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We have studied phonon and thermodynamic properties of a body-centered cubic (bcc) Coulomb

crystal of ions with weakly polarized electron background in a uniform magnetic field B. At B¼ 0,

the difference between phonon moments calculated using the Thomas-Fermi (TF) and random

phase approximations is always less than 1% and for description of phonon properties of a crystal,

TF formalism was used. This formalism was successfully applied to investigate thermodynamic

properties of magnetized Coulomb crystals. It was shown that the influence of the polarization of

the electron background is significant only at jTFa > 0:1 and T � Tpð1þ h2Þ�1=2
, where jTF is the

Thomas-Fermi wavenumber, a is the ion sphere radius, Tp � �hxp is the ion plasma temperature,

h � xB=xp, xB is the ion cyclotron frequency, and xp is the ion plasma frequency. Published by
AIP Publishing. https://doi.org/10.1063/1.5031758

I. INTRODUCTION

A system of point charged particles (ions, electrons,

grains of dust) arranged in a lattice and immersed into a

charge-neutralizing background is called a Coulomb crystal.

This model is in use in the theory of dusty plasma (e.g.,

Fortov et al.1), in solid state physics (e.g., Born and Huang2),

and in the theory of degenerate stars. The last application is

of the greatest interest for us. The matter in neutron star

crusts and cores of old white dwarf consists of fully ionized

atoms and degenerate electrons. It could be successfully

described as a Coulomb crystal of ions (e.g., Haensel et al.3

and Shapiro and Teukolsky4).

For many practical purposes, it is a good approximation

to consider the electron background in the Coulomb crystal

as constant and uniform. However, for more precise calcula-

tions, the effect of electron charge screening should be taken

into account, especially at low densities (e.g., Baiko5).

In the present paper, we consider the influence of the

electron background polarizability on the Coulomb crystals

of ions in magnetic fields. This investigation could be impor-

tant for understanding properties of magnetars, neutron stars

with an extremely high magnetic field (up to 1015 G on the

surface). Previously, magnetized Coulomb crystals with uni-

form electron background were extensively studied (e.g.,

Baiko,6 Baiko and Yakovlev,7 Nagai and Fukuyama,8,9 Usov

et al.10). Coulomb crystals with polarizable electron back-

ground in a uniform magnetic field were discussed, for the

first time, in our recent paper (Baiko and Kozhberov11),

where their phonon properties were described. In the present

paper, we calculate phonon frequency moments and analyze

thermodynamic properties of such systems.

II. COULOMB CRYSTALS WITHOUT MAGNETIC FIELD

The electron charge screening could be described by a

dielectric function. We assume that ion motion is slow, while

the electron density response to this motion is instantaneous.

This assumption allows us to use the static longitudinal

dielectric function �(q), where q is the length of a

wavevector.

First, consider a Coulomb crystal without magnetic

field. The dielectric function of nonmagnetized degenerate

relativistic electron gas based on the random-phase approxi-

mation was obtained by Jancovici12 [random phase approxi-

mations (RPA) approach]
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where cr �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

r

p
; xr � pF=ðmecÞ is the electron relativity

parameter, yr ¼ q=ð2pFÞ; jTF �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2@ne=@le

p
is the

Thomas-Fermi wave number, e, me, ne¼Zn, and le are the

electron charge modulus, mass, number density, and chemical

potential, respectively, pF is the electron Fermi momentum, and

n and Z are the number density and charge number of ions.

For a strongly degenerate electron gas, �ðqÞ could be

considered as a function of q and two independent parame-

ters of the system

jTFa � 0:185Z1=3 ð1þ x2
r Þ

1=4

x
1=2
r

(2)

and Z or xr � 1:00884ðq6Z=AÞ1=3
, where A is the mass num-

ber of ions, a � ð4pn=3Þ�1=3
is the ion sphere radius, and

q6 � q=106 g cm�3.

In the long-wavelength limit (q� pF), the dielectric

function reduces to the well-known Thomas-Fermi form (TF

approach)a)Electronic mail: kozhberov@gmail.com
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�ðqÞ ¼ 1þ j2
TF

q2
: (3)

In this case, �ðqÞ could be considered as a function of q and

jTFa. If the electrons are fully degenerate, Eqs. (1) and (3) are

valid if the polarization of the electron background is weak

jTFa � 1. In the ultrarelativistic limit jTFa � 0:185Z1=3. jTFa
decreases with increasing q; hence, the value jTFa ¼ 0:185Z1=3

should be considered as a lower limit. For fully ionized iron
56Fe, it is equal to 0.548. Furthermore, for 56Fe ions, jTF a¼ 1

at q � 6.6� 104 g cm�3.

It is also interesting to note that our model of the

Coulomb crystal of ions with polarized electron background

is similar to the strongly coupled Yukawa system which was

described in Hamaguchi and Farouki13 with only one differ-

ence. In our model, electrons are strongly degenerated, while

in Hamaguchi and Farouki13 the background is nondegener-

ate gas of ions and electrons.

In the absence of the magnetic field, ion equation of

motion in the crystal can be written as (e.g., Baiko and

Kozhberov11)

x2
k�Aka ¼ DabðkÞAkb; (4)

DabðkÞ ¼
x2

p

ð2pÞ3n

@2

@Xa@Xb

X
I 6¼0

1� e�ik�RIð Þ

�
ð

dq

q2�ðqÞ e
iq�ðRI�XÞ

����
X¼0

; (5)

where xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnZ2e2=M

p
is the ion plasma frequency, M is

the ion mass, and Ak ¼
P

I uIe
�ik�RI . Dynamic matrix DabðkÞ

is determined by the quadratic term in the expansion of the

potential energy in a series over powers of ion displacements

uI about the equilibrium positions RI. Equation (5) is appro-

priate for any �ðqÞ and any lattice with one ion in the elemen-

tary cell (like the body-centered cubic lattice).

The phonon spectrum of the body-centered cubic (bcc)

lattice consists of three modes (index � ¼ 1…3). For non-

magnetized crystals, it was studied in Baiko5 where it

was shown that modes appear to be virtually the same

in the RPA and TF approaches for all wave vectors k. In

other words, xk� is virtually independent of xr. This state-

ment could be illustrated by phonon frequency moments:

u1 � hxk�=xpi and u�1 � hxp=xk�i, where h…i denotes

the averaging over all modes in the first Brillouin zone of

the lattice

hfk�i ¼
ð2pÞ3n

3

X3

�¼1

ð
dkfk�: (6)

Moments of the bcc lattice at jTFa ¼ 0:5 are presented

in Table I. For both cases, we use the same integration grid.

One can see that the dependence of u1 and u�1 on xr is weak

and non-monotonic. Note that the electrostatic energy has

the same non-monotonic behavior.5 The difference between

RPA and TF approaches is small and does not exceed 1%,

but it could not be always neglected. The first moment deter-

mines the energy of zero-point vibrations E0 � 1:5N�hxpu1.

For the face-centered cubic (fcc) lattice, u1 ¼ 0:4871003 at

jTFa ¼ 0:5 in the TF case. So, the difference between u1 of

the bcc and fcc lattices in the TF approach is also �1%.

Hence, if we would like to calculate which lattice has the

smallest total free energy, we should use the RPA formalism

for a more accurate result.15

On the other hand, the TF approach makes possible to

calculate the phonon and thermodynamic properties of the

Coulomb crystal with an error of the order of 1% in compari-

son with the more accurate method. This accuracy is suffi-

cient to describe the neutron star and white dwarf envelopes.

III. COULOMB CRYSTALS IN MAGNETIC FIELD

Consider a Coulomb crystal with polarizable electron

background in the uniform magnetic field B � nB, where n
is the unit vector in the direction of the field. The general for-

mulae for the dielectric function of a degenerate magnetized

relativistic electron gas based on the random-phase approxi-

mation have a rather cumbersome form.14 In accordance

with Sec. II, we restrict ourselves to the TF approach:

�ðqÞ ¼ 1þ j2
TF=q2. In the presence of the magnetic field and

at T¼ 0, the Thomas-Fermi wave number is equal3

j2
TF ¼

2Be3le

pc2�h2

Xlmax

l¼0

2� dl;0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

e � ðmec2Þ2 � 2�hceBl
q ; (7)

where l is the Landau level number. jTF oscillate around its

value obtained neglecting the magnetic field [Eq. (2)]. The

anomalous magnetic moment of electrons is ignored.

Ion oscillation equations for crystals in the uniform

magnetic field could be rewritten as11

DabðkÞAkb � X2
k�Aka � iXk�xBeabcnbAkc ¼ 0; (8)

where xB ¼ ZeB=ðMcÞ is the ion cyclotron frequency and

eabc is the Levi-Civita symbol. The dynamic matrix DabðkÞ is

the same as in Eq. (5). The ion vibration frequencies Xk�

depend on k, jTF, B, and n.

It is thought that the magnetic field in the crystal is

directed with respect to the crystallographic axes in such a

way that the zero-point energy is minimized.10 In the bcc lat-

tice with rigid electron background, E0 is minimum if mag-

netic field is directed towards one of the nearest neighbors,6

for example, nmin ¼ ð1; 1; 1Þ=
ffiffiffi
3
p

. The polarization of the

electron background does not change this direction, nmin

stays equal ð1; 1; 1Þ=
ffiffiffi
3
p

at any jTF. At fixed jTF, the

TABLE I. Moments of the phonon spectrum bcc lattice.

xr u1 u�1

TF approach

0.4852393 2.90710

RPA approach

10 0.4864944 2.89936

3 0.4861845 2.90118

1 0.4858736 2.90313

0.3 0.4861221 2.90100

0.1 0.4876263 2.88325
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dependence of u1 on n is weak. The difference between the

minimum and maximum values of u1 does not exceed 1%

similar to the uniform background case.6,15 So we can fix

n ¼ nmin and consider dependence of moments of the pho-

non spectrum and phonon thermodynamic functions only on

jTFa and h � xB=xp ¼ B= c
ffiffiffiffiffiffiffiffi
4pq
p� �

� 0:941B15=
ffiffiffiffiffi
q8

p
,

where B15 ¼ B=1015 Gauss and q8 ¼ q=108 g cm�3. Hence

in magnetars with internal crustal magnetic field 1015 G

h> 1 at q�8:85� 107 g cm�3.

In Fig. 1, we plot the dependence of u1ðjTFa; hÞ on h for

different jTFa. In the chosen scale, curves for jTFa ¼ 0:1 and

0.0 are indistinguishable. For instance, u1ð0; 0:1Þ ¼ 0:513239

and u1ð0:1; 0:1Þ ¼ 0:512234. At h� 1, the magnetic field

could be neglected and all moments tend to constant. This limit

was studied in Baiko.5 The influence of the electron charge

screening on u1 decreases with an increase in the magnetic

field. At h	 1, the main contribution to the first moment

comes from the highest cyclotron mode Xk3 which does not

depend on jTFa. Hence, u1ðjTFa; hÞ � h=3 at h	 1.

Ratio u�1ðjTFa; hÞ=u�1ð0; 0Þ is shown in Fig. 1 for

jTFa ¼ 1 and jTFa ¼ 0, where u�1ð0; 0Þ ¼ 2:79853. The

lowest mode of the bcc lattice spectrum Xk1 / 1=h near the

center of the first Brillouin zone but it also has a compli-

cated11 dependence on jTFa. Hence, at h	 1, the moment

u�1ðjTFa; hÞ depends on h and jTFa, and for u�1ðjTFa; hÞ,
polarization effects are important at any h.

IV. THERMODYNAMIC FUNCTIONS OF COULOMB
CRYSTALS IN MAGNETIC FIELD

Among all thermodynamic functions of Coulomb crystals

with polarized electron background in magnetic field, we con-

sider the phonon heat capacity Cðt; h; jTFaÞ ¼ 3Nhw2=
ð4sinh2ðw=2ÞÞi and the Helmholtz free energy Fðt; h; jTFaÞ
¼ 3NTh ln ð1� e�wÞi, where w � �hXk�=T; t � T=Tp, and

Tp � �hxp.

Polarization of the electron background tends to increase

the heat capacity but at jTFa ¼ 0:1 ratio Cðt; h; 0:1Þ=
Cðt; h; 0Þ lays between 1 and 1.0055 at any t and h. Thus, at

such small jTFa, the polarization effects on the thermody-

namic properties could be neglected.

In Fig. 2, dependence of Cðt; h; 1Þ=N on t for different h
is plotted. At h	 1, frequencies in the spectrum differ from

each other by orders of magnitude. Therefore, at t	 1 in the

temperature dependence of the heat capacity, three plateaus

appear: C¼N, C ¼ 2N, and C ¼ 3N, when contributions

come from the lowest mode in the entire Brillouin zone,

from two lowest modes and from all modes, respectively.

Near the center of the first Brillouin zone, the lowest mode

Xk1 / k2=h. This mode makes a major contribution to the

thermodynamic functions at low temperatures. Hence,

Cðt; h; jTFaÞ / ðthÞ3=2
at t� ð1þ h2Þ�1=2

. Dependence of

the phonon spectrum on jTFa is rather complicated and the

behavior of the thermodynamic functions with jTFa cannot

be described so easily.

The effect of the electron charge screening is illustrated

in Fig. 3, where the dependence of Cðt; h; 1Þ=Cðt; h; 0Þ on t
for different h is plotted. Polarization of the electron back-

ground significantly changes modes only near the center of

the first Brillouin zone. That is why Cðt; h; 1Þ=Cðt; h; 0Þ
becomes noticeably greater than 1 only at low temperatures.

The magnetic field reduces the effect of the polarization on

the heat capacity. The influence of the polarization shifts to

the lower temperatures with increasing h. At t
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2
p

� 1:4
� 10�2 ratio Cðt; h; 1Þ=Cðt; h; 0Þ reaches maximum. For

example, at h¼ 1, it is equal to 1.61. At t� ð1þ h2Þ�1=2

Cðt; h; 1Þ=Cðt; h; 0Þ � 1:54 at any h	 0.

The relative difference between the thermal contribu-

tions to the free energy of different jTFa and jTFa ¼ 0 is

plotted in Fig. 4. At t� 1 ratio, Fðt; 1; jTFaÞ=Fðt; 1; 0Þ does

not depend on temperature. At low temperatures and

jTFa� 1, it is roughly sufficient to write that

Fðt; 1; jTFaÞ=Fðt; 1; 0Þ � 1 / ðjTFaÞ2. At t � 0:016 ratio,

Fðt; 1; jTFaÞ=Fðt; 1; 0Þ reaches a rather weak maximum. For

example, Fð0:016; 1; 0:5Þ=Fð0:016; 1; 0Þ � 1:1279, while at

FIG. 1. Dependence of u1ðjTFa; hÞ and u�1ðjTFa; hÞ on h for different jTFa. FIG. 2. Dependence of Cðt; h; 1Þ=N on t for different h.
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t! 0 Fðt; 1; 0:5Þ=Fðt; 1; 0Þ � 1:1198. At high temperatures,

Fðt; h; jTFaÞ does not depend on h according to the Bohr van

Leeuwen theorem.

As shown in Kozhberov15 at jTFa ¼ 0, the thermal con-

tribution to the total Helmholtz free energy is important only

at t=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2
p

	 0:01. A similar situation takes place at

jTFa > 0. For instance, at jTFa ¼ 1 and h¼ 1, thermal con-

tribution to the total Helmholtz free energy is noticeable

only at t � 0:02.

Thus, the polarization of the electron background leads

to an increase in the heat capacity of the magnetized neutron

star crust but only at low temperatures. At the same time,

this polarization can make a noticeable contribution to the

total free energy of the crystal at t=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h2
p

	 0:01 and

jTFa 
 1.

V. CONCLUSIONS

It was shown that the difference between phonon fre-

quency moments of a Coulomb crystal without magnetic

field calculated using the Thomas-Fermi and random phase

approximations is less than 1%. This difference could not be

neglected when the total energies of different lattices are

compared but usually such a small difference is not impor-

tant for investigations.

The Thomas-Fermi formalism has been used to study

phonon moments and thermodynamic functions of magne-

tized Coulomb crystals of ions with polarizable electron

background. For u�1, influence of the polarization of the

electron background is important at any h, but u1 does not

depend on jTFa at h	 1. Polarization of the electron

background tends to increase the heat capacity at low tem-

peratures t� ð1þ h2Þ�1=2
but even at jTFa ¼ 1 the ratio

Cðt; h; 1Þ=Cðt; h; 0Þ is always less than 1.63.

These results could be used for realistic calculations of

the thermal evolution of neutron star crusts and white dwarf

cores.

ACKNOWLEDGMENTS

The author is deeply grateful to D. A. Baiko and D. G.

Yakovlev for discussions. This work was supported by

Russian Science Foundation Grant No. 14-12-00316.

1V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E.

Morfill, Phys. Rep. 421, 1 (2005).
2M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon

Press, Oxford, 1954).
3P. Haensel, A. Y. Potekhin, and D. G. Yakovlev, Neutron Stars 1:
Equation of State and Structure (Springer, New York, 2007).

4S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and
Neutron Stars (Wiley-Interscience, New York, 1983).

5D. A. Baiko, Phys. Rev. E 66, 056405 (2002).
6D. A. Baiko, Phys. Rev. E 80, 046405 (2009).
7D. A. Baiko and D. G. Yakovlev, Mon. Not. R. Astron. Soc. 433, 2018

(2013).
8T. Nagai and H. Fukuyama, J. Phys. Soc. Jpn. 51, 3431 (1982).
9T. Nagai and H. Fukuyama, J. Phys. Soc. Jpn. 52, 44 (1983).

10N. A. Usov, Y. B. Grebenschikov, and F. R. Ulinich, JETP 51, 148 (1980).
11D. A. Baiko and A. A. Kozhberov, Phys. Plasmas 24, 112704 (2017).
12B. Jancovici, Nuovo Cimento 25, 428 (1962).
13S. Hamaguchi and R. T. Farouki, J. Chem. Phys. 101, 9876 (1994).
14G. I. Svetozarova and V. N. Tsytovich, Izv. VUZov Radiofiz. 5, 658

(1962).
15A. A. Kozhberov, Astrophys. Space Sci. 361, 256 (2016).

FIG. 4. Dependence of Fðt; 1; jTFaÞ=Fðt; 1; 0Þ � 1 on t for different jTFa.FIG. 3. Dependence of Cðt; h; 1Þ=Cðt; h; 0Þ on t for different h.

062706-4 A. A. Kozhberov Phys. Plasmas 25, 062706 (2018)

https://doi.org/10.1016/j.physrep.2005.08.007
https://doi.org/10.1103/PhysRevE.66.056405
https://doi.org/10.1103/PhysRevE.80.046405
https://doi.org/10.1093/mnras/stt869
https://doi.org/10.1143/JPSJ.51.3431
https://doi.org/10.1143/JPSJ.52.44
https://doi.org/10.1063/1.4998008
https://doi.org/10.1007/BF02731458
https://doi.org/10.1063/1.467954
https://doi.org/10.1007/s10509-016-2845-6

	s1
	s2
	d1
	d2
	d3
	l
	n1
	d4
	d5
	d6
	s3
	d7
	d8
	t1
	s4
	f1
	f2
	s5
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	f4
	f3

