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Electrostatic energy, collective modes, and thermodynamic functions of a Coulomb crystal with equal number
of ions of two different types and uniform charge-compensating electron background are studied using harmonic
lattice model. Simple cubic and hexagonal lattices with two different ions in the elementary cell (we denote
these lattices sc2 and h2, respectively) are considered. The static sc2 lattice is more tightly bound than the h2
one at any charge ratio of the constituent ions. The phonon spectra depend on the ion charge and mass ratio.
An analysis shows that these binary Coulomb crystals are stable, if the charge ratio is not too different from 1
(about 3.6 for sc2 and 1.3 for h2 lattices) regardless of the mass ratio. Heat capacity of the sc2 lattice is obtained
by numerical integration over the first Brillouin zone as a function of temperature and charge and mass ratios.
Well known classic and quantum asymptotes of the heat capacity are reproduced, and the dependence of the
coefficient in the Debye T 3 law on charge and mass ratios is presented.
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1 Introduction

The model of point charges (hereafter, ions) immersed into the uniform neutralizing background of opposite
charge is in use in various branches of physics. At sufficiently low temperatures this system is known to crys-
tallize with formation of a so-called Coulomb crystal. Typically, Coulomb crystals with only one ion type are
considered. However, Coulomb crystal mixtures may be important for applications. In astrophysics, Coulomb
crystal mixtures are expected to form in C/O cores of white dwarfs and in accreted envelopes of neutron stars. In
this work we use harmonic lattice model to study main physical properties of binary Coulomb crystal mixtures
composed of an equal number of ions with two different charges and masses. We consider simple cubic lattice
with two different ions in the elementary cell (sc2). This lattice coincides with the body-centered cubic (bcc)
lattice if all ions are the same. We also study phonon modes of the hexagonal lattice with two different ions in
the elementary cell (h2). This lattice coincides with the hexagonal close-packed (hcp) lattice for identical ions.

2 Madelung energy

The position of an ion of type p (p-ion; for a binary mixture p = 1 or 2) in a crystal is given by its radius
vector rlp = Xlp + ulp, where Xlp = Rl + χp is the equilibrium ion position in the crystal, and ulp is the
ion displacement. In this case, Rl is a lattice vector and χp is the so-called basis vector of the p-ion, which
determines equilibrium position of the ion in the lattice elementary cell.

The potential energy of the crystal is given by

U =
1

2

∑′

lpl′p′
ZpZp′Φ(rlp − rl′p′)− ne

∑
lp

Zp

∫
drΦ(rlp − r) +

n2
e

2

∫ ∫
dr dr′ Φ(r− r′) , (1)
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where Φ(r) = e2/r, prime at the first sum means that terms with l = l′ and p = p′ are omitted, Zp is the
charge number of the p-ion, while ne is the electron number density. For binary mixtures considered in this work
ne = 0.5n(Z1 + Z2), where n is the number density of all ions.

If all ions are fixed at their equilibrium positions, rlp = Xlp, Eq. (1) yields the Madelung energy U0. We have
derived rapidly converging expressions for calculating Madelung energy for arbitrary number of ions of different
types in the lattice elementary cell. For binary mixtures in consideration

U0 = N
e2

a

[
Z2
1 + Z2

2

24/3
ζ1 + Z1Z2

(
ζ2 − ζ1

21/3

)]
, (2)

where N is the total number of all ions and a = (4πn/3)−1/3 is the typical length scale. For the sc2 lattice, ζ1
and ζ2 are the Madelung constants of the simple cubic (sc) and bcc lattices, respectively. For the h2 lattice, ζ1
and ζ2 are the Madelung constants of the hexagonal and hcp lattices, respectively. It is clear that in the limits
Z1 = Z2 and Z2 = 0 we reproduce correctly the Madelung energy of respective single ion type crystals.

It is interesting to compare the Madelung energies of sc2 and h2 lattices with the same composition and matter
density. The difference of the Madelung energies is U sc2

0 −Uh2
0 = Ne2Z2

1Δζ/a, where Δζ = 0.07978Z2/Z1−
0.03993(1 + Z2

2/Z
2
1 ). For any ratio Z2/Z1 the sc2 lattice Madelung energy is more negative than that of the h2

lattice. The minimum difference (Δζ = −0.000091) takes place at Z2/Z1 = 0.99886 ≈ 1.

3 Dynamic matrix and collective modes

In the harmonic lattice model the potential energy Eq. (1) is expanded in powers of ion displacements. The
second order term determines the dynamic matrix Dαβ

pp′(k). This is a 3Ncell × 3Ncell matrix, which depends on
the wavevector k from the first Brillouin zone of the reciprocal lattice. In this case, Ncell is the number of ions in
the lattice elementary cell and p and p′ go from 1 to Ncell (Ncell = 2 for sc2 and h2 lattices).

In a stable lattice the eigennumbers of the dynamic matrix at any k are positive and represent squared fre-
quencies of the collective modes (lattice phonons) with the given wavevector. Using Ewald transformations (e.g.,
Ref. [1]), we have derived rapidly converging expressions for dynamic matrix elements for arbitrary number of
ions of different types in the lattice elementary cell. Here we only present the result of the derivation:

Dαβ
pp′(k) =

ZpZp′e2√
MpMp′

V αβ
pp′ +

Zpe
2

Mp
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p δpp′ , (3)

where Greek indices denote Cartesian components, and
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In this case, Yl = Rl + χp − χp′ , Sl = Rl + χp − χp′′ , and A is an arbitrary parameter chosen so that sums
over direct and reciprocal lattice vectors, Rl and Gm, converge equally rapidly (e.g., A = 1/a). It is understood
that all lattice sums must be extended to infinity, whereas sums over p′′ go over all ions in the elementary cell.

The sum of 3Ncell squared eigenfrequencies at any k is equal to the trace of the dynamic matrix Eq. (3).
The latter can be shown to be equal to ω2

sNcell = 4πne2
∑

pp′ ZpZp′/(MpNcell). For our binary mixtures,
ω2
s = πne2(Z1 + Z2)(Z1/M1 + Z2/M2), and the sum of squared frequencies at any k is equal to 2ω2

s . For
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identical ions ωs becomes the regular plasma frequency ωp =
√
4πnZ2e2/M and the sum of squared frequencies

is equal to 2ω2
p. This is the case where we describe a bcc lattice as an sc2 lattice with 6 eigenfrequencies at every

k (see below). If Z2 = 0 the sum of all frequencies will be equal to 2ω2
s = 4π(n/2)Z2

1e
2/M1. In this limit we

get an sc lattice with ion number density of n/2 and three frequencies at every k (the other three frequencies tend
to zero in this limit).

Fig. 1 The primitive subzone of the first Brillouin zone of
the bcc lattice (OBCD) and of the sc2 lattice (OBCE).

Fig. 2 Dispersion curves of the sc2 lattice along OC (Fig.1)
for two values of α.

The primitive subzones OBCE and OBCD of the Brillouin zones of sc2 and bcc lattices, respectively, are
shown in Fig. 1. In this case, O is the origin (k = 0 point). If al is the sc lattice constant (so that na3l = 2) then
kal = (π, 0, 0) for point E, kal = (2π, 0, 0) for point D, kal = (π, π, 0) for point C, and kal = (π, π, π) for
point B. The spectrum of the binary mixture depends on two parameters α = Z2/Z1 and β = M2/M1. In Fig. 2
we show dispersion curves of the sc2 lattice with β = 1 and two values of α = 1 and 3. These curves are drawn
as functions of kal in the direction OC of Fig. 1. At α = 1 we have bcc lattice of identical ions. Hence, three
solid curves (the upper one and the two, which have ω = 0 at k = 0) coincide with dispersion curves of the bcc
lattice along OC. Three other modes of the sc2 lattice can be obtained from the bcc lattice modes if the domain of
variation of k is reflected with respect to the plane BCE, which is the boundary of the sc2 lattice Brillouin zone.
As a result of this reflection, OC becomes DC and, in particular, the origin is mapped onto the point D. This point
is the vertex of the Brillouin zone of the bcc lattice, where the frequencies of all three modes of the bcc lattice
coincide. This explains the merger of the three modes of the sc2 lattice at kal = 0 (Fig. 2).

As α exceeds 1, the mode crossing seen in Fig. 2 turns into avoided crossings. With further growth of α the
sc2 lattice modes deviate from those of the bcc lattice more strongly. There is a critical value of the charge ratio
αcrit, at which the minimum squared frequency at some finite k crosses zero and is negative at higher α. Our
numerical experiments show that at point C it happens at the lowest α. This situation is illustrated in Fig. 3. We
plot the minimum frequency at point C as a function of α for several values of β. All curves drop to zero at the
same αcrit ≈ 3.6 (irrespective of ion masses). At higher α the frequency of at least one mode is imaginary and
the lattice is unstable. Similar stability analysis was performed for the h2 lattice. It becomes unstable at much
lower αcrit ≈ 1.3.

4 Phonon thermodynamics

Once the phonon spectrum is known, thermodynamic functions of the crystal can be calculated. For instance,
specific heat is given by (e.g., Ref. [2])

C =
∑
kν

�
2ω2

kν

4T 2 sinh2 (�ωkν/2T )
, (6)
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where T is the temperature and ωkν is the frequency of the phonon mode with wavevector k and polarization
index ν. Summation over ν runs from 1 to 6, while summation over k implies integration over the first Brillouin
zone. The methods of such integration have been developed elsewhere (Ref. [3], see also [4]).

Fig. 3 Minimum frequency of the sc2 lattice at point C
(Fig.1) as a function of α for several values of β.

Fig. 4 The coefficient of the Debye T 3 dependence of the
heat capacity vs. β for several values of α (sc2 lattice).

It is well known that at high temperatures, T � Ts ≡ �ωs, C ≈ 3N . At low temperatures Debye T 3 law
must take place C/N = H(α, β)(T/Ts)

3. These asymptotic behaviors are observed at all considered α and β.
The dependence of H on β for several values of α for the sc2 lattice is shown in Fig. 4. The value of H ≈ 2512
at α = β = 1 reproduces calculations of heat capacity for bcc crystal of identical ions [4]. The growth of
H(α, β) at large and small β is explained by the fact that H/T 3

s ∝ v−3, where v is an average phase velocity
of acoustic phonons, which are responsible for the T 3 dependence of the specific heat (v ∝ √

1/Mmax ), while
Ts ∝

√
1/Mmin (at α ∼ 1). Accordingly, H grows as β3/2 at β � 1 and as β−3/2 at β � 1.

5 Conclusion

We have studied electrostatic energy, phonon modes and heat capacity of a Coulomb crystal mixture composed
of equal number of ions of two different types with uniform neutralizing electron background. It is shown that
static sc2 lattice is more tightly bound than h2 lattice for any charge ratio of constituent ions. Rapidly convergent
expression for the dynamic matrix of an arbitrary Coulomb crystal mixture is obtained. Phonon modes of the sc2
and h2 lattices are analyzed and it is shown that these lattices become unstable at the charge ratio of about 3.6
for sc2 and 1.3 for h2, regardless of the mass ratio of constituent ions. Finally, heat capacity of the sc2 lattice is
calculated by numerical integration and the coefficient of its quantum T 3 asymptote is presented as a function of
ion charge and mass ratios.
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