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Abstract—The effect of curvature of openmagnetic-field tubes on the death lines of radio pulsars is studied.
The solution is obtained in the framework of a Goldreich–Julian model for both dipolar and asymmetric
magnetic fields. The tube-axis curvature can shift the death line appreciably toward either longer or shorter
periods. If the field is dipolar and gamma rays are generated by the inverse Compton effect, the formation
of secondary plasma is more efficient near the death line. In the case of an asymmetric magnetic field,
the generation of radio emission beyond the tube of open field lines is possible. c© 2004 MAIK “Nau-
ka/Interperiodica”.
1. INTRODUCTION

The death line of a radio pulsar is the curve in the
magnetic-field—period plane separating the regions
where radio emission can and cannot be generated.
The mechanism for the radio emission is as follows
[1, 2]. Electrons are accelerated by the electric field
along open magnetic field lines emanating from the
polar regions of the pulsar (we shall consider the
case of an acute angle between the angular-velocity
and magnetic-moment vectors). Next, these elec-
trons produce gamma rays, which, in turn, gener-
ate secondary plasma (i.e., electron–positron pairs)
due to the presence of a transverse component of
the magnetic field. When the primary high-energy
particles pass through the secondary plasma, they
generate oscillations that result in radio emission. It
is commonly believed that a pulsar will no longer emit
at radio frequencies if a sufficient amount of secondary
plasma cannot be formed.

In the present work, we shall calculate the death
lines for an asymmetric magnetic field and compare
these results with the case of a dipolar field. The death
lines for a dipolar field have already been obtained by
other authors (for example, in the recent works [3]
and [4]). However, we calculate them again to show
that our approximationmethod gives the same results
for the dipolar field as a numerical approach [3]. In
addition, we study the effect of stationary plasma in
unfavorably bent field lines. When the field is dipolar
and gamma rays are formed by the inverse Compton
effect, the generation of secondary plasma is more ef-
ficient near the death line. In the case of an asymmet-
ric magnetic field, radio emission can be generated
beyond the tube of open field lines.
1063-7729/04/4812-1029$26.00 c©
To calculate the death lines, we need information
about the electric field accelerating the primary elec-
trons.

In a regime with the free outflow of charges in a
Goldreich–Julian model for a rotating neutron star
possessing a magnetic field (a radio pulsar), the elec-
tric fields in the region of open magnetic field lines
are determined by the relativistic effect of inertial
reference-frame dragging. This was demonstrated for
the case of a dipolar magnetic field by Muslimov and
Tsygan [5, 6] and Beskin [7], and for an arbitrary
axially symmetric magnetic field by Tsygan [8].

The electric field for the case of curved axes of the
tubes of open field lines of a nondipolar magnetic field
was calculated by Kantor and Tsygan [9].

We derived the death lines in analytic form. The
emission spectra and energy distributions of the sec-
ondary plasma were not taken into account, and all
calculations were carried out for the characteristic
energies.

2. DEATH LINES FOR A DIPOLAR FIELD
WITHOUT STATIONARY PLASMA

IN THE REGION OF OPEN FIELD LINES

As is known, the electrostatic potential (in a co-
ordinate system rotating with a star) in the region of
open dipolar magnetic field lines at distances much
less than the light-cylinder radius is [5, 6]

Φ =
1
2
κΘ2

0

(
Ωa

c

)
B0a(1 − ξ2)

(
1 − 1

η3

)
cosχ;

(1)

cosχ �= 0.
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1030 KANTOR, TSYGAN
Here, κ = (rg/a)(I/Ma2), where I is the moment
of inertia of the star, rg = (2GM)/c2 is the gravi-
tational radius of a neutron star with mass M , and
a is its radius. The parameter κ describes the effect
of inertial-frame dragging (described by the metric-
tensor component g03) on the electric field near the
star; its characteristic value is equal to 0.15. Further,
Ω is the angular velocity of the star, B0 is the ampli-
tude of the magnetic field at the magnetic pole of the
star, Θ0 =

√
Ωa/c is the angular radius of a tube of

open field lines at the stellar surface, ξ is the distance
from the tube axis normalized to Θ0, η is the distance
from the stellar center normalized to its radius, and
χ is the angle between the magnetic moment and
angular velocity of the star. We shall not take into
account the Schwarzschild terms g00 and g11 in the
metric tensor describing the gravitational field near
the rotating neutron star. Therefore, an accelerated
electron will acquire the Lorentz factor

γ =
eΦdip

mc2
= 106P−2B12

(
1 − 1

η3

)
cosχ,

where P is the period of the radio pulsar in seconds
and ξ was taken to be 0.5, since this corresponds to
a line with a not very small potential and curvature
simultaneously.

The free path of a photon in the magnetic field is
determined in the standard way [1, 10]. The photons
are emitted by electrons along the magnetic field lines
within an angle of about 1/γ. Before a pair is born in a
magnetic field with radius of curvature ρ, the photon
traverses the path

Sph =
0.2mc2ρ

�ω

Bc

B
.

This expression can be obtained if the integral of the
photon absorption coefficient in the magnetic field
along the photon trajectory is assumed to be unity.
The main contribution to the integral is produced
by the final part of the trajectory (where the pair is
produced). Therefore, the magnetic field appearing in
this formula is the field in the place where the pair is
formed. Our estimate is valid forB < 1013 G, because
it does not take into account the processes considered
in [11], such as deflection of the gamma ray by the
magnetic field, the formation of a pair in a bound state,
and the decay of one of the states of the gamma ray
into two photons.

For a dipolar field, the radius of curvature ρ at
ξ = 0.5 is equal to 2.2 × 108P 1/2 cm. Therefore,

Sph ≈ 2 × 109mc2

ω�

P 1/2

B12
cm.

The photons emitted by the primary electrons
will have the following energies. Magnetic curvature
radiation results in gamma rays with characteristic
energiesEph = (3/2)(γ3

�c/ρ). The inverse Compton
scattering of thermal photons on electrons with
Lorentz factors γ > mc2/2kT results in gamma
rays with energy Eph = mc2γ. When γ < mc2/2kT ,
gamma rays with energy Eph = 2kTγ2 are generated
[12].

The condition for the creation of a pair is [2, 10]

B⊥ = Bc
0.2mc2

�ω
.

Here,B⊥ is themagnetic-field component perpendic-
ular to the direction of propagation of the gamma ray.

As the gamma ray moves away from the place it is
emitted, the angle between the magnetic field and the
direction of propagation increases, but the intensity of
the field decreases. The transverse component of the
field will be maximum at the point η0 = 1.5η, where
η is the distance from the stellar center to the place
where the gamma ray is emitted.

The condition η0 = 1.5η can be rewritten

Sph =
1015(1.5η)3P 1/2

B12ω�(η)
=

η

2
106, (2)

whereB12 is the magnetic-field intensity at the stellar
surface, and ω�(η) is the energy of a photon produced
at a distance η from the stellar center.

In the case of inverse Compton scattering by en-
ergetic electrons, we have

Sph =
1015(1.5η)3P 1/2

B125 × 105 × 106P−2B12 cosχ
(

1 − 1
η3

)

=
η

2
106.

After some manipulation of this equation, we ob-
tain η2/(1 − 1/η3) = 0.74 × 102B2

12P
−2.5 cosχ. The

furthest right line in the B–P plane corresponds to
the minimum of the function η2/(1 − 1/η3), i.e., η ≈
1.35. Therefore, the death line is described by the
expression

P = 3.6B0.8
12 (cos χ)0.4. (3)

3. MULTIPLICATION FACTOR
FOR THE SECONDARY PLASMA

IN A DIPOLAR FIELD
WITHOUT STATIONARY PLASMA

IN THE REGION OF OPEN FIELD LINES

To determine this multiplication factor, we need to
know howmany gamma rays are produced by a single
primary electron and how many pairs are formed by a
single gamma ray. It is obvious that a cascade cannot
ASTRONOMY REPORTS Vol. 48 No. 12 2004



DEATH LINES OF RADIO PULSARS 1031
develop near the death line, and that one gamma ray
cannot produce more than one pair.

The number of gamma rays produced is deter-
mined by the integrated probability of gamma ray
formation. Gamma rays born very close to the stellar
surface cannot form pairs because their energy is
insufficient, whereas gamma rays born at very large
heights cannot form pairs because the magnetic field
decreases with distance from the star. The corre-
sponding boundaries are defined by the condition that
the distance from the stellar center to the point where
the pair is formed is a factor of 1.5 greater than the
distance from the stellar center to the point where
the gamma ray is formed. From here on, we shall
consider the inverse Compton scattering of thermal
photons on fast electrons (γ > mc2/2kT ), when the
gamma ray carries away all the energy of the electron.
For this condition to be satisfied, it is necessary that
T5P

0.5/B12 > 1.5. In the conditions typical for radio
pulsars, the probability of photon scattering by an
electron somewhere along its entire path is much less
than unity.

Photons produced at a resonant cross-section will
contribute to the formation of pairs if [12]

γres = 103B12

T5
>

1.4 × 104P 0.5

B12
,

in other words,

B2
12

T5P 0.5
> 14.

If this requirement is not satisfied, the number of
photons scattered by one electron along the path from
r1 to r2 is

Nγ =

r2∫
r1

σTσT
4

c

(
mc2

kT

)2

ln
(

2γkT
mc2

)
dL

mc2γ
,

where ln
(
2γkT/mc2

)
is a quantity of the order of

unity, and r1 and r2 are the upper and lower bound-
aries for the generation of pair-forming photons.
Therefore, we obtain

Nγ =

r2∫
r1

T 2
5

2.3 × 103γ
dL.

Consequently, the number of gamma rays generated
by one electron Nγ when thermal emission is pro-
duced by the entire surface of the star is equal to

Nγ =
7 × 10−4T 2

5 P
2

B12 cosχ
. (4)

We can see that the multiplication factor increases
near the death line (we assume here that one gamma
ASTRONOMY REPORTS Vol. 48 No. 12 2004
ray creates one pair, and that the multiplication fac-
tor equals Nγ ; the condition for the formation of
a cascade will be discussed below). If the ampli-
tude of the magnetic field is fixed, the concentration
of the secondary plasma increases as P . As a re-
sult, the efficiency of radio emission should increase
near the death line. The increase in the concentra-
tion will be stopped and replaced with a decrease
when the height η (the height above which photons
created cannot produce pairs) approaches the value
η = 2 (the height at which the flux of thermal photons
from the stellar surface is substantially attenuated).

This takes place when P = 3.2B4/5
12 cos2/5 χ; i.e., the

true death line should be within the interval P =
(3.2–3.6)B0.8

12 cos0.4 χ.

We have not taken into account screening of the
field by the electron–positron plasma, since the mul-
tiplication factor was small (this is valid for moderate
temperatures of the stellar surface T5 < 10, where
T5 = T/105 K).

Let us consider the case when thermal radiation is
emitted only by a hot spot in the polar region. Sec-
ondary plasma is formed as long as gamma rays cre-
ating pairs are produced at heights z0 < 0.01P−1/2,
since the flux of thermal photons is considerably at-
tenuated at heights exceeding the radius of the polar
region.

Therefore, the death line will be given by

P < 1.35B2/3
12 (cosχ)1/3. (5)

The number of photons produced will be

Nγ =
1.9 × 10−4T 2

5 P
1/2

cos1/2 χ
. (6)

Next, let us consider the case when the pho-
tons are generated by magnetic curvature radiation.
A similar calculation of the death line gives

P = 0.16B4/7
12 cos3/7 χ. (7)

Let us determine the number of gamma rays emit-
ted per electron that are able to create a pair. Since
the generation of secondary plasma becomes efficient
in the case of magnetic curvature radiation, screening
of the electric field should be taken into account. We
shall assume that the electric field is zero everywhere
above the point where the first electron–positron pair
was born.

The minimum pair-creation height (the height of

the gap) in the case ofP > 0.08B8/17
12 cos6/17 χwill be

h = 7.5P 7/4/(B12 cos3/4 χ), and the Lorentz factor at
this height reaches γ(h) = 2.3 × 107P−1/4 cos1/4 χ.
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To obtain the corresponding expressions for the

case P < 0.08B8/17
12 cos6/17 χ, the effect of the sec-

ondary plasma on the electric field must be taken into
account. We shall not consider this case.

A single electron generates the following number
of photons that are able to form pairs:

Nγ ≈ 106γ(h)η0

2P 1/2c
,

where η0 = 1 + z0, and z0 is the height above which
the photons can create pairs.

When h > 0.01P−1/2, we find

Nγ =
2.3 × 102B

1/2
12 cos5/8 χ

P 13/8
. (8)

Since the number of photons we have obtained is
much greater than for the inverse Compton effect, it is
reasonable to assume that the true death line should
be located to the right of the one obtained above. Pairs
will not be formed from electrons with the charac-
teristic energy, but they will form from electrons in
the high-energy tail of the spectrum, although the
number of pairs produced will be decreased by a factor
of eE/E0 , where E0 = (3/2)(γ3

�c/ρ). If we take E =
10E0, the number of pair-forming gamma rays will be
decreased by a factor of 2 × 104; i.e., this number will
be comparable to that for the inverse Compton effect.
The corresponding death line will be described by the
expression

P = 0.22B4/7
12 cos3/7 χ, (9)

which agrees well with the results [4].

If a gamma ray possesses a sufficiently large en-
ergy, the electron–positron pair produced will have
a large transverse momentum. The momentum of
a particle across the magnetic field will be reduced
by radiation, and the energy of the photons emitted
could be sufficient to generate secondary pairs [13].
Therefore, a cascade can develop. However, this is
impossible near the death line, and the multiplication
factors will be equal to the number of gamma rays
produced by a single electron.

Therefore, the multiplication factors for the dipolar
field will be as follows. In the case of the magnetic
curvature generation of gamma rays, the multiplica-
tion factor is

k =
2.3 × 102B

1/2
12 cos5/8 χ

P 13/8

if P > 0.08B8/17
12 cos6/17 χ (this is the condition for

the absence of a cascade) and the spot under consid-
eration is not very close to the death line.
In the case of inverse Compton scattering of ther-
mal photons from the entire surface of the star, the
multiplication factor is

k =
7 × 10−4T 2

5 P
2

B12 cosχ
.

This is valid for the parameter ranges 0.75B0.8
12 ×

cos0.4 χ < P < 3.2B0.8
12 cos0.4 χ, P > 2.3B2

12/T
2
5 .

In the case of inverse Compton scattering of ther-
mal photons from a hot spot in the polar region, the
multiplication factor is

k =
1.9 × 10−4T 2

5 P
1/2

cos1/2 χ
.

This is valid not very close to the death line at P >

2.3B2
12/T

2
5 and P > 0.3B2/3

12 cos1/3 χ.

4. STATIONARY PLASMA IN THE REGION
OF OPEN FIELD LINES

Let us consider the electrostatic potential in the
region of openmagnetic field lines. As is known, there
are favorable and unfavorable lines [15]. The potential
varies monotonically along favorable lines up to the
light cylinder, whereas there are potential wells on
unfavorable lines.

The electrostatic potential in the case of a dipolar
magnetic field takes the form [6]:

Φ =
1
2
Φ0κΘ2

0

(
1 − 1

η3

)
(1 − ξ2) cosχ

+
3
8
Φ0Θ3

0H(1)
(

Θ(η)H(η)
Θ0H(1)

− 1
)

× ξ(1 − ξ2) sinχ cosφ,

where the following notation has been used:

Φ0 = (aΩ/c)B0a,

Θ0 =
√

Ωa/cf(1),

Θ(η) = Θ0

(
η
f(1)
f(η)

)1/2

,

f(η) = −3
(η

ε

)3
[
ln

(
1 − ε

η

)
+

ε

η

(
1 +

ε

2η

)]
,

where ε = rg/a ≈ 0.4,

H(η) =
1
η

(
ε− κ

η2

)

+
(

1 − 3
2
ε

η
+

1
2
κ

η3

){
f(η)

(
1 − ε

η

)}−1

,

φ is the azimuth angle in a cylindrical coordinate
system whose axis is directed along the tube.
ASTRONOMY REPORTS Vol. 48 No. 12 2004
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Fig. 1. Behavior of the potential for ξ = 0.5, χ = 45◦,
cos φ = −1, P = 1, B12 = 1.

At some angles φ, the potential will be nonmono-
tonic; i.e., there will be potential wells (Fig. 1).

If the formation of electron–positron plasma does
not proceed very actively, the charged particles will
be concentrated in these wells and tend to smooth
the potential. Therefore, the following situation will
develop in unfavorably bent field lines. The potential is
zero at the stellar surface. The next layer is filled with
a stationary plasma, and the potential remains zero up
to some point, where a potential with an opposite sign
relative to the favorable lines appears, which varies
monotonically. There is no electron flux from the stel-
lar surface along these lines (we consider the case of
an acute angle between the angular velocity of the
star and its magnetic moment), but there can be an
inverse flow of electrons from the light cylinder. The
presence of this stationary plasma with zero poten-
tial should decrease the effective cross-section of the
tube, and, consequently, the value of the accelerating
potential.

If a considerable amount of plasma is formed (at
small periods, when magnetic curvature radiation is
efficient), the electric field can become zero every-
where above the place where the plasma is formed.
Therefore, the potential will be monotonic, and there
will be no decrease in the tube cross-section, or,
consequently, in the potential. On the other hand, it is
also possible that some part of the tube will be filled.
We cannot definitely answer which of these cases
actually takes place.

Let us consider the influence on the death line of
decreasing the cross-section of the tube in which the
electrons are efficiently accelerated.

To estimate the electrostatic potential, let us as-
sume that the part of the tube where the electron
acceleration takes place possesses a circular cross-
section with a radius that is half the radius of the
ASTRONOMY REPORTS Vol. 48 No. 12 2004
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Fig. 2. Calculated death lines of radio pulsars for the
magnetic curvature mechanism (dashed), the inverse
Compton effect acting on thermal photons from the entire
stellar surface with stationary plasma (dash–dot), the in-
verse Compton effect acting on thermal photons from the
entire stellar surface without stationary plasma (solid),
and the magnetic curvature mechanism with station-
ary plasma (dash–double-dot). The observational data
(points in the B–P plane) were taken from the unpub-
lished ATNF Pulsar Catalog of Hobbs and Manchester
(2003).

initial tube. Since the potential depends quadratically
on the cross-sectional radius, the electron Lorentz
factor should decrease by a factor of four. The death
line corresponding to the inverse Compton effect act-
ing on photons from the entire surface of the star will
be P = (1.8–2.1)B0.8

12 cos0.4 χ, that corresponding to
the inverse Compton effect acting on photons from

a hot spot will be P = 0.8B2/3
12 (cosχ)1/3, and that

corresponding to magnetic curvature radiation P =
0.12B4/7

12 cos3/7 χ. These death lines and the corre-
sponding lines without filling taken into account are
drawn in Figs. 2 and 3.

5. DEATH LINES IN THE CASE
OF BENT TUBES (AN ASYMMETRIC

MAGNETIC FIELD)

Let us describe the specific features of bent tubes.
The potential in an asymmetric tube can be ex-

pressed [9]

Φ =
ΩF

2πc
(1 − ξ2) (10)

× {[1 − κ(1/η)3] cosχ + (κ− 1) cos χs},
where F is the magnetic flux through the tube, cosχs

is the cosine of the angle between the angular velocity
and the magnetic field near the stellar surface, and
cosχ is the cosine of the angle between the angular
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Fig. 3. Same as Fig. 2 for the inverse Compton effect
acting on thermal photons from a hot spot in the polar
region when stationary plasma is present (solid) and the
inverse Compton effect acting on thermal photons from
a hot spot in the polar region without stationary plasma
(dashed).

velocity and the magnetic field at the point under
consideration.

The following model was considered in our previ-
ous work [9]. A star with radius a possesses magnetic
moment m, so that the field at its magnetic pole
is B0 = 2m/a3. An additional dipole with magnetic
moment m1 ⊥ m is located at a depth a∆ (∆ ≈ 0.1)
near the pole of the neutron star, so that its field at the
star’s pole is equal toB1 = m1/a

3∆3. Assuming that
B0 = B1 and a favorable axis inclination and tube
curvature, we can obtain an increase by a factor of
five in the potential and by a factor of 20 in the curva-
ture, compared to the dipolar case. The corresponding
potential wells will be shallower, and they will not be
filled with stationary charge to the zero potential level.
However, we can still describe the filling as a halving
of the effective cross-section of the tube.

One characteristic feature of tubes with bent axes
is that electron–positron pairs can be produced both
inside and outside the tube (in the region of closed
field lines). The birth of pairs in the region of closed
field lines is possible because, if a photon does not
have too large an energy, its path before the forma-
tion of a pair can be large enough for it to leave the
tube. This path length must satisfy the condition L >√
ρΘaη (where ρ is the radius of curvature of the tube,

andΘaη is the tube radius). After traversing the entire
magnetosphere, pairs born near tubes in the region of
closed field lines will enter the region of the opposite
magnetic pole. We might expect that they would heat
a spot near this pole, but this heating was found to
be negligible, because pairs produced beyond the tube
have a fairly small Lorentz factor (about 40), and
do not experience acceleration along their trajectory.
In this case, the beams of electron–positron plasma
that are generated penetrate the stationary plasma of
the Goldreich–Julian magnetosphere, which is com-
posed of electrons and positively charged particles
(probably, positrons), and is characterized by ρeff .
This should lead to the excitation of plasma oscilla-
tions both in the moving electron–positron plasma
and in the stationary plasma, and, consequently, to
the generation of radio emission. The corresponding
radiation has two components: one represents a nar-
row beam, while the other is isotropic. The isotropic
radio emission should have a lower characteristic fre-
quency.

Let us determine which gamma rays can leave a
tube through the lateral surface towards the region of
the Goldreich–Julian plasma. With this aim in view,
let us consider the variation of the line curvature with
height.

In themodel formulated above, we have the follow-
ing expressions for the magnetic field [9, 14]:

Br =
B0

η3
, Bθ =

B0

2η3

[
θ + 2ν

(
∆η

η − 1 + ∆

)3
]
,

where ν = B1/B0. It can easily be shown that the ra-
dius of curvature of the field lines B can be expressed
in terms of the function f = Br/Bθ as

ρ = r
(1 + f2)3/2

1 + f2 − df

dθ

.

We obtain for a dipolar field ρdip =
4
3
r

θ
.

For a nondipolar field of the kind specified above,
the curvature at 1 < η < 2 is

ρ =
2r
3ν

(
η − 1 + ∆

∆η

)3

.

The following radii of curvature are obtained in this
model: ρ = 1.1× 106 cm at η = 1, ρ = 10.4 × 106 cm
at η = 1.2, and ρ = 108 cm at η = 2. Therefore, the
characteristic path of a photon leaving the tube can
be estimated as L > 2.5 × 105 cm.

For a gamma ray to leave the tube, it must not
have a very large energy; i.e., it must be emitted by
an electron in the initial stage of its acceleration. The
energy of the gamma ray should satisfy the following
inequality (for this estimation, we shall use here the
path length obtained for the case of constant curva-
ture):

Sph =
5 × 1012ρ6

B12*�
> L = 2.5 × 105.
ASTRONOMY REPORTS Vol. 48 No. 12 2004
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We find from this expression

*� <
2 × 107

B12
eV,

where ρ6 = ρ/106.
Photons produced by the resonant inverse Comp-

ton effect will satisfy this inequality if

B3
12

T5
< ρ6 ≈ 10.

In this case, the resonant photons will produce
electron–positron pairs in the region of closed field
lines.

Let us calculate the death line of a radio pulsar
for the case of magnetic curvature radiation. The free
path of a photon is

Sph =
2 × 1023ρ6ρ

′
6

B′
12γ

3

(primed and unprimed quantities refer to the points
where the pair and gamma ray are produced, respec-
tively).

The potential in a bent tube essentially reaches
its maximum at a height of about η = 1.2. Therefore,
we take ρ6 = 10, which corresponds to a height of
η = 1.2 and ρ′6 = 50.

Although the condition for pair formation Sph =
106η/2 was obtained for the case of constant curva-
ture of the tube, we shall use this condition to esti-
mate the death line for the case when the curvature
changes with height.

This yields the death line P = 0.7B2/3
12 . If gamma

rays from the tail of the spectrum (E = 10E0) are

taken into account, P = B
2/3
12 . If the stationary

plasma is taken into account, P = 0.5B2/3
12 .

The death line for the inverse Compton effect is
determined in a similar way:

5 × 1012ρ′6
B′

12mc2γ
=

η

2
106,

and from this expression we obtain

P = 32B12. (11)

If we include the effect of filling of the unfavorable field
lines with plasma, then

P = 18B12. (12)

The death lines for an asymmetric magnetic field with
a favorable configuration are drawn in Fig. 4.

In the case under consideration, the death line
extends far to the right. When the tube axis is bent
unfavorably, the potential will decrease, and the death
line will be shifted to the left compared to the dipolar
ASTRONOMY REPORTS Vol. 48 No. 12 2004
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Fig. 4. Same as in Fig. 2 for the magnetic curvature
mechanism (dashed), the inverse Compton effect acting
on thermal photons from the entire stellar surface with
stationary plasma (dash–dot), the inverseCompton effect
acting on thermal photons from the entire stellar surface
without stationary plasma (solid), and the magnetic cur-
vature mechanismwith stationary plasma (dash–double-
dot).

case. In addition, it is possible that the run of the
potential is such that the tube is filled with stationary
plasma in the entire tube cross-section up to some
height. In other words, the nondipolar magnetic field
can also result in an earlier death of the radio pulsar.

Therefore, a nondipolar magnetic field in radio pul-
sars can lead to either an increase or decrease in the
death periods.

6. RESULTS

We have obtained the death lines for the cases
of dipolar and asymmetric magnetic fields, and es-
timated the multiplication factors for the secondary
plasma in the case of a dipolar field.

If we assume that the pulsar radio emission is gen-
erated at the local frequency of Langmuir oscillations
in the secondary-plasma beam, this frequency can be
estimated as

* = 1.4 × 1010

√
kγ

B12

Pη3
rad/s,

where γ is the Lorentz factor of the secondary plasma
and η is the normalized distance from the star to the
spot where the oscillations are excited. This frequency
turns out to be in the observable range for the multi-
plication factors obtained here.

If the field is dipolar and gamma rays are produced
by the inverse Compton effect, the multiplication fac-
tor increases near the death line; i.e., the generation
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of secondary plasma becomes more efficient. As a
result, more efficient radio emission by pulsars should
be expected near the death line. In the case of an
asymmetric magnetic field, the generation of radio
emission is possible beyond the tube of open field
lines.
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