj, and wðiÞ (or, equiv-

alently, ", nj, and w
�
ðiÞwðkÞ�) as in the full thermodynamic

equilibrium.

B. Viscous dissipation

The main dissipative mechanisms in the pulsating
nucleon-hyperon matter are the shear viscosity and
effective bulk viscosity due to the nonequilibrium pro-
cesses (1)–(4). These are the two mechanisms that will
be analyzed in this paper.
The shear viscosity leads to an additional term in the

energy-momentum tensor T��. It now takes the form

T�� ¼ ðPþ "Þu�u� þ P���

þ Yik½w�
ðiÞw

�
ðkÞ þ�iw

�
ðkÞu

� þ�kw
�
ðiÞu

�� þ ���
sh ;

(27)

where

�
��
sh ¼ ��H�	H��

�
@�u	 þ @	u� � 2

3
�	�@"u

"

�
; (28)

H�� � ��� þ u�u� is the projection matrix;� is the shear
viscosity coefficient.
As has been already mentioned, the effect of the non-

equilibrium processes (1)–(4) can be described in terms of
the bulk viscosity formalism (for more details, see
[1,29,30]). However, for the analysis of sound modes it is
more convenient to take these processes into account ex-
plicitly, by introducing sources into the right-hand sides of
the continuity Eq. (13),

@�j
�
ðjÞ ¼ �Sj; (29)

similar to how it was done for normal (nonsuperfluid) npe
matter in Ref. [39]. Here, �Sj is a number of particles of a

species j, generated in the unit volume per unit time in the
reactions (1)–(4). Since we neglect the leptonic reactions,
�Se ¼ �S� ¼ 0.

As a result, the hydrodynamics describing a viscous
superfluid nucleon-hyperon mixture differs from the non-
dissipative hydrodynamics of Sec. III A only by the ex-
pression for the energy-momentum tensor [Eq. (27) instead
of (16)] and by the continuity equations [Eq. (29) instead of
(13)]. Using this hydrodynamics, one can derive the en-
tropy generation equation (see also [1,17])

T@�ðSu�Þ ¼ ����� �
��
sh @�u�; (30)

where we define

�� � ��1 þ ��2 þ��3 þ ��4 ¼ ���; (31)

with � � �1 þ �2 þ �3 þ �4 [see Eq. (12)].
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IV. SOUND WAVES IN THE ABSENCE
OF DISSIPATION

A. The main assumptions

We assume that all the hydrodynamic velocities equal
zero in the equilibrium, u� ¼ ð1; 0; 0; 0Þ and w�

ðiÞ ¼
ð0; 0; 0; 0Þ (i ¼ n, p,�,�). [In principle, it is not necessary
to have vanished all the components of the four vector w�

ðiÞ.
It is well known, that even in thermodynamic equilibrium a
motion is possible with nonzero superfluid velocities [37].
This means that generally, the spatial components of the
four vector w�

ðiÞ can be nonzero. As for the time component

w0
ðiÞ, it vanishes in any case, as it follows from Eq. (20).]

We assume also that in the perturbed matter the quasi-
neutrality condition holds

np ¼ ne þ n� þ n�; (32)

in addition to the equilibrium condition (9) with respect
to the fast reaction (8). Using Eq. (32) and the continuity
Eq. (29) for protons, �� hyperons, electrons, and muons,
as well as the fact that �Sp ��Se � �S� � �S� ¼ 0,

one obtains [1]

@�½Ypkw
�
ðkÞ� ¼ @�½Y�kw

�
ðkÞ�: (33)

In this paper we consider small deviations from the equi-
librium state. Thus, we restrict ourselves to linear terms
in perturbation. As follows from the normalization condi-
tion (19) and Eq. (20), in the linear approximation the time
components u0 and w0

ðiÞ in the perturbed matter remain the

same,

u0 ¼ 1; w0
ðiÞ ¼ 0; (34)

while their derivatives vanish

@�u
0 ¼ 0; @�w

0
ðiÞ ¼ 0: (35)

Using Eqs. (34) and (35), one gets from Eq. (33)

div ½ðYpk � Y�kÞwðkÞ� ¼ 0: (36)

As we have already emphasized in Sec. III A, in the
nonequilibrium matter any thermodynamic quantity (e.g.,
P or �j) is a function of the number densities nj, tempera-

ture T, and scalars w
�
ðiÞwðkÞ� (we choose T instead of " as

an independent variable). In the linear approximation we
can neglect the dependence on the quadratically small
quantity w

�
ðiÞwðkÞ�. Moreover, in the strongly degenerate

nucleon-hyperon matter, the dependence of P and �j on T

can also be neglected (see, e.g., [17,39,40]). Consequently,
P and �j are functions of only nj (j ¼ n, p, �, �, e, �).

These six number densities are related by the conditions (9)
and (32), so that only 6� 2 ¼ 4 of them are independent.
Thus, the pressureP and the chemical potentials�j depend

on some four number densities (or their functions). As the
independent variables it is convenient to choose the num-

ber density of baryons nb ¼ nn þ np þ n� þ n�, the num-

ber density of hyperons nH ¼ n� þ n�, and the quantities
n�n ¼ nn þ n� and y ¼ ne=n� (see Ref. [1]). Notice that,

in the thermodynamic equilibrium nb, nH, n�n, and y are
additionally constrained by the two conditions (7) and by
the condition (11). In this case P and �j are functions of

only one number density (e.g., nb).

B. Equations governing the sound waves

In this section we derive the system of equations describ-
ing sound waves in the superfluid nucleon-hyperon matter
neglecting dissipation due to the nonequilibrium reactions
(1)–(4) and shear viscosity.
As we demonstrate below, the nonequilibrium reactions

do not lead to dissipation in two limiting cases: (i) either in
the limit of slow reactions, when the total rate � of the
reactions (1)–(4) is negligible, so that they cannot change
the matter composition during the pulsations excited by a
sound wave (i.e., ��m ¼ 0, m ¼ 1; . . . ; 4); (ii) or in the
limit of fast reactions, when the reaction rate is so high that
the pulsating matter is always in equilibrium with respect
to the reactions (1)–(4), so that the condition (11) is always
satisfied. These are two cases that will be analyzed in what
follows.
The system of linearized hydrodynamic equations, de-

scribing sound waves, consists of (i) the condition (36);
(ii) momentum conservation law

@t½ðP0 þ "0Þuþ�i0YikwðkÞ� ¼ �rP; (37)

following from Eq. (15); and (iii) the four potentiality
conditions for superfluid motion (for each baryon species)

@t½�n0uþ wðnÞ� ¼ �r�n; (38)

@t½��0uþ wð�Þ� ¼ �r��; (39)

@t½�p0uþ wðpÞ þ qpA� ¼ �r½�p þ qpA
0�; (40)

@t½��0uþ wð�Þ þ q�A� ¼ �r½�� þ q�A
0�: (41)

These conditions can be obtained from Eq. (21) with the
help of Eq. (35). The vector potential A and the scalar
potential A0 can be excluded from Eqs. (40) and (41) if one
notices that q� ¼ �qp and takes a sum of these formulas.

Subtracting then Eqs. (38) and (39) from the obtained sum
and using the equilibrium condition (9), one gets

@t½wð�Þ þ wðpÞ � wð�Þ � wðnÞ� ¼ 0: (42)

In view of the condition (6), and the definition (10), it
follows from Eqs. (38) and (39) that

@t½wðnÞ � wð�Þ� ¼ �r��: (43)

Equations (36)–(38), (42), and (43) represent the five
equations for five variables, u and wðiÞ (i ¼ n, p, �, �).
They completely describe the sound waves in the super-

ELENA M. KANTOR AND MIKHAIL E. GUSAKOV PHYSICAL REVIEW D 79, 043004 (2009)

043004-4



fluid nucleon-hyperon matter under the condition that the
pressure Pðnb; nH; n�n; yÞ, neutron chemical potential
�nðnb; nH; n�n; yÞ, and chemical potential disbalance
��ðnb; nH; n�n; yÞ are known as functions of u and wðiÞ.
Expanding these quantities in Taylor series near the equi-
librium point and presenting P and �n as P ¼ P0 þ �P
and �n ¼ �n0 þ ��n, one obtains

�P ¼ @P

@nb
�nb þ @P

@nH
�nH þ @P

@n�n
�n�n þ @P

@y
�y; (44)

��n ¼ @�n

@nb
�nb þ @�n

@nH
�nH þ @�n

@n�n
�n�n þ @�n

@y
�y;

(45)

�� ¼ @��

@nb
�nb þ @��

@nH
�nH þ @��

@n�n
�n�n þ @��

@y
�y;

(46)

where in the last equation we take into account that �� ¼
0 in the equilibrium state [see Eq. (11)]. In Eqs. (44)–(46)
�nb, �nH, �n�n, and �y are the deviations of the quantities
nb, nH, n�n, and y from their equilibrium values nb0, nH0,
n�n0, and y0, respectively. In the appendix these deviations
are expressed through the velocities u and wðiÞ in the limit

of slow and fast reactions.
Assuming now, that the perturbations are harmonic

(� eið!tþkrÞ, where ! is the pulsation frequency and k is
the wave vector), the system of Eqs. (36)–(38), (42), and
(43) can be rewritten as

ðYpk � Y�kÞwðkÞ ¼ 0; (47)

i!½ðP0 þ "0Þuþ�i0YikwðkÞ� ¼ �ik�P; (48)

i!½�n0uþ wðnÞ� ¼ �ik��n; (49)

w ð�Þ þ wðnÞ ¼ wð�Þ þ wðpÞ; (50)

i!½wðnÞ � wð�Þ� ¼ �ik��: (51)

In the limit of fast reactions, when the condition (11) holds,
Eq. (51) can be further simplified,

w ðnÞ � wð�Þ ¼ 0: (52)

Equations (47)–(51) together with (44)–(46), as well as
the expressions (A10)–(A12) for the case of slow reactions
and (A13)–(A15) for the case of fast reactions, allow one to
determine the speeds of sound modes.

C. Results for sound speeds

From the analysis of Eqs. (47)–(51) it is clear, that the
vectors u and wðiÞ must be collinear with the wave vector k:
u, wðiÞ k k. Thus, the system of Eqs. (47)–(51) has the form

A � x ¼ 0: (53)

Here, x is a vector that equals x ¼ ðu;wðnÞ; wðpÞ;
wð�Þ; wð�ÞÞ, where u � uk=k and wðiÞ � wðiÞk=k; A is a

5� 5 matrix, which elements depend on the thermody-
namic quantities (and their derivatives), on the relativistic
entrainment matrix Yik, and on the frequency ! and the
wave number k.
The system of Eqs. (53) has a nontrivial solution if

detA ¼ 0. This condition results in a cubic equation on
the speed of sound s � !=k squared. Each of three solu-
tions to this equation describes two sound waves, propa-
gating with the same speed along and opposite to the wave
vector k. In principle, these solutions can be written out
analytically, but here we do not present them because they
are too lengthy.
In the case of slow reactions (when the condition

�ð@��=@nH � @��=@n�nÞ � ! holds, see appendix),
the three nonzero solutions to the cubic equation exist,
corresponding to three different sound modes. In the case
of fast reactions (when �ð@��=@nH � @��=@n�nÞ � !),
one of the three roots of the cubic equation vanishes, hence
the actual number of sound modes is two (this conclusion
can be also drawn from the fact that in the limit of fast
reactions one can use Eq. (52) instead of (51), which does
not depend on k and !).
The number of independent sound modes in these two

limiting cases can be easily understood from the following
reasoning. When all baryon species are superfluid, there
are five velocity fields in the matter, u and wðiÞ. In the limit

of slow reactions the velocities are related by Eqs. (47) and
(50) [these equations follow from the quasineutrality con-
dition (32) and the condition of the equilibrium with
respect to the fast reaction (9), respectively]. Thus, in
this limit we have three independent velocities (5� 2 ¼
3). Correspondingly, the number of independent sound
modes is also three. In the limit of fast reactions, there is
a constraint (52) in addition to the conditions (47) and (50).
This constraint is a consequence of the equilibrium condi-
tion (11) with respect to the reactions (1)–(4). Thus, the
number of independent velocities (and sound modes)
equals two (5� 3 ¼ 2).
Figure 1 illustrates the results of numerical calculation

of the sound speeds s (in units of c) as functions of
temperature T in the limit of slow reactions (left panel)
and fast reactions (right panel). Here and below in this
paper we use the third equation of state of Glendenning
[41]. The figure is plotted for the baryon number density
nb ¼ 3n0 ¼ 0:48 fm�3, where n0 ¼ 0:16 fm�3 is the nu-
cleon number density in atomic nuclei. The critical tem-
peratures Tci (i ¼ n, p, �, �) for transition of baryons to
the superfluid state are poorly known. We take them to be
Tcn ¼ 109 K, Tcp ¼ 2� 109 K, Tc� ¼ 3� 109 K, and

Tc� ¼ 6� 109 K in accordance with some theoretical pre-
dictions (see, e.g., [8,9,12,13]). The relativistic entrain-
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ment matrix Yik is taken from Ref. [33] (see also Ref. [32],
where this matrix is calculated for T ¼ 0).

The shaded region in the left panel of Fig. 1 corresponds
to temperatures, where the limit of slow reactions is in-
valid. Rather conventionally, we define it by the inequality
�ð@��=@nH � @��=@n�nÞ>!=3. Similarly, the shaded
region in the right panel of Fig. 1 indicates the range of
temperatures, where the limit of fast reactions is invalid.
We define this region by the inequality �ð@��=@nH �
@��=@n�nÞ< 3!.

Here and below we choose the frequency ! equal to
! ¼ 104 s�1. In fact, this value of ! is more appropriate
for studies of pulsating neutron stars rather than sound
waves, because it results in wavelengths of the order of
stellar radius. However, we believe that the relatively
simple analysis of sound waves with our choice of !
may provide some insight into the complex properties of
global pulsations of neutron stars with superfluid nucleon-
hyperon cores.

The rates of the reactions �1; . . . ; �4, which constitute
the quantity � ¼ �1 þ �2 þ �3 þ �4, are poorly known
and depend essentially on the model of baryon-baryon
interactions and on the many-body theory employed (see,
e.g., [28–31,42]). It is natural to expect that the rates �i are
order-of-magnitude comparable [28]. In our numerical
calculations we, following Ref. [30], take into account
only the contribution to � from the reactions (1) and (2)
[i.e., we assume that �3 ¼ �4 ¼ 0]. The rates �10 and �20

for nonsuperfluid matter are taken from Ref. [30]. The
baryon superfluidity suppresses the reaction rates, which
can be presented as �1 ¼ �10R1 and �2 ¼ �20R2. The
reduction factors R1 	 1 and R2 	 1 are calculated using
formula (28) of Ref. [29]. Though the authors of Ref. [29]
proposed the formula for the reaction (1), it remains valid
for the reaction (2). In both cases the index i in that formula

enumerate the reacting particles [i ¼ n, n, p, � for the
reaction (1) and i ¼ n, p, p, � for the reaction (2)].
As one can see from Fig. 1, at T < Tcn (when all baryon

species are superfluid) there are three sound modes in the
limit of slow reactions and two in the limit of fast reactions.
With further increasing temperature the number of sound
modes decreases. As a result, at T > Tc� there is only one
mode in both limiting cases. At T > Tc� this mode be-
comes the ordinary sound in nonsuperfluid nucleon-
hyperon matter (in fact, it transforms into the ordinary
sound already at T > Tc�, see the next paragraph). We
term this sound mode normal; in the figure it is denoted
as ‘‘normal’’. Accordingly, the other modes are termed
superfluid and denoted as ‘‘sfl I’’, ‘‘sfl II’’ (see Fig. 1, left
panel) and ‘‘sfl’’ (see Fig. 1, right panel). Notice that the
speed of normal mode only weakly depends on T both in
the limits of slow and fast reactions and practically coin-
cides with the speed of sound of normal matter. On the
contrary, the speeds of superfluid modes strongly depend
on temperature and approach their asymptotic values only
at T & 108 K.
Let us explain, how the number of sound modes changes

with T in the limit of slow reactions (Fig. 1, left panel).
Limit of fast reactions can be considered in a similar way.
As we have already discussed above, at T < Tcn there are
five velocities, u and wðiÞ (i ¼ n, p,�,�). They are related

by two conditions, (47) and (50). Thus, the number of
independent velocities (and sound modes) equals three.
At Tcn < T < Tcp neutrons are normal, that is, there are

only four velocities in the system, u and wðiÞ (i ¼ p,�,�).

These velocities are constrained by the only one con-
dition (47) [the condition (50) is not applicable; it is valid
only if all baryon species are superfluid]. Thus, the number
of sound modes remains equal three. Then, at Tcp < T <

Tc� and at Tc� < T < Tc� a motion with, respectively,

FIG. 1. Speed of sound modes s in units of c versus T at nb ¼ 3nb0 ¼ 0:48 fm�3 for the third equation of state of Glendenning [41].
Pulsation frequency is ! ¼ 104 s�1. The left panel shows three sound modes (‘‘normal,’’ ‘‘sfl I,’’ and ‘‘sfl II’’) in the limit of slow
reactions. The right panel shows two sound modes (‘‘normal’’ and ‘‘sfl’’) in the limit of fast reactions. Baryon critical temperatures are
indicated by vertical dots. The range of T where the limit of slow (left panel) and fast (right panel) reactions is invalid (for ! ¼
104 s�1) is shaded.
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three (u, w�, and w�) and two (u and w�) velocities is
possible. These velocities are related by the condition (47).
Consequently, there are two sound modes in the range
Tcp < T < Tc� and one in the range Tc� < T < Tc�. In

the latter case it follows from the condition (47) that w� ¼
0. Hence, the hydrodynamic equations are formally the
same as those for normal liquid, and the only sound
mode coincides with the ordinary sound in nonsuperfluid
matter. Finally, at T > Tc� all baryon species are normal
and move with the same velocity u. Since this velocity is
not constrained, there is (as it should be) only one sound
mode.

V. DAMPING OF SOUND WAVES

A. Damping times: General equations

In the previous section we analyzed the sound modes in
the limit of slow and fast reactions neglecting dissipation.
In this section we allow for a weak dissipation in these
limiting cases, which is due to the shear viscosity and
nonequilibrium processes (1)–(4). Our aim is the calcula-
tion of the characteristic damping times � of sound waves
(the so called e-folding times).

A few ways exist to calculate �. For instance, one
can explicitly take into account the shear viscosity in
Eqs. (47)–(51) and the next (complex) terms in the expan-
sion of �nH and �n�n into series in powers of
�ð@��=@nH � @��=@n�nÞ=! in the limit of slow reac-
tions and in powers of !=½�ð@��=@nH � @��=@n�nÞ� in
the limit of fast reactions (see appendix). Then, solving the
system of Eqs. (44)–(51), one can find the small complex
correction �s to the speed of sound s, which is related to
the damping time � by

� ¼ i

k�s
: (54)

Another way to calculate � is to use the effective bulk
viscosity formalism [1], similar to how it was done in
Ref. [17] for npe matter.

We calculated � by both methods described above.
However, here we present the most simple, third method
of calculation. Of course, all three methods give the same
results.

Let us define the characteristic damping time as

� � � 2Epuls

h _Epulsi
; (55)

where Epuls is the mechanical energy (per unit volume) of

pulsations; h _Epulsi is the rate of change of Epuls, averaged

over the period 2
=!. Here and below, angle brackets
denote averaging over the pulsation period. The factor 2
in Eq. (55) appears because � is the e-folding time for the
hydrodynamic velocities rather than for energy. One can
check that this definition of � coincides with that given by
Eq. (54).

The mechanical energy of a pulsating superfluid matter
can be easily found if we notice that Epuls entirely trans-

forms into its kinetic energy when the matter in the course
of pulsations passes through the equilibrium point.
Generally, the kinetic energy Ekin of the superfluid matter
equals (we remind that u � c and wðiÞ=�i � c)

Ekin ¼ 1
2fðPþ "Þu2 þ Yik½�iwðkÞuþ�kwðiÞuþ wðiÞwðkÞ�g:

(56)

In the nonrelativistic limit and for two-component mixture
this formula agrees with expression (7) of Ref. [34]. Since
in a sound wave the vectors u and wðiÞ are collinear with k
and can be presented as u ¼ ua cosð!tþ krÞ and wðiÞ ¼
wðiÞa cosð!tþ krÞ, one obtains for Epuls (ua � uak=k and

wðiÞa � wðiÞak=k)

Epuls ¼ 1
2fðP0 þ "0Þu2a
þ Yik½�i0wðkÞaua þ�k0wðiÞaua þ wðiÞawðkÞa�g:

(57)

Here, we used the fact that at the equilibrium point the
quantities u and wðiÞ are equal to their amplitudes ua and

wðiÞa, respectively.
To find h _Epulsi let us notice that all this energy goes into

heat. Thus, using Eqs. (30) and (31), one can write (see also
Refs. [39,43])

h _Epulsi ¼ �hT@�ðSu�Þi ¼ �h�ð��Þ2i þ h���
sh @�u�i:

(58)

It follows from this equation together with Eq. (55) that the
characteristic damping time �bulk due to the nonequilib-
rium reactions (1)–(4) equals

�bulk ¼
2Epuls

h�ð��Þ2i ; (59)

while the characteristic damping time �sh due to the shear
viscosity is

�sh ¼ � 2Epuls

h���
sh @�u�i : (60)

As a consequence of Eq. (A9) [see appendix], in the
limit of slow reactions

h�ð��Þ2i ¼ �

2s2

�
@��

@nb
Jba þ @��

@nH
JHa þ @��

@n�n
J�na

�
2
;

(61)

while in the limit of fast reactions

h�ð��Þ2i ¼ !2

2s2�ð@��=@nH � @��=@n�nÞ2

�
�
@��

@nb
Jba þ @��

@nH
JHa þ @��

@n�n
J�na

�
2
: (62)
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In Eqs. (61) and (62) Jba � nbua þ
P

iYikwðkÞa, JHa �
nHua þ Y�kwðkÞa þ Y�kwðkÞa, and J�na � n�nua þ
Y�kwðkÞa þ YnkwðkÞa; s is the speed of sound calculated in

the previous section neglecting dissipation; the factor 1=2
is a result of the averaging over the pulsation period.

The dissipation rate of the mechanical energy due to the
shear viscosity is the same in both limits,

h���
sh @�u�i ¼ � 2

3
�
!2

s2
u2a: (63)

To obtain this formula we used Eq. (28) for ���
sh . We see

that h���
sh @�u�i is formally given by the same expression as

in the case of nonsuperfluid matter.
As follows from Eqs. (57), (58), and (61)–(63), Epuls and

h _Epulsi are the functions of the amplitudes ua and wðiÞa.
Using the system of linear nondissipative Eqs. (44)–(51),
the amplitudes wðiÞa can be expressed through ua and

presented in the form

wðiÞa ¼ �iðsÞua; (64)

where �iðsÞ are some coefficients depending on s; they
differ for each sound mode. In view of Eq. (64), one gets
from Eqs. (57), (58), and (61)–(63) that Epuls � u2a and

h _Epulsi � u2a. Hence, � is independent of ua [see Eq. (55)].

B. Results for damping times

We numerically calculate the coefficients �iðsÞ from
Eqs. (44)–(51) and thus determine the characteristic damp-
ing times � of sound modes in the limit of slow and fast
reactions. Figs. 2–5 illustrate the results of our calcula-
tions. These figures are plotted assuming the same micro-
physics input (the baryon number density, the critical
baryon temperatures, etc.) as in Fig. 1.

Figure 2 shows the characteristic damping times �sh due
to the shear viscosity as a function of temperature T in the
limit of slow reactions (left panel) and fast reactions (right
panel). To calculate �sh it is necessary to know the shear
viscosity coefficient � of superfluid nucleon-hyperon mat-
ter. This coefficient has not been considered in the litera-
ture so far. For definiteness, we take for � the shear
viscosity of electrons and muons �e� ¼ �e þ �� from

Ref. [44]. In this reference it is shown that (for npe�
matter) the contribution of �e� to the total shear viscosity

� is dominant. Notice, however, that this result was ob-
tained under assumption that only protons are possibly
superfluid (neutrons were treated as normal). When plot-
ting Fig. 2 we used the coefficient �e� calculated for

nonsuperfluid matter from Eq. (37) of Ref. [44]. The
effects of baryon superfluidity on �sh are illustrated in the
next figure.
By the solid curves we show �sh calculated for each

sound mode by means of Eq. (60). Dashes demonstrate the
characteristic damping times �nfh-sh calculated using the
simplified model, the hydrodynamics of normal (nonsuper-
fluid) liquid. In this case, there is only one mode in both
limits; the corresponding curves are marked with ‘‘nfh,’’
which is the abbreviation of ‘‘normal fluid hydrodynam-
ics.’’ It is straightforward to demonstrate that �nfh-sh ¼
3ðP0 þ "0Þs2=ð2!2�Þ (see, e.g., Ref. [43]). As it should
be, �sh for normal mode (in the figure it is marked ‘‘nor-
mal’’) coincides with �nfh-sh at T > Tc� (see Sec. IVC).
It follows from Fig. 2 that �sh, calculated in the frame of

relativistic hydrodynamics of superfluid mixtures, can
strongly (by several orders of magnitude) differ from
�nfh-sh. It is interesting that the maximum deviation of �sh
from �nfh-sh at low temperatures (T & 3� 108 K) is ob-
served for normal mode (Fig. 2, left panel), though it is
analogous to the usual sound in nonsuperfluid matter.

FIG. 2. The characteristic damping times �sh due to the shear viscosity versus T in the limit of slow reactions (left panel) and fast
reactions (right panel). The dashed curves (marked with ‘‘nfh’’) in both panels are obtained using the nonsuperfluid hydrodynamics,
see the text. Other notations are the same as in Fig. 1.
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At temperature T 
 5:55� 108 K the characteristic
damping time �sh for one of the superfluid modes (‘‘sfl
I’’) becomes infinite. This is because at such temperature
and for this mode the hydrodynamic motions occur in such
a way that the normal component is always at rest (ua ¼
0), while the superfluid components pulsate around it.
Mathematically, this means that the coefficients �iðsÞ in
Eq. (64) are infinite. It follows then from Eqs. (57), (60),
and (63) that dissipation due to the shear viscosity is
absent.

Figure 3 presents the dependence of the characteristic
damping times on T in the limit of slow reactions. Three
panels correspond to three modes (from left to right: ‘‘nor-
mal,’’ ‘‘sfl I,’’ and ‘‘sfl II’’). The damping times �bulk,
calculated for each mode using Eq. (59), are shown by
solid curves. For comparison, by long dashes we show the
characteristic damping times �nfh-bulk due to the nonequi-
librium reactions (1)–(4), which are obtained using the

hydrodynamics of nonsuperfluid liquid. When plotting
the long-dashed curve superfluidity of baryons was taken
into account only at calculating the total reaction rate �.
Because there is only one sound mode in the nonsuperfluid
hydrodynamics, this curve is the same in all three panels.
One can see from the figure that for the normal mode the

solid and long-dashed curves practically (on the logarith-
mic scale) coincide; they differ by a factor of 2 or less. On
the contrary, �bulk for superfluid modes can differ from
�nfh-bulk by orders of magnitude.
Notice that at T 
 5:41� 108 K the damping time for

the superfluid mode ‘‘sfl II’’ becomes infinite. The point is
at such temperature and for this mode the condition �� ¼
0 is always preserved during the pulsations. The denomi-
nator in Eq. (59) is then vanished and �bulk tends to infinity.
By dotted dashes and short dashes in Fig. 3 we show,

respectively, the characteristic damping times �sh1 and �sh2
due to the shear viscosity. The times �sh1 are the same as in

FIG. 3. The characteristic damping times � versus T for ‘‘normal’’ mode (left panel), ‘‘sfl I’’ mode (middle panel), and ‘‘sfl II’’ mode
(right panel) in the limit of slow reactions. The solid curves demonstrate �bulk calculated from Eq. (59); the long-dashed curve (the
same in all panels) describes the characteristic damping times �nfh-bulk, calculated using the normal fluid hydrodynamics. The dotted-
dashed and short-dashed curves show damping times �sh1 and �sh2 due to the shear viscosity (see the text for more details). Other
notations are the same as in Figs. 1 and 2.

FIG. 4. The same as in Fig. 3 but in the limit of fast reactions. The damping times �sh � �bulk and are not shown.
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Fig. 2 (left panel); they are plotted for the shear viscosity
� ¼ �e� of nonsuperfluid matter [see Eq. (37) of

Ref. [44]]. To obtain the dependence �sh2ðTÞ we assume
that � ¼ �e� as before, but additionally take into account

the reduction of �e� by proton superfluidity. The reduction

factor was calculated from Eq. (83) of Ref. [44]. It is worth
noting that this formula is obtained for nucleon npe�
matter and does not imply the superfluidity of other baryon
species except for protons. Thus, the dependence �sh2ðTÞ
only qualitatively describes possible effect of baryon
superfluidity on �sh.

It follows from the analysis of Fig. 3, that at high enough
temperatures T * 3� 108 K, the dissipation due to the
shear viscosity is negligible in comparison to that due to
the nonequilibrium processes (1)–(4). Moreover, the
threshold density, at which �bulk 
 �sh, only weakly de-
pends on �.

Figure 4 is analogous to Fig. 3 but is plotted for the limit
of fast reactions. The solid curve in the left panel demon-
strates the dependence �bulkðTÞ for the normal mode (‘‘nor-
mal’’) and in the right panel—for the superfluid mode
(‘‘sfl’’). The long-dashed curves are the same in both
panels and describe the damping times �nfh-bulkðTÞ. In the
limit of fast reactions the damping times due to the shear
viscosity are much greater than �bulk and are not shown.

As in the limit of slow reactions, �bulk for the normal
mode does not differ substantially from �nfh-bulk (no more
than by a factor of 2). However, at high enough tempera-
tures �bulk for superfluid mode is 2 orders of magnitude
smaller than �nfh-bulk.

The analysis of Fig. 4 shows that the damping time for
superfluid mode becomes infinite at the same temperature
T 
 5:41� 108 K as in the limit of slow reactions (the
corresponding peak is in the shaded region where the limit

of fast reactions is not applicable for the chosen pulsation
frequency ! ¼ 104 s�1). It is easy to understand why this
peak falls on the same temperature. As we already dis-
cussed above, the infinite damping time �bulk means that
the condition �� ¼ 0 holds in the pulsating matter (at
given temperature). In this case, the nondissipative
Eqs. (47)–(51) in the limits of slow and fast reactions
coincide. Thus, the functional dependence of the ampli-
tudes wðiÞa on ua is the same in both limits (see Sec. VA).

Consequently, as follows from Eqs. (61) and (62), if �� ¼
0 in one limit, then it vanishes in the other limit.
Figure 5 is a combined plot, showing the characteristic

damping times �bulk as functions of T for the limits of slow
and fast reactions. The shaded region (at T � 2� 109 K)
corresponds to intermediate temperatures at which both
limits are inapplicable. In this region the pulsation energy
dissipates on a time scale of order of the pulsation period.
Notice that at T * 3� 108 K the characteristic damping
time of pulsations � ¼ �bulk þ �sh practically coincides
with �bulk, since at such temperatures the contribution of
the shear viscosity to dissipation is negligible.

VI. SUMMARY

In Ref. [1] the relativistic dissipative hydrodynamics
was suggested to describe superfluid nucleon-hyperon mat-
ter in the cores of massive neutron stars. Using this hydro-
dynamics, we analyze the sound waves, which are the
simplest example of pulsations in such matter.
We demonstrate that in the limit of slow reactions (1)–

(4) [when the composition of pulsating matter is practically
unaffected by these reactions] there are three sound modes:
one normal and two superfluid. In the opposite limit of fast
reactions [when the pulsating matter is nearly at equilib-
rium with respect to the reactions (1)–(4)], only two sound
modes exist: the normal one and the superfluid one. In the
intermediate case the sound waves cannot propagate be-
cause they are damped on a time scale of order of the
pulsation period.
The speed of normal sound mode in both limits is practi-

cally independent of temperature and coincides with the
sound speed for nonsuperfluid matter. This mode turns into
the ordinary sound at T > Tc�. On the contrary, the speeds
of superfluid modes strongly depend on temperature and
vanish before the transition of matter to the normal state.
We analyze also the characteristic damping times � of

sound modes (Figs. 2–5). We allow for the two main
dissipative mechanisms: damping due to the shear viscos-
ity and due to the nonequilibrium reactions (1)–(4) [these
reactions generate the effective bulk viscosity]. We dem-
onstrate that (i) the damping times � for normal and
superfluid modes can differ from each other by orders of
magnitude; (ii) at T * 3� 108 K the damping due to the
nonequilibrium reactions (1)–(4) is the dominant mecha-
nism of dissipation; this result is nearly insensitive to an
actual value of the shear viscosity coefficient �.

FIG. 5. Characteristic damping times �bulk versus T in the limit
of slow (T & 1:4� 109 K) and fast (T * 2:3� 109 K) reac-
tions. The region of T where the rate of nonequilibrium reactions
is intermediate (i.e., where both limits are invalid), is shaded.
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In addition, we compare � with the damping time �nfh,
calculated using the ordinary nonsuperfluid hydrodynam-
ics, but taking into account the effects of superfluidity on
the shear viscosity and on the rates of the reactions (1)–(4).
We show that (iii) � approximately (up to a factor of 2)
coincides with �nfh only for the normal mode and under the
condition that the shear viscosity can be neglected (i.e.,
T * 3� 108 K). In other cases (for the superfluid modes
and for the normal mode at T < 3� 108 K) � can differ
from �nfh by several orders of magnitude.

The results listed above are obtained from the analysis of
sound waves in the superfluid nucleon-hyperon matter.
However, they can serve as an indication that the effects,
related to difference between the superfluid and normal
fluid hydrodynamics, can also be very important in studies
of global pulsations of superfluid neutron stars, essentially
modifying their damping times.
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APPENDIX

Let us calculate the quantities �nb ¼ nb � nb0, �nH ¼
nH � nH0, �n�n ¼ n�n � n�n0, and �y ¼ y� y0, enter-
ing Eqs. (44)–(46) for �P, ��n, and ��, respectively. For
that, we make use of the continuity Eqs. (29), assuming the
perturbations are harmonic. In the linear approximation the
continuity equations for leptons (electrons and muons)
have the form (l ¼ e, �)

i!�nl þ iknl0u ¼ 0; (A1)

where we put �Sl ¼ 0, because the leptonic reactions are
slow. From these equations it follows that

�y ¼ 0: (A2)

The continuity equations for baryons, hyperons, and
��-hyperons with neutrons can also be obtained from
Eq. (29)

i!�nb þ ikJb ¼ 0; (A3)

i!�nH þ ikJH ¼ ���; (A4)

i!�n�n þ ikJ�n ¼ ����: (A5)

Here, we used Eq. (31), and introduced the notations Jb �
nbuþP

iYikwðkÞ; JH � nHuþ Y�kwðkÞ þ Y�kwðkÞ; and

J�n � n�nuþ Y�kwðkÞ þ YnkwðkÞ. Solving now the system

(A3)–(A5) taking into account Eqs. (46) and (A2), one gets
for �nb, �nH, and �n�n

�nb ¼ � kJb

!
; (A6)

�nH ¼ k

!

i!JH þ �½Jb@��=@nb þ ðJH þ J�nÞ@��=@n�n�
�ð@��=@nH � @��=@n�nÞ � i!

; (A7)

�n�n ¼ k

!

i!J�n � �½Jb@��=@nb þ ðJH þ J�nÞ@��=@nH�
�ð@��=@nH � @��=@n�nÞ � i!

: (A8)

Using these equalities, Eq. (46) for �� can be rewritten as

�� ¼ � k

i�ð@��=@nH � @��=@n�nÞ þ!

�
@��

@nb
Jb þ @��

@nH
JH þ @��

@n�n
J�n

�
: (A9)

In the limit of slow reactions, when the total rate � of
the reactions (1)–(4) is small, that is, �ð@��=@nH �
@��=@n�nÞ � !, one has

�nb ¼ �kJb=!; (A10)

�nH ¼ �kJH=!; (A11)

�n�n ¼ �kJ�n=!: (A12)

In the limit of fast reactions, when �ð@��=@nH �
@��=@n�nÞ � !, one obtains

�nb ¼ � kJb

!
; (A13)

�nH ¼ kðJb@��=@nb þ ðJH þ J�nÞ@��=@n�nÞ
!ð@��=@nH � @��=@n�nÞ ;

(A14)

�n�n ¼ � kðJb@��=@nb þ ðJH þ J�nÞ@��=@nHÞ
!ð@��=@nH � @��=@n�nÞ :

(A15)
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One sees, that in the both limits �nb, �nH, and �n�n are
real valued and do not depend on the total reaction rate �.
Correspondingly, the sound speeds are also real valued, or,
in other words, the dissipation is absent. The dissipation
due to the weak nonequilibrium processes (1)–(4) can be

taken into account by considering the next (complex) terms
in the expansion of �nH and �n�n into series in powers of
�ð@��=@nH � @��=@n�nÞ=! in the case of slow reac-
tions and in powers of !=½�ð@��=@nH � @��=@n�nÞ� in
the case of fast reactions.
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