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Abstract
We calculate the electrostatic properties of more than 20 different Coulomb
crystals and study their resistance to small oscillations of the ions around their
equilibrium positions (phonon oscillations). We discuss the stability of multi-
component crystals against separation into set of one-component lattices and for
some cases, the influence of energy of the zero-point vibrations. It is confirmed
that the body-centred cubic (bcc) lattice possesses the lowest electrostatic energy
among all one-component (one type of ion in the elementary cell) crystals. For
systems composed of two types of ions (their charge and density numbers are
Z1, n1 and Z2, n2, respectively) and for n1 = n2, it is found that the formation of
a binary bcc lattice is possible at 1/2.4229<𝛼 < 2.4229, where 𝛼 ≡Z2/Z1. Under
the same conditions, the NaCl lattice forms at 𝛼 > 5.197 and 𝛼 < 0.192. While
for n2 = 2n1, the MgB2 lattice is found be stable at 0.1<𝛼 < 0.32. For multicom-
ponent lattices with hexagonal structure (binary hexagonal close-packed, MgB2

and some others lattices), it is shown that their properties depend on the distance
between hexagonal layers and this distance changes with 𝛼.
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1 INTRODUCTION

A Coulomb crystal is a system of point-like charges (hereafter, ions) arranged in a crystal lattice and immersed into a
neutralizing background of opposite charges (hereafter, electrons), which in turn is usually considered as uniform. This
model is in use in various branches of physics, including solid state theory and theory of dusty plasmas,1–3 but the greatest
advancement it achieves in the theory of degenerate stars, where Coulomb crystals help to describe the neutron stars
crust and envelopes of old white dwarfs.4,5

In this paper, we study various Coulomb crystals, which differ in the type of crystal lattice and in composition. Crys-
tals in which all ions have the same charge Ze, we call one-component, binary crystals have two different ions in the
elementary cell, while crystals with three different ions are called three-component. The type of lattice that is formed
in the current situation is determined by the minimum of electrostatic energy (it is also called a Madelung energy). It is
known that the body-centred cubic (bcc) lattice has the lowest electrostatic energy6–10 while for multicomponent lattices,
complex analysis is mainly absent.

In the context of the neutron stars crust theory, which is the main point of our interest, multi-component crystals, both
in the Coulomb approximation and in a more detailed approach, were investigated in several works. Crystal structures
of He-C-O, C-O-Ne, and C-O-Fe mixtures were examined in Ref.11 where it was shown that multicomponent crystals
can form between layers of one-component bcc crystals. A similar result was obtained in Ref.12 where the issue of the
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formation of multicomponent crystals in the outer crust of a cold nonaccreting neutron star was considered. In Ref.12

possibilities of the formation of multicomponent crystal mixtures in the outer crust of a cold nonaccreting neutron star
were studied. From a comparison of the Gibbs free energies at a fixed pressure and T = 0 (the difference comes from
the electrostatic energy, while the energy of zero-point vibrations and the electron background polarization effect is not
taken into account), it was shown that between the one-component 56Fe and 62Ni layers formation of a binary bcc lattice
of these ions is possible, and the same happens between 80Ni and 124Mo ion layers. For the accreted neutron star crust,
the number of possible compounds with the binary bcc lattice structure is much larger.13

In this paper, we follow the basic ideas of Refs.11,12 We use the analytical expression evaluated in Refs.14,15 to calculate
the electrostatic energies of various lattices, including those that were never studied before. For some lattices, we study
their resistance to small ion oscillations around the equilibrium positions (phonon oscillations) and the stability of multi-
component crystals against separation into a set of one-component lattices. The energy of zero-point vibrations of several
lattices and its effect on the total energy are also briefly discussed.

2 NOTATIONS

Consider a multicomponent Coulomb crystal with Ncell ions in its elementary cell. The potential energy of this crystal is
given by

U = 1
2
∑
lpl′p′

(1 − 𝛿pp′𝛿ll′ )
ZpZp′e2

|rlp − rl′p′ | − ne
∑

lp
∫ dr

Zpe2

|rlp − r| + 1
2

n2
e e2 ∫ ∫

drdr′|r − r′| ,
where ne is the electron number density, the radius vector of p-ion with charge number Zp is equal rlp = Xlp +ulp, ulp
is the ion displacement from its equilibrium position Xlp. The indices p and p′ numerate the ions in the elementary cell
(p = 1, … , Ncell). Hereinafter, the thermodynamic limit is used. This means that the number of ions N and the volume
V tend to infinity while the ion number density n is fixed (for mixtures n is the ion number density of all ions). Hence,
sums over l and l′ are extended to infinity.

In a crystal, motions of ions can be considered as small oscillations around the equilibrium positions, and their
potential energy can be expanded in powers of ulp,

U ≈ UM + 1
2
∑
lpl′p′

u𝜇

lpu𝜆
l′p′

𝜕2U
𝜕u𝜇

lp𝜕u𝜆
l′p′ u𝜇

lp,u
𝜆

l′p′
=0

, (1)

where Greek indices 𝜇 and 𝜆 enumerate Cartesian components of the vector, the Madelung (electrostatic) energy UM is
the energy of the crystal when all its ions are fixed at their equilibrium positions. Equilibrium positions of ions are given
by vector Xlp = Rl +𝝌p, where Rl = l1a1 + l2a2 + l3a3 is a lattice vector, l1, l2, l3 are arbitrary integers, vectors a1, a2, a3 are
lattice main translation vectors, 𝝌p is the basis vector of the p-ion in the elementary cell (by construction we always have
𝝌1 = 0, 𝝌p ≠ 0 for p> 1). For a simple cubic (sc) lattice a1 = al(1, 0, 0), a2 = al(0, 1, 0) and a3 = al(0, 0, 1), where al is the
lattice constant.

In Refs.14,15 a practical formula of the Madelung energy of any ordered multicomponent Coulomb crystal was derived:

UM = N
Z2

1e2

a
𝜉,

𝜉 = a
2Ncell

∑
lpp′

ZpZp′

Z2
1

(1 − 𝛿pp′𝛿Rl0)
erfc(AYlpp′ )

Ylpp′
− Aa

Ncell
√
𝜋

∑
p

Z2
p

Z2
1
− 3

8N2
cellA2a2

∑
pp′

ZpZp′

Z2
1

+ 3
2N2

cella2

∑
mpp′

ZpZp′

Z2
1

(1 − 𝛿Gm0)
1

G2
m

exp
[
−

G2
m

4A2 + iGm(𝝌p − 𝝌p′ )
]
. (2)

In this case, Ylpp
′ = Rl +𝝌p −𝝌p

′, erfc(x) is a complementary error function, and a≡ (4𝜋n/3)−1/3 is the ion sphere
radius. Vectors Gm = m1g1 +m2g2 +m3g3 form a reciprocal lattice, where g1, g2, g3 are the main translation vectors of
the reciprocal lattice, and m1, m2, m3 are arbitrary integers. An arbitrary parameter A is chosen so that sums Rl and Gm,



KOZHBEROV 3 of 16

converge equally rapidly. The parameter 𝜉 is called a Madelung constant. It depends only on the type of lattice and charge
numbers of ions.

3 ONE- COMPONENT LATTICES

Madelung constants of one-component (Zp = Z1) lattices were studied in a large number of works.6–10 Usually, authors
restrict themselves to considering sc, bcc, face-centred cubic (fcc), and hexagonal close-packed (hcp) lattices. In 1978,
Foldy calculated the Madelung constant of the diamond lattice.16 In 1991, Zucker did the same for fluorite, perovskite,
and spinel,17 but he made a mistake: 𝜉 for the perovskite lattice was less than −0.9. Although it is known that the elec-
trostatic energy of a Coulomb crystal in the Wigner-Seitz approximation is −0.9(Ze)2/a4 and this is the lower limit for
this energy.18 Therefore, the Madelung constant of any lattice should be greater than −0.9. Zucker's mistake was fixed
in Ref.19

Nowadays the electrostatic energies of eight one-component lattices are known. Most accurate electrostatic energies
of the bcc and fcc lattices were computed in Ref. 20 (12 significant digits versus seven in Ref.8):

𝜉bcc = −0.895929255682, (3)

𝜉fcc = −0.895873615195. (4)

It absolutely agrees with our calculations. Other Madelung constants are known with less accuracy. In the present
work, we recalculated all of them (excluding the spinel lattice, its Madelung constant is −0.849267517).

The Madelung constant of the sc lattice is 𝜉sc = −0.88005944211.14

Fluorite is a mineral form of CaF2. Its crystal lattice can be described as a sc lattice with twelve basis vectors: 𝝌1 = 0,
𝝌2 = 0.5al(1, 1, 0), 𝝌3 = 0.5al(0, 1, 1), 𝝌4 = 0.5al(1, 0, 1), 𝝌5–12 = 0.25al(±1, ±1, ±1). For this lattice, nal

3 = 12 (for any
lattice with cubic symmetry nal

3 = Ncell) and 𝜉CaF2 − 0.86445318436682.
Perovskite is a calcium titanate mineral (CaTiO3). Its crystal lattice can be described as a sc lattice with five basis

vectors:𝝌1 = 0,𝝌2 = 0.5al(1, 0, 0),𝝌3 = 0.5al(0, 1, 0),𝝌4 = 0.5al(0, 0, 1),𝝌5 = 0.5al(1, 1, 1). For a one-component perovskite
lattice 𝜉CaTiO3 = −0.8473240413727. Note that in Ref.21 it was suggested that ions in the inner crust of a neutron star form
one-component perovskite crystals but this statement was not proofed in Refs.11,12 and seems to us is incorrect.

We describe the diamond crystal lattice (diam) as a sc lattice with eight basis vectors: 𝝌1 = 0, 𝝌2 = 0.5al(1, 1, 0),
𝝌3 = 0.5al(0, 1, 1),𝝌4 = 0.5al(1, 0, 1),𝝌5 = 0.25al(1, 1, 1),𝝌6 = 0.25al(−1,−1, 1),𝝌7 = 0.25al(1,−1,−1), and𝝌8 = 0.25al(−1,
1, −1). Madelung constant of the diamond lattice is −0.83542570276483.

The hcp lattice should be discussed in detail. A hcp lattice is a hexagonal lattice (the main translation vectors are used:
a1 = al(1, 0, 0), a2 = 0.5al(1,

√
3, 0), a3 = al(0, 0, h)) with two basis vectors: 𝝌1 = 0 and 𝝌2 = 0.5al(1, 1∕

√
3, h), where h is

the height of the elementary cell. In an ordinary hcp lattice the height is taken to be equal h0 =
√

8∕3 ≈ 1.632993, which
follows from the problem of close-packing of equal spheres. However, the electrostatic energy of the hcp Coulomb lattice
reaches a minimum at h = hmin ≈ 1.635639≠ h0. At such height, 𝜉min

hcp = −0.895838451 in contrast to the traditionally
accepted value 𝜉hcp =−0.895838120459 at h= h0.20 Previous investigations of the minimum of the hcp electrostatic energy
were performed by Nagai and Fukuyama.22 They obtained hmin ≈ 1.633 and suggested that hmin =

√
8∕3. Fortunately, this

distinction is not significant.23

The hcp lattice with arbitrary h we call a “hexagonal packed” (hp) lattice. For h between 1.48 and 1.82 𝜉hp could be
fitted as

𝜉hp = −0.7922842 − 0.1130638h + 0.02212615h2 + 0.00506955h3. (5)

At h≈ 2.727 the hp lattice terns to the terrestrial 𝛼-graphite lattice with the Madelung constant −0.840878927.
Similarly, in the hexagonal (hex) lattice (hcp lattice without 𝝌2) the distance between the hexagonal layers can be

arbitrary. The electrostatic energy of the hex lattice is minimal at h = hhex0 = 0.928, when the Madelung constant is
𝜉hex0 = −0.887321284742. For h = hhex =

√
8∕3, the Madelung constant of the hex lattice is 𝜉hex = −0.77943336427.14

Note that in the current paper, we do not discuss deformed bcc and fcc lattices. It is widely done in Refs.24,25 where it
was found that no deformation can bring the bcc lattice to a state with a lower electrostatic energy. Thus, the bcc Coulomb
lattice has the lowest electrostatic energy among all lattices under consideration.
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It should be mentioned a few words about the effects of the electron background polarization on electrostatic energy.
For the first time in the context of the theory of degenerated stars, they were studied in Ref.26 where the Thomas-Fermi
(TF) linear response formalism and the Jancovici (J) random phase approximation were used to define the dielectric
function.

In Ref.23 it was shown that the model of a Coulomb crystal with a polarized electron background, described by TF for-
malism, is similar to the model of a dusty Yukawa crystal with a nondegenerate background, which was widely discussed
in Refs.27–30 The electrostatic energy in both models is described by the same analytical equation and is as yet calculated
for one-component bcc, fcc, hcp, and MgB2 lattices.23 Note that among these four lattices, the bcc lattice possesses the low-
est electrostatic energy at 𝜅a< 1.065714, while at higher 𝜅a the fcc lattice has the lowest UM, where 𝜅 ≡ √

4𝜋e2𝜕ne∕𝜕𝜇e
is the screening parameter, 𝜇e is the electron chemical potential.

The Jancovici formalism for studying electrostatic energy was used only once in Ref.26 where the bcc and fcc lattices
were considered. Results for the hcp lattice are partly presented in Ref.25 and will be published later. The electrostatic
properties of binary and multicomponent lattices have never been studied.

The magnetic field does not effect directly to the electrostatic energy of Coulomb crystals but it changes the phonon
spectrum and the screening parameter 𝜅a.31

4 BINARY- COMPONENT LATTICES

Multicomponent lattices were investigated in a limited number of works. In Refs.32,33 electrostatic energies were com-
puted using the Coldwell-Horsfall and Maradudin method.8 In Refs.34,35 binary-ionic mixtures were studied by Monte
Carlo simulations. In Ref.12 the Madelung constants of eight binary and one three-component lattices were obtained
from limiting cases when a multicomponent lattice becomes a one-component one. Previously, Equation (2) was used
in Refs.14,15 for binary body-centred and hcp lattices (with h = h0). In the current paper, we use this equation for other
lattices.

A binary body-centred lattice could be described as a sc lattice with two basis vectors. The basis vector 𝝌1 = 0 corre-
sponds to an ion with a charge number Z1, while the basis vector 𝝌2 = 0.5al(1, 1, 1) corresponds to an ion with a charge
number Z2 (the Cartesian coordinate system coincides with the lattice cube edges). We call this lattice an sc2 lattice, while
in some papers11,34 it is marked as a CsCl lattice. The electrostatic energy of the sc2 lattice is

UM = N
Z2

1e2

a
𝜉sc2 = N

Z2
1e2

a

[
1 + 𝛼2

24∕3 𝜉1 + 𝛼

(
𝜉2 −

𝜉1

21∕3

)]
, (6)

where 𝜉1 and 𝜉2 are the Madelung constants of the sc and bcc lattices, respectively (𝜉1 = 𝜉sc, 𝜉2 = 𝜉bcc), 𝛼 ≡Z2/Z1. The
number density of ions with Z1 (n1) is equal to the number density of ions with Z2 (n2), and the sc2 lattice stays the same
under ion interchange (Z1 ↔Z2 or 𝛼↔ 1/𝛼). Hence, we can numerate the ions such that Z2 ≥Z1 and consider 𝛼 ≥ 1.

As it was done in Ref.12 Equation (6) can be obtained from limiting cases when Z2 = Z1 and Z1 = 0.15 The electrostatic
energy of the sc2 lattice was also studied in Refs.32,33 analytically, and their results are consistent with our data. The
results obtained in Refs.12,34,35 for the sc2 lattice are discussed later in the context of the linear mixing rule applicability
in Section 8.

The binary face-centred cubic lattice (fccb) is an example of a lattice in which the number density of ions with Z2 is
three times larger than the number density of ions with Z1 (n2 = 3n1). It is convenient to describe a fccb lattice as a simple
lattice with the basis vectors 𝝌1 = 0, 𝝌2 = 0.5al(1, 1, 0), 𝝌3 = 0.5al(0, 1, 1), and 𝝌4 = 0.5al(1, 0, 1). Thus, in this lattice, ions
with a charge number Z1 are located at the sites of the lattice cube and ions with a charge number Z2 are in the centres
of the faces. The electrostatic energy of a binary fcc lattice is

UM = −N
Z2

1e2

a
𝜉fccb = −N

Z2
1e2

a
(0.138600677 + 0.1707354535𝛼 + 0.5865374846𝛼2). (7)

For the first time it was calculated in Ref.33 here it is presented with greater accuracy.
As it is known the bcc lattice is

√
2 times stretched along one of the elementary cell cube edges (for the chosen

coordinate system in the current paper) and becomes the fcc lattice and vice versa. Hence, it is instructive to consider
the electrostatic properties of a binary face-centred orthorhombic (fcob) lattice. The elementary cell of the fcob lattice is
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F I G U R E 1 Electrostatic energy of the face-centred
orthorhombic lattice at c2 = c1

a rectangular prism with edges al, bl, and cl, while its Madelung energy is

UM = N
Z2

1e2

a
𝜉fcob(𝛼, c1, c2), (8)

where c1 ≡ bl/al and c2 ≡ cl/al. For arbitrary c1 and c2 𝜉fcob(𝛼, c1, c2) is not fitted, at small |c1–1| and |c2–1| it could be
obtained from the elastic moduli.36 For any fixed 𝛼 in consideration the minimal value of 𝜉fcob(𝛼, c1, c2) always achieves
at c2 = c1, but it is not necessary that this happens at c1 = 1. For c2 = c1 and for some values of 𝛼 𝜉fcob(𝛼, c1, c2)− 𝜉fccb is
plotted in Figure 1, where 𝜉fccb = 𝜉fcob(𝛼, 1, 1).

For any 𝛼 and c1 = c2 = 1 the function 𝜉fco(𝛼, c1, c2) has a local minimum; therefore, the binary fcc lattice is stable
with respect to small stretches.1 But only at |𝛼 − 1 | ≳ 0.1 the fccb lattice possesses the minimal energy among all binary
face-centred orthorhombic lattices. The case 𝛼 = 1 was widely discussed in Ref.24 𝜉fcob(1,

√
2,
√

2) corresponds to the
Madelung constant of the bcc lattice and 𝜉bcc <𝜉fcc. Figure 1 shows that for |𝛼 − 1 | ≲ 0.1 minimum Madelung energy has
a lattice with c1 ≈ 1.4. For example, at 𝛼 = 1.1 the minimum value is equal 𝜉fcob(𝛼, 1.40094, 1.40094) = −1.036128545. The
structure of this lattice is more similar to the bcc lattice if the difference in charges is neglected (the fccb and sc2 lattices
cannot be compared directly). Therefore, it seems to us that any binary systems with small difference between Z1 and Z2
will form the bcc-like lattice.

The binary body-centred orthorhombic and other deformed sc2 lattices were studied in Ref.36 Instead of the fccb
lattice, the deformed sc2 lattice has the global minimum of energy at its cubic configuration at any fixed Z1 and Z2.

One of the famous binary lattices which belongs to the cubic symmetry group is a NaCl lattice. In this lattice, some
ions (charge number Z1) form a fcc lattice, while others ions (charge number Z2) form a similar fcc lattice, but shifted by
the vector 0.5al(1, 1, 1) relatively to the first lattice (therefore, n1 = n2). At Z1 = Z2, the NaCl lattice becomes a sc lattice.
For an arbitrary 𝛼, the electrostatic energy of the NaCl lattice is

UM = −N
Z2

1e2

a
(0.3555276798(1 + 𝛼2) + 0.1690040825𝛼), (9)

which is consistent with results obtained in Refs.12,32 Only at 1/4.3<𝛼 < 4.3, the Madelung energy of the sc2 lattice is less
than the NaCl lattice energy.

One of the polymorphic modifications of silicon dioxide is called a 𝛽-cristobalite. Its lattice can be described as a sc
lattice with 24 basis vectors. If we set n2 = 2n1 (in the elementary cell Si-like ions are marked as ions with the charge
number Z1), the Madelung energy of cristobalite could be written as

UM = −N
Z2

1e2

a
(
0.1930839433 − 0.1014330353𝛼 + 0.43098544745𝛼2) . (10)
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T A B L E 1 Approximation parameters for the electrostatic energy of the h2 lattice

m0 m1 m2 m3 m4 m5

K1(h) −0.16189364 −0.5579413 0.5939561 −0.3011056 0.08557277 −0.01011867

K2(h) −0.5115757 1.0714258 −1.1718758 0.56326835 −0.14312075 0.0150406

𝜶 hh20 𝝃h20

1.2 1.6 −1.0874421492

1.5 1.47435 −1.4230969646

2 1.2586 −2.1200861237

T A B L E 2 h2 lattice: values of hh20 and 𝜉h20(𝛼) for several 𝛼

The cristobalite lattice labelled as 𝜃-lattice was considered in Ref.11 as one of the possible crystalline configurations of
the neon-carbon mixture. However, in Ref.11 the screened Coulomb potential was used to describe this and other lattices,
which does not allow making an accurate comparison with our calculations. In addition, the electrostatic energy values
are not specified in Ref.11 At Z1 =Z2, the Madelung constant of cristobalite is equal−0.522636355. For the one-component
lattices, this value is the highest.

The sc2 lattice retains cubic symmetry at any 𝛼 and this cubic configuration corresponds to the minimum energy
(see Ref.25 for details). For binary hexagonal lattices, the situation is more complicated. As in the one-component case,
a binary hcp (h2) lattice could be described as a hexagonal lattice with two basis vectors. Vector 𝝌1 = 0 corresponds to
an ion with a charge number Z1, while the vector 𝝌2 = 0.5al(1, 1∕

√
3, h) corresponds to an ion with charge number Z2.

The number densities of ions of different types are equal (n1 = n2). The parameter h is not fixed and for h ∈ (1.1;1.8) the
electrostatic energy of the h2 lattice could be fitted as

UM = N
Z2

1e2

a
𝜉h2(h) = N

Z2
1e2

a
(K1(h)(1 + 𝛼2) + K2(h)𝛼), (11)

K1,2(h) =
5∑

i=0
mihi, (12)

where the approximation parameters mi are presented in Table 1.
For any fixed 𝛼, the electrostatic energy of the h2 lattice reaches its minimum at some h = hh20 and hh20 decreases

when the relative difference between the ion charges increases. This is illustrated in the Table 2, where the values of hh20
and 𝜉h20 ≡ 𝜉h2(hh20) for several 𝛼 are shown. For any 𝛼 in consideration, 𝜉h20 >𝜉sc2.

For the h2 lattice with fixed h =
√

8∕3 the electrostatic energy could be written by Equation (6), where 𝜉1 and 𝜉2 are
Madelung constants of the hex and hcp lattices, respectively (𝜉1 = 𝜉hex, 𝜉2 = 𝜉hcp). This equation was previously obtained
in Refs.12,33

A more complex structure has a magnesium diboride (MgB2) lattice. Previously, this lattice was considered in Ref.11

where it was called a 𝛾-lattice. The MgB2 lattice can be described as a hexagonal lattice with the main translation vectors:
a1 = al(1, 0, 0), a2 = 0.5al(1,

√
3, 0), a3 = al(0, 0, h̃) and with three basis vectors: 𝝌1 = 0, 𝝌2 = 0.5al(1, 1∕

√
3, h̃) and 𝝌3 =

al(1, 1∕
√

3, 0.5h̃). The vector𝝌1 corresponds to an ion with a charge number Z1. The number density of such ions n1 is two
times lower than the number density of ions with a charge number Z2 (n2, vectors 𝝌2 and 𝝌3). The distance between the
layers of ions with the same charge number in units of al is denoted as h̃. It is not fixed (for a crystal in terrestrial conditions
h̃ ≈ 1.142). Therefore, the electrostatic energy of a binary MgB2 crystal for 0.5 ≤ h̃ ≤ 1.85 could be approximated as:

UM = N
Z2

1e2

a
𝜉MgB2

(h̃) = N
Z2

1e2

a
(K1(h̃) + K2(h̃)𝛼 + K3(h̃)𝛼2), (13)

K1,2,3(h̃) =
7∑

i=0
mih̃i, (14)

where parameters K1(h̃), K2(h̃), and K3(h̃) are presented in Table 3.
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T A B L E 3 Approximation parameters for the electrostatic energy of the MgB2 lattice

m0 m1 m2 m3 m4 m5 m6 m7

K1(h̃) 0.383321 3.09006 7.21763 −9.63175 7.80169 −3.7803 1.00879 −0.114044

K2(h̃) −0.677904 1.87234 −3.26584 3.70539 −2.97767 1.51651 −0.430256 0.0514738

K3(h̃) 0.381939 −4.85327 11.5234 −15.4381 12.646 −6.19333 1.66776 −0.189958

T A B L E 4 MgB2 lattice: values of h̃MgB20 and 𝜉MgB20 for several 𝛼 𝜶 h̃MgB20 𝝃MgB20

0.2 1.028 −0.2641376075

0.4 0.914 −0.3600172447

0.5 0.729 −0.42325073365

0.75 0.619 −0.62771700828

1 0.593936 −0.89450562823

1.25 0.591 −1.22218432727

1.5 0.595 −1.61057883013

1.75 0.601 −2.0597607806

2 0.607 −2.56981540483

We denote the height of the MgB2 lattice, at which the minimum value of 𝜉MgB2
(h̃) reaches, as h̃MgB20 and mark

𝜉MgB20 ≡ 𝜉MgB2
(h̃MgB20). From Table 4, it can be seen that the dependence h̃MgB20 does not change monotonically with 𝛼

(see Figure 7). At Z1 = Z2, the Madelung constant of magnesium diboride is equal to −0.89450562823. This is more than
the Madelung constant of bcc, fcc, and hcp lattices, but less than others.

5 MULTICOMPONENT LATTICES

Madelung energies of several lattices, which consist of three or four types of ions, are also studied. All of these lattices
were investigated earlier11,12 or are natural generalizations of more special cases.

Electrostatic energy of a three-component perovskite lattice is

UM = −N
Z2

1e2

a
(0.102932376777(Z2

1 + Z2
2)

+ 0.058185774325Z1Z2 + 0.020881575292Z1Z5 + 0.126797403936Z2Z5 + 0.435594534266Z2
5). (15)

For the chosen configuration, the basis vector𝝌1 corresponds to an ion with a charge number Z1, for p = 2, 3, 4 Zp = Z2
and the basis vector 𝝌5 corresponds to an ion with a charge number Z5 (see paragraph 3). Hence n2 = 3n1 = 3n5, where n5
is the number density of ions with Z5. Equation (15) correctly reproduces limiting cases and is consistent with the results
obtained in Ref.12

In the general case, if all symmetries are taken into account, the fluorite lattice can be developed up to a
three-component lattice of some hypothetical compound AB3C8. We use the same basis vectors as for the one-component
case. In the three-component fluorite vector, 𝝌1 corresponds to an ion with a charge number Z1, for p = 2, 3, 4—Zp = Z2,
and Zp = Z5 at p = 5, … , 12. The Madelung energy of the three-component fluorite is

UM = −N e2

a
(0.03203344735Z2

1 + 0.1355607926Z2
2

+ 0.51253515762Z2
5 + 0.03946045054Z1Z2 + 0.03621583406Z1Z5 + 0.10864750219Z2Z5). (16)

Equation (16) correctly reproduces all limiting cases. For instance, at Z5 = 0 this lattice becomes an fccb lattice. The
case of two-component fluorite at Z1 = Z2 is more important because CaF2 form this lattice (it was considered in Ref.12).
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F I G U R E 2 𝜁 -lattice: dependence hZ and 𝜉Z from 𝛼2 and 𝛼4

In a three-component diamond lattice, an ion with a charge number Z1 is located at a lattice site with 𝝌1, ions with
a charge number Z2 are located at lattice sites with 𝝌2–4, and ions with a charge number Z5 are in the rest of the lattice
sites (see paragraph 3), n5 = 4n1 and n2 = 3n1. The electrostatic energy of this lattice is

UM = −N e2

a
(0.05500371513Z2

1 + 0.23276755503Z2
2

+ 0.3555276798Z2
5 + 0.06775640963Z1Z2 + 0.09327775738Z1Z5 + 0.03109258579Z2Z5). (17)

At Z2 = Z1, the number density of ions with a charge number Z5 is equal to the number density of the rest of the ions.
The Madelung energy of such binary diamond at any 𝛼 is greater than UM of the sc2 lattice.

Among all hexagonal lattices, we consider the Madelung energies of two crystals mentioned in Ref.11: the 𝜁 -lattice
(FeOC2) and the 𝜂-lattice (FeO3C2).

The 𝜁 -lattice can be described as a hexagonal lattice (the main translation vectors are the same as for the hcp lattice)
with four basis vectors: the vector 𝝌1 = 0 corresponds to an ion with a charge number Z1; vectors 𝝌2 = 0.5al(1, 1∕

√
3, 0)

and 𝝌3 = al(1, 1∕
√

3, 0) correspond to ions with a charge number Z2, while 𝝌4 = 0.5al(0, 0, h) corresponds to an ion with
a charge number Z4. The lattice does not change under replacement Z4 ↔Z1 so ions are numbered such that Z4 ≥Z1. For
fixed 𝛼2 ≡Z2/Z1 and 𝛼4 ≡Z4/Z1, we choose the elementary sell height h = hZ such that UM is minimal. The Madelung
energy of a 𝜁 -lattice can be presented as

UM = N
Z2

1e2

a
𝜉Z. (18)

The dependence of hZ and 𝜉Z on 𝛼2 and 𝛼4 are shown in Figure 2. For Z4 = Z2 = Z1 the Madelung constant is equal
−0.8242044637442 and hZ ≈ 0.867108.

Similarly the 𝜂-lattice can be described as a hexagonal lattice with six basis vectors: 𝝌1 = 0, 𝝌2 = al(1, 1∕
√

3, 0), 𝝌3 =
0.5al(1, 1∕

√
3, 0),𝝌4 = 0.5al(1, 0, h),𝝌5 = 0.5al(3∕2,

√
3∕2, h), and𝝌6 = 0.5al(5∕2,

√
3∕2, h). They correspond to ions with

charge numbers: Z1, Z2, Z2, Z4, Z4, and Z4, respectively. In this lattice, the nonfixed h is chosen from the condition of
electrostatic energy minimum: h = hET. hET is plotted in left part of Figure 3. The Madelung energy of a 𝜂-lattice can be
written as

UM = N
Z2

1e2

a
𝜉ET. (19)

The dependence of 𝜉ET at h = hET on 𝛼2 and 𝛼4 is shown in right part of Figure 3. For Z4 = Z2 = Z1, the Madelung
constant is 𝜉ET = −0.8721352931537 and hET = 0.95162.
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F I G U R E 3 𝜂-lattice: dependence hET and 𝜉ET from 𝛼2 and 𝛼4

F I G U R E 4 A forth-component Dyson lattice

Totally eight lattices were considered in Ref.11: four were mentioned above (𝜃-, 𝛾-, 𝜁 -, and 𝜂-lattices); one-component
bcc (𝛼-lattice) and sc2 (𝛽-lattice) lattices have already been discussed; the orthorhombic 𝛿-lattice and the tetragonal
𝜖-lattice are not studied in our paper. The investigation of the last two lattices requires consideration of a large number of
unfixed lattice parameters. For instance, the 𝛿 lattice could be presented as a deformed NaCl lattice.

Most cubic lattices can be summarized in a forth-component Dyson lattice.12,32 This lattice is shown in Figure 4: differ-
ent numbers and colours indicate different types of ions. Thus, yellow ions have a charge number Z1, red—Z2, green—Z3,
and blue—Z4, while al is the distance between two nearest Z1 ions. The electrostatic energy of the fourth-component
Dyson lattice calculated using Equation (2) is

UM = −N e2

a
(0.0550037151(Z2

1 + Z2
2) + 0.232767555(Z2

3 + Z2
4) + 0.0310925858Z1Z2

+ 0.0677564096(Z1Z3 + Z2Z4) + 0.0111584348(Z2Z3 + Z1Z4) + 0.115594627Z3Z4). (20)

This equation reproduces the energies of many lattice with an accuracy of 9 significant digits (if the number density
changes are taken into account). For instance, at Z3 = Z4 = 0 this is the energy of the sc2 lattice, while at Z1 = Z3 and
Z2 = Z4—of the NaCl lattice. At Z1 = Z2 and Z3 = Z4 Equation (20) is consistent with the results obtained in Refs.12,32

6 ENERGY OF ZERO-POINT VIBRATIONS

The energy of zero-point vibrations (U0) is not considered in this paper in detail. For the one-component lattice

U0 = 1.5Nℏ⟨𝜔⟩ = 1.5Nℏ𝜔pu1, (21)
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where ⟨𝜔⟩ is the phonon frequency averaged over the first Brillouin zone,𝜔p =
√

4𝜋nZ2e2∕M is the ion plasma frequency,
M is the ion mass, u1 is called a first phonon-spectrum moment. For the bcc lattice ubcc

1 = 0.5113877, and for the hcp
lattice uhcp

1 = 0.513194. For the one-component crystal, the sum of the electrostatic and zero-point energies is

E0 = N Z2e2

a
𝜉 + 1.5Nℏ

√
3Ze

a1.5 u1, (22)

E0

NTp
= Γp𝜉 + 1.5u1, (23)

where Tp = ℏ𝜔p is the ion plasma temperature and Γp ≡ Z2e2∕(aℏ𝜔p) = Ze
√

M(36𝜋n)−1∕6∕ℏ. For typical densities in the
envelopes of neutron stars and white dwarfs, Γp > 10 for the carbon plasma and Γp > 100 for iron. Hence, |𝜉Γp|≫ 1.5u1.
However, for bcc, fcc, and hcp lattices, the difference between the Madelung constants is much smaller than the dif-
ference between the first moments. For example, for bcc and fcc lattices |Δ𝜉| ≈ 0.00005564, while |Δu1|≈ 0.00181 and
|Δ𝜉Γp|≈ |1.5Δu1|. Therefore, in some cases the zero-point energy can play an important role.

Among all one-component lattices with isotropic pressure, the lowest zero-point energy has the bcc lattice and this
lattice has the lowest total sum of energies. As it was shown in Ref.25 in some cases, U0 of the deformed bcc lattice is less
than U0 of the bcc lattice, which, in turn, leads to the fact that at some densities the sum of the electrostatic and zero-point
energies of this deformed bcc lattice becomes smaller than that of the undeformed bcc lattice. On the other hand, the
electrostatic pressure in deformed lattices is not isotropic in the general case, and it is incorrect to compare them with
lattices with isotropic pressure.

The sc2 and h2 (with h = hh20) lattices are best suited to study the influence of the energy of zero-point vibrations on
the total crystal energy of binary crystals. Comparison of such lattices is possible only when their ionic composition is the
same and the hcp lattice has the third lowest electrostatic energy among all one-component lattices. The first moment of
binary lattices depends on two parameters 𝛼 and the ratio between masses of ions in the elementary sell 𝛽 ≡M2/M1. For
the sc2 and h2 lattices, u1(𝛼, 𝛽) was plotted in Refs.15,25 and fitted for sc2 lattice in Ref.25 The difference between sums of
electrostatic and zero-point energies of the sc2 and h2 lattices is

ΔE0 = N
Z2

1e2

a
Δ𝜉(𝛼) + 1.5Nℏ𝜔sΔu1(𝛼, 𝛽). (24)

where Δ𝜉(𝛼)≡ 𝜉sc2 − 𝜉h20, Δu1(𝛼, 𝛽) is the difference between the first moments of these lattices, u1(𝛼, 𝛽)≡ ⟨𝜔/𝜔s⟩, 𝜔s ≡√
𝜋n1Z2

1e2(1 + 𝛼)(1 + 𝛼∕𝛽)∕M1.
For binary crystals, ΔE0 could be considered as a function of Γp1, 𝛼 and 𝛽, where Γp1 ≡ Z2

1e2∕(a1ℏ𝜔p1), 𝜔p1 ≡√
4𝜋n1Z2

1e2∕M1 is the plasma frequency of ions with the charge number Z1 and mass M1, a1 ≡ (4𝜋n1/3)−1/3. Note that the
parameter Γp1 is determined by the first type ions and their number density n1, while the density of the crystal depends
on M1 and 𝛽.

In Figure 5, we show the dependencies of Γp1 corresponding to ΔE0 = 0 on 𝛽 for a fixed 𝛼. For Γp1 lying above
these curves an sc2 lattice (ΔE0 < 0) is more energetically favourable, below—the h2 lattice (ΔE0 > 0). As Γp1 ≳ 10 in the
degenerate stars, the h2 lattice corresponds to exotic compounds and their formation there is unlikely.

In the current paper, we are not going to discuss the phonon thermal properties of Coulomb crystals. For the sc2
lattice, they were widely studied in Ref.15 while the properties of the h2 lattice with h = hh20 are slightly differ from the
properties of the h2 lattice with fixed h =

√
8∕3, which were studied in Ref.15

Is seems that in the envelopes of hot degenerate stars, formation of the sc2 lattice is more likely, and the transition to
the h2 lattice during the cooling of the star is possible only for a small number of ionic mixtures.25

7 PHONON STABILITY

All lattices under consideration must be stable against small ion oscillations around equilibrium positions. The
phonon spectrum of a Coulomb crystal should not possess modes with 𝜔2 < 0 at any wavevector k. The phonon
spectrum could be obtained from the dispersion equation det{D𝜇𝜆

pp′ (k) − 𝜔2𝛿𝜇𝜆𝛿pp′ } = 0, where D𝜇𝜆

pp′ (k) is the dynamic
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F I G U R E 5 Dependence Γp1 from 𝛼 and 𝛽

matrix. In a convenient form, the dynamic matrix of any strongly ordered multicomponent lattice can be found
in Ref.15

The stability of one-component Coulomb lattices was discussed earlier. The bcc and fcc lattices are stable, while the
sc lattice are not. A sc lattice is known to be unstable for a long time. Notice that no direct proof of this statement has
been found in the literature. In a series of Born papers, which is usually referred in this context37 among all considered
potentials was not purely Coulomb. Therefore, for the first time the phonon spectrum of the sc Coulomb lattice was
presented in Ref.25 The hex lattice is unstable too, while the hp lattice is stable at 1.48< h< 1.82.

The stability of deformed bcc and fcc lattices was widely studied in Refs.24,25 where it was shown that the bcc lattice
stretched 1.49 times along one of the elementary cell cube edges (towards the second nearest neighbour), remains sta-
ble. Hence, it is possible to translate the bcc lattice into the fcc lattice by continuous deformation. On the other hand,
compression in the same direction is possible only by 6.5%. The bcc lattice which stretched along its main diagonal (in
the direction of the nearest neighbour) is stable when 0.92< cd1 < 1.13, where cd1 is the ratio of the length of the diag-
onal along the deformation to the length of the undeformed diagonal.24 Stretched along the diagonal of the base of the
elementary cell cube (towards the third nearest neighbour), the bcc lattice is stable when cd3 lies between 0.9 and 1.06,
where cd3 is the similar ratio as in the previous case but for the base diagonal.

In the bcc lattice with a shift, vector al(0, 0, 1) turns to the vector al(cx, cy, 1). The volume of the elementary cell
does not change with this deformation. Instead of electrostatic energy, the stability of a bcc lattice with a shift cannot be
considered as a function of

√
c2

x + c2
y . Noticeable anisotropy is present. At cy = cx lattice loses stability at cx = 0.09, while

at cy = 0 this happens at cx = 0.14 and
√

c2
x + c2

y changes from 0.127 to 0.14.
Thus, the stability of the bcc lattice substantially depends on the direction of deformation. In all cases under consid-

eration, instabilities appear in the centre of the first Brillouin zone in certain wave vector directions. The region of wave
vectors with 𝜔2 < 0 increases with increasing the value of the crystal deformation. The evolution of these regions was
considered in Refs.24

The stability of other one-component Coulomb lattices was not studied in detail. We find that in addition to sc and hex
lattices, simple rhombic and tetragonal, as well as base-centred rhombic and monoclinic lattices are unstable. A shallow
analysis shows that the remaining Bravais lattices (simple monoclinic, triclinic, and rhombohedral) are also unstable in
a wide range of parameters.

The stability of undeformed multicomponent lattices depends on the charge ratio between ions in the elementary
cell and does not depend on their masses. The phonon spectrum of the simplest binary Coulomb lattices was studied in
Refs.14,15 The phonon spectrum analysis implies that the sc2 lattice is unstable at 𝛼 < 3.6 (𝛼 ≥ 1 by definition). Similar limits
1/3.596<𝛼 < 3.596 were recently found (but later than paper14 was published) from molecular dynamics simulations in
Ref.38

The stability of the deformed sc2 lattice can be studied as a function of the direction and magnitude of the deformation,
as well as parameter 𝛼. Among all deformed sc2 lattices, we consider only a binary sc2 lattice stretched along one of the
edges of its elementary cell, c̃1 is the relative stretch in units of al (similarly to the fcob lattice from paragraph 4). The
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F I G U R E 6 The range of values 𝛼 and c̃1 for which the deformed
sc2 lattice is stable

phonon spectrum of this lattice consists of six modes and has the same features as the spectrum of the sc2 lattice. The
range of parameters 𝛼 and c̃1, at which the deformed sc2 lattice is stable, is shown in Figure 6. Each point shows a set
of parameters at which investigations were carried out. When c̃1 changes, the range of 𝛼 changes but it always remains
between 1 and 3.6.

The properties of the h2 lattice with fixed h =
√

8∕3 were studied in Refs.14,15 This lattice is stable at 𝛼 ≤ 1.25. If we
use h = hh20 instead of

√
8∕3, this limit will not noticeably change and the lattice will become unstable at 𝛼 = 1.26.

The phonon spectrum of the fccb lattice, described as a simple lattice with four basis vectors, consists of 12 modes.
It is stable at 0.66≤ 𝛼 ≤ 1.38 (the step over 𝛼 is 0.02). This result is consistent with the restrictions given in Ref.38:
0.661≤ 𝛼 ≤ 1.368.

The phonon spectrum of the MgB2 lattice consists of nine modes (h̃ is not fixed). The one-component MgB2 lattice is
unstable. This lattice becomes stable when the charge of ions with a higher number density is considerably less than the
charge of other ions. The range of 𝛼 and h̃ for the stable MgB2 lattice is shown in Figure 7. It can be seen that 𝛼 does not
exceed 0.375 (the step over 𝛼 is 0.025), and h̃ varies from 0.85 to 1.35 (the step over h̃ is 0.025). Note that for all considered
𝛼, except 𝛼 = 0.375, the dependence h̃MgB20 (see Section 4) lies in the region of lattice stability. In Figure 7, the dependence
h̃MgB20 on 𝛼 is shown by a solid blue line.

The phonon spectrum of a binary NaCl lattice consists of six modes. It is stable at 𝛼 ≥ 3.9. For 𝛼 = 1, this lattice becomes
an unstable sc lattice, and for 𝛼 =∞ it is a stable fcc lattice.

The Dyson binary lattice with Z1 = Z2 and Z3 = Z4 is not stable at 𝛼 ∼ 1. The stability of the four component Dyson
lattices was not studied in detail. It is known that it is stable in limiting cases, for example, at Z3 = Z4 = 0 as a sc2 lattice,
but for Z3 ≠ 0 and/or Z4 ≠ 0 it quickly loses stability. Thus, already at Z2 = Z1, Z3 = 0.025Z1, Z4 = 0.025Z1 complex-valued
frequencies appear. Similarly, at Z2 = Z4 = 0 the Dyson lattice is stable because the binary fcc lattice is stable, but even at
Z2 = 0, Z3 = Z1, Z4 > 0.1Z1 it loses stability.

8 LINEAR MIXING RULE

The second condition for the formation of a stable multicomponent crystal is a resistance to separation into
one-component crystals. The electrostatic energy of a multicomponent crystal should be less than the energy of a set of
one-component bcc lattices calculated via so-called “linear mixture rule”. According to the “linear mixing rule” (lm), the
electrostatic energy of a binary crystal mixture is

U lm
M = N1

Z2
1e2

a1
𝜉bcc + N2

Z2
2e2

a2
𝜉bcc, (25)
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F I G U R E 7 The range of 𝛼 and h̃ for which the MgB2

lattice is stable. The curve is the dependence of h̃MgB20 on 𝛼

where Ni and ni are the number and number density of ions with charge number Zi. The effective ion sphere radius aj
is chosen such that the electron number density in each component of the mixture is equal to the total electron number
density in the entire mixture aj = (4𝜋nj∕3)−1∕3 = a(Zj∕Z)−1∕3, Z ≡ (n1Z1 + n2Z2)∕n is the averaged charge number. We
can use any Madelung constant instead of 𝜉bcc (as it was done in Refs.15,25 where the type of the lattice was the same for
binary and one-component lattices). Here, we choose the bcc lattice because this lattice possesses the lowest electrostatic
energy among all one-component lattices.

Equation (25) could be rewritten as

U lm
M = N

Z2
1e2

a
(n1 + n2𝛼)1∕3

n4∕3 (n1 + n2𝛼
5∕3)𝜉bcc. (26)

In this form, it could be used for any binary lattice. The ratio between the energy of the sc2 lattice and the energy of
two one-component bcc lattices according to lm is

U lm
M

UM
= (1 + 𝛼)1∕3(1 + 𝛼5∕3)𝜉bcc

(1 − 𝛼)2𝜉sc + 24∕3𝛼𝜉bcc
. (27)

The dependence of 10(UM
lm −UM)/UM on 𝛼 for the sc2 lattice is shown in Figure 8. Multiplier 10 is used to show

that the ratio (UM
lm −UM)/UM is an order of magnitude smaller than the relative difference between the energies of

the sc2 and h2 (with h = hh20) lattices, which is shown in Figure 8. For the 16O+ 12C mixture, the relative difference is
UM

lm/UM − 1≈−6.7× 10−5, and in the maximum permissible 𝛼 = 3.6 the maximum value reaches: UM
lm/UM ≈ 1.00094.

Thus, lm allows one to calculate the electrostatic energy of the sc2 lattice with an accuracy of 3–4 significant digits
(depending on 𝛼).

Previously, lm for Madelung energy was investigated in Ref.34 where the relative difference between UM
lm and the

electrostatic energy of a fully ordered sc2 crystal obtained from numerical simulations of a system of 432 ions (Δu) was
calculated.

Δu ≡ U lm
M − UM

NZ2
1e2∕a1

= 0.5(1 + 𝛼2)𝜉sc + 𝛼(21∕3𝜉bcc − 𝜉sc)
(1 + 𝛼)1∕3 − 0.5𝜉bcc(1 + 𝛼5∕3). (28)

As it could be seen from Table 5 these numerical results are in a good agreement with our analytical results obtained
from Equation (27).
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F I G U R E 8 The relative difference between the precise result
and the result obtained via lm for the sc2 lattice

𝜶 𝚫u obtained from Equation (27) 𝚫u from Ref.34

4/3 −0.0000781 −0.00006

5/3 −0.000219 −0.00019

2 −0.000268 −0.00024

3 0.00127 0.00134

4 0.00668 0.00678

T A B L E 5 Values of Δu for the sc2 lattice and several 𝛼

Note that in Ref.34 it was shown that the difference between the electrostatic energy of the binary bcc lattice, in which
(unlike in the sc2 lattice) for fixed 𝛼 and n1 the type of the ion in the lattice site was chosen randomly, and the energy
obtained from the “linear mixing rule” is an order of magnitude greater than in the case under our consideration (strongly
ordered sc2 lattice). Moreover, Δu> 0 for any 𝛼 and n1, which looks strange enough.

U lm
M ≤ UMat 1∕2.4229 < 𝛼 < 2.4229 for the sc2 lattice. The energy of the sc2 crystal is less than the sum of the energies

of two one-component lattices; therefore, the formation of a binary crystal at such 𝛼 and T = 0 is energetically more
favourable. Accordingly, at 𝛼 > 2.4229 and 𝛼 < 1/2.4229 for the sc2 lattice it is more advantageous to decompose it into
two one-component bcc lattices. This range of values was obtained in Ref.32 for the first time.

In Ref.32 in addition to the sc2 lattice stability of the NaCl and two-component Dyson (Z1 = Z2 and Z3 = Z4) lattices
were considered. However, as it was mentioned in the previous paragraph the two-component Dyson lattice is not stable
to phonon oscillations at 𝛼 ∼ 1, while the NaCl crystal lattice will meet both stability criteria at 𝛼 > 5.197.

The approach from Ref.32 was developed in Ref.35,39 for disordered two-component crystals and for AB3 type crystals
(two-component Dyson, fccb, and one more lattice, which is not studied here). For the fccb lattice, the relation UM

lm/UM
is always greater than 1 so it is not stable as well as the h2 lattice with h = hh20, which has never been studied before.
Rough analysis of the MgB2 lattice stability shows that at h̃MgB20 it is stable at 0.1<𝛼 < 0.32.

9 CONCLUSIONS

We summarized all information about the electrostatic energies of different Coulomb crystals both one-component and
multicomponent. If earlier these energies were obtained by various disparate methods, in this work the one univer-
sal equation (Equation 2) was used. Among all one-component crystals, the bcc lattice possesses the lowest energy. Its
Madelung constant is −0.895929255682.

The electrostatic properties of multi-component Coulomb crystals depend not only on the charge numbers and num-
ber densities of the ions from which they are formed but also more important, on the geometry of its crystal lattice. For
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instance, in the h2 lattice the distance between the hexagonal layers, at which the minimum of electrostatic energies
reaches, decreases when the relative difference between the ion charges increases. While at |𝛼 − 1 | ≲ 0.1 (𝛼 = Z2/Z1), the
minimum energy of the fcob lattice does not correspond to a crystal with a cubic summery (the fccb lattice).

For the sc2 and h2 lattice, we calculated the first moment of the phonon spectrum and obtained that for some number
densities and composition of ions the sum of the electrostatic energy and the energy of the zero-point vibrations of the
h2 lattice is less than the same sum for the sc2 lattice. Consequently, the formation of the h2 lattice at such parameters is
more energetically preferable. Unfortunately, these parameters are not typical for the envelopes of degenerate stars.

All lattices must be stable against small oscillations of the ions around their equilibrium positions. We studied stability
of different Coulomb lattices with isotropic electrostatic pressure. It was found that the sc2 lattice is stable at 𝛼 < 3.6, while
the binary NaCl lattice is stable at 𝛼 ≥ 3.9. In addition, for some deformed lattices limits of deformation were obtained.
All previous results were successfully reproduced.

Multicomponent crystals must also be stable against separation into set of one-component lattices. Their energy
should be less than the energy of set of one-component lattices calculated according to the linear mixing rule. It turned
out that the h2 lattice does not satisfy this condition at any 𝛼. For the sc2 lattice 𝛼 must be less than 2.4229.

If we complete all results we can conclude that for binary systems with n1 = n2 for 1/2.4229<𝛼 < 2.4229, ions can
form a sc2 lattice, and for 𝛼 > 5.197 and 𝛼 < 0.192 they can form a binary NaCl lattice; no stable lattices were found in the
rest of the ranges. However, for 0.1<𝛼 < 0.32, the MgB2 lattice is stable (it has n2 = 2n1).
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