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Abstract One-component Coulomb crystals of ions with
hexagonal close-packed (hcp) lattice likely form in the crust
of strongly-magnetized neutron stars (magnetars). In this
work we present a detailed study of vibration modes and
thermodynamic properties of such crystals in a wide range
of temperatures at zero magnetic field. In contrast to typi-
cally considered lattices, the phonon spectrum of the system
exhibits a peculiar crossing of the acoustic modes near the
Brillouin zone center in certain directions of the wavevector.
It is demonstrated that in the field-free regime the Helmholtz
free energy of the hcp Coulomb crystal is always higher
than those of the Coulomb crystals with body-centered cu-
bic and face-centered cubic lattices. The results of our nu-
merical calculations are fitted by simple analytic expres-
sions.

Keywords Neutron star · Dense matter · Coulomb crystal ·
Thermodynamics

1 Introduction

A system of positive point charges (ions) arranged in
a crystal lattice and immersed into a uniform charge-
compensating background of negative charge (electrons) is
called a Coulomb crystal. This model is of primary impor-
tance for astrophysics. First of all, it is believed, that matter
in white dwarf cores at later stages of star evolution crys-
tallizes with a formation of Coulomb crystals. Moreover,
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neutron star envelopes in the density range spanning about
10 orders of magnitude, from ∼104 g cm−3 to 1014 g cm−3,
are thought to be made of Coulomb crystals except the very
early stages of the neutron star life.1 Thus the knowledge
of Coulomb crystal properties is necessary for interpretation
of the observational data and for understanding the structure
and evolution of these objects (e.g., Shapiro and Teukolsky
1983; Haensel et al. 2007; Baiko 2014).

Thermodynamic properties of Coulomb crystals have
been studied in a number of works (e.g., Carr 1961; Pollock
and Hansen 1973; Chabrier 1993; Potekhin and Chabrier
2010). Typically, only crystals with cubic symmetry are con-
sidered. For instance, in Baiko et al. (2001) (hereafter Pa-
per I) the Helmholtz free energy was calculated and fit-
ted with good accuracy for the body-centered cubic (bcc)
and face-centered cubic (fcc) lattices using the harmonic
lattice model. The bcc lattice has lower static binding en-
ergy and zero-point energy than the fcc lattice, however,
the differences between the respective partial contributions
to the total free energy are very small for these two lat-
tices. Another lattice with very close static binding and
zero-point energies is the hexagonal close-packed (hcp) lat-
tice. The hcp lattice is similar to the fcc lattice in that
both have the highest atomic packing factor among all lat-
tices (for hard spheres). In Paper I an attempt was made
to calculate the Helmholtz free energy of the hcp lattice
as well, but an error was made in the general formula for
the dynamic matrix. Consequently, the reported moments
of the phonon spectrum and certain conclusions about the
behavior of thermodynamic functions were not quite accu-
rate.

1Strictly speaking, in the inner neutron star crust, at densities above
4.3 × 1011 g cm−3, the appearance of dripped neutrons may impact the
ion dynamics (e.g., Chamel 2012).
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Fig. 1 Oscillation modes of the
hcp lattice in certain
high-symmetry directions

Neutron stars are also known to possess extremely high
magnetic fields. An especially intriguing class of neutron
stars is magnetars, in which the surface magnetic fields in
the range of 1014–1015 G have been detected (assuming
the standard interpretation of neutron star braking due to
magneto-dipole losses). It is not excluded that much higher
magnetic fields are hidden in deeper layers of neutron star
crust and core. Therefore, one also needs to know properties
of magnetized Coulomb crystals, i.e. crystals in which the
Lorentz force acting on an ion is comparable to the crystal
restoring force.

Magnetized Coulomb crystals were considered for the
first time qualitatively by Usov et al. (1980). Nagai and
Fukuyama (1982) and (1983) have studied magnetized
Coulomb crystals with bcc, fcc, and hcp lattices at zero tem-
perature. Thermodynamics of magnetized Coulomb crystal
at T > 0 has been constructed and fitted by analytic formu-
las in Baiko (2009), Baiko and Yakovlev (2013), but only
for the bcc lattice. Nagai and Fukuyama (1983) have shown
that the hcp lattice becomes thermodynamically preferable
over the bcc lattice at T = 0 for certain orientations of the
magnetic field with respect to the crystallographic axes pro-
vided the field is sufficiently strong. Clearly, this must also
be the case for some range of finite temperatures. This has
important consequences for the structure of magnetar crust,
which may be of the hcp type in broad ranges of densities,
temperatures and magnetic fields contrary to the typically
assumed bcc crust structure.

To determine these ranges of physical parameters is not
a straightforward task because very careful calculations are
required to find thermal properties of the hcp lattice at low
temperatures and strong magnetic fields. This will be the
subject of our forthcoming work. In the present work we
accomplish a necessary preliminary step and obtain thermo-
dynamic properties of the hcp lattice at zero magnetic field.
We improve and correct the previous computations of Pa-
per I. Phonon spectra, phonon density of states, frequency
moments and thermal properties are calculated with the rel-
ative accuracy of few parts in 104. The numerical results are
fitted by simple analytic expressions.

2 Phonon spectrum and density of states

The frequency of ion oscillations around their lattice equi-
librium positions ω can be found by solving the dispersion
equation: det{Dαβ

ss′ (k) − ω2
ν(k)δαβδss′ } = 0, where ν enu-

merates the oscillation modes (ν = 1, . . . ,6 for the hcp lat-
tice) at given wavevector k in the first Brillouin zone, s and
s′ run over the ions in the elementary cell (s, s′ = 1,2), and
D

αβ

ss′ (k) = V
αβ

ss′ (k) + W
αβ
s δss′ is the dynamic matrix. Prac-

tical formulas for the matrices V
αβ

ss′ (k) and W
αβ
s can be

found in Eqs. (4) and (5) of Kozhberov and Baiko (2012),
where one has to make all ions in the lattice elementary
cell identical. The familiar Kohn sum rule is satisfied for
the squared phonon frequencies:

∑6
ν=1 ω2

ν(k) = 2ω2
p, where

ωp = √
4πnZ2e2/M is the ion plasma frequency (Z is the

ion charge number, M is the ion mass, and n is the ion num-
ber density).

Equations (4) and (5) of Kozhberov and Baiko (2012) for
the dynamic matrix are suitable for any crystal in contrast to
Eq. (3) of Paper I. In the latter work W

αβ
s was assumed to

be equal to ω2
pδ

αβ/3, which is true only for crystals with cu-

bic symmetry, whereas for the hcp lattice, W
αβ
s �= ω2

pδ
αβ/3.

This mistake resulted in inaccurate values of phonon spec-
tral moments and thermodynamic properties reported for
this lattice. Note also, that in Nagai and Fukuyama (1983)
the correct equation for W

αβ
s was used.

The hcp lattice has two ions in the elementary cell and
its phonon spectrum consists of six modes at each k. Their
frequencies are plotted in Fig. 1 in several high-symmetry
directions as functions of the distance from the respective
vertex of the irreducible part of the first Brillouin zone
measured in units of the inverse ion sphere radius 1/a ≡
(4πn/3)1/3. Dispersion curves in Fig. 1 agree well with
those shown in Fig. 3 of Nagai and Fukuyama (1983).

Near the center of the first Brillouin zone (vertex Γ ), two
modes are linear with respect to k (acoustic). However, in
some directions (for instance, Γ K) this linear dependence is
limited to a very narrow range of k near the Γ point. It is
illustrated further in the inset in Fig. 1, where a crossing of
the two acoustic modes is shown. The phonon modes of the
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Fig. 2 Phonon density of states of the hcp lattice

bcc lattice do not have such a feature. This peculiar behavior
is important for low temperature thermodynamics of the hcp
lattice.

One of the main characteristics of the phonon spectrum
is the phonon density of states

g(x) ≡ 1

3N

∑

kν

δ
(
x − ων(k)/ωp

)
, (1)

where N is the total number of ions, x ≡ ω/ωp, and the sum-
mation is over all wave vectors in the first Brillouin zone
and over all phonon modes at each k. The density of states
is normalized so that

∫ 1
0 g(x)dx = 1.

We have calculated the phonon density of states of the
hcp lattice and it is shown in Fig. 2. At x � 1, g(x) ≈ 38x2.
The quadratic dependence reflects the presence of acoustic
phonons but in the hcp lattice it is limited to a rather nar-
row range of k due to the unusual behavior of the acoustic
phonons shown in Fig. 1. The density of states has a square-
root singularity at the upper boundary of the phonon spec-
trum and a number of square-root singularities at the Van
Hove points (Van Hove 1953). These singularities are well
known in the solid state physics and are associated with sad-
dle points of the frequency spectrum (cf. also Kozhberov
and Baiko 2014, where the bcc lattice density of states is
discussed).

3 Phonon thermodynamics

In many applications the result is expressed as an average
over the phonon spectrum of a function of the frequency,
f (ω):

〈
f (ω)

〉 = 1

3N

∑

kν

f
(
ων(k)

)
. (2)

Table 1 Moments of the hcp lattice

u3 u1 u−1 u−2 uln

0.24983 0.5133369 2.70183 11.8421 −0.816031

If the function is a simple power-law, this becomes the
phonon-spectrum moment un = 〈(ω/ωp)

n〉. Also of interest
is the average logarithm of the frequency uln = 〈ln (ω/ωp)〉.
Averages of more complex functions are necessary to com-
pute phonon thermodynamic potentials. In particular, ther-
mal phonon contributions to the Helmholtz free energy, en-
ergy, and heat capacity read

F = 3NT
〈
ln

(
1 − e−w

)〉 ≡ NTf th(t),

E = 3NT

〈
w

ew − 1

〉

, (3)

C = 3N

〈
w2

4 sinh2(w/2)

〉

,

respectively, where w = x/t , t = T/Tp, and Tp ≡ �ωp is the
ion plasma temperature (kB = 1). In principle, it is possi-
ble to calculate such averages as one-dimensional integrals
with the phonon density of states: 〈f (ω)〉 = ∫ 1

0 dxg(x)f (x).
However, we prefer Holas method of three-dimensional in-
tegration over the first Brillouin zone combined with modi-
fied Gaussian quadrature rule (Holas 1977; Albers and Gu-
bernatis 1981).

Our results for the spectral moments are presented in Ta-
ble 1. The same value for u1 has been reported previously
(Nagai and Fukuyama 1982). In Paper I, only four signif-
icant figures of this moment were found correctly. Calcu-
lations of the other moments of the hcp lattice in Paper I
were not accurate enough (there was a 1.5 % error in the
u−2 value and ≤0.1 % errors in values of the other mo-
ments). Note, that Madelung constants and moments for bcc
and fcc lattices reported in Paper I were correct as well as
the Madelung constant for the hcp lattice.

In Fig. 3 we present our results for thermal phonon
contributions to the thermodynamic functions of the hcp
lattice. We show ratios of F , E, and C of the hcp lat-
tice to the same quantities of the bcc and fcc lattices
as functions of t . One can easily appreciate the differ-
ence between the lattices at low (quantum) and inter-
mediate temperatures. In particular, in the quantum limit
T � Tp, Fhcp/Fbcc = Ehcp/Ebcc = Chcp/Cbcc ≈ 1.190, and
Fhcp/Ffcc = Ehcp/Efcc = Chcp/Cfcc ≈ 1.089.

It is also clear that the thermodynamic functions of the
hcp lattice approach the Debye limit (C ∝ T 3, F,E ∝ T 4)
at much lower temperatures than those of the bcc and fcc lat-
tices. One can see, that Cfcc/Cbcc saturates in the quantum
limit at higher temperature than Chcp/Cbcc and Chcp/Cfcc.
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Fig. 3 Ratios of thermal free energy, thermal energy and heat capacity
of bcc, fcc, and hcp lattices

More quantitatively, the Debye T 3-law for the heat capac-
ity is satisfied with accuracy of less than half a percent at
T ≈ 10−3 Tp for the hcp lattice, and at almost an order of
magnitude higher temperature, T ≈ 9 × 10−3Tp, for the bcc
lattice. The difference can be traced back to the peculiar
properties of the hcp lattice acoustic modes near the Bril-
louin zone center, cf. Fig. 1.

At intermediate temperatures all the ratios have minima.
The hcp to bcc ratios Fhcp/Fbcc, Ehcp/Ebcc, and Chcp/Cbcc

reach ≈0.789, 0.765, and 0.75 at t ≈ 0.042, 0.03, and 0.025.
The hcp to fcc ratios have the respective minima of 0.912,
0.904, and 0.9 at t ≈ 0.031, 0.022, and 0.018. At high tem-
peratures, all the ratios approach 1 as a consequence of the
Dulong-Petit law. The thermal free energy in this limit be-
haves as Fhcp = 3NT [ln (1/t)+uln]−1.5N�ωpu1. (For the
hcp lattice, the asymptote is valid with deviation of less than
half a percent at t > 1.43.) Due to the logarithmic tempera-
ture dependence and the presence of lattice specific spectral
moments in the free energy asymptote, the ratios of free en-
ergies converge to 1 slower than the ratios of energies and
heat capacities.

It is possible to approximate the temperature dependence
of F , E, and C for the hcp lattice by simple analytic formu-
las. Since all these quantities for the bcc lattice are already
calculated and fitted in Paper I, it turned out to be the easiest
to approximate the ratios shown in Fig. 3:

Fhcp

Fbcc
= a1 + a2t

a3 + a4(1 + a5 exp(−a6t))t
a7

a8 + a9ta10 + a4(1 + a11 exp(−a12t))ta7
, (4)

Ehcp

Ebcc
= b1 + b2t

b3 + b4(1 + b5 exp(−b6t))t
b7

b8 + b9tb10 + b4(1 + b11 exp(−b12t))tb7
, (5)

Chcp

Cbcc
= c1 + c2t

c3 + c4(1 + c5 exp(−c6t))t
c7

c8 + c9tc10 + c4(1 + c11 exp(−c12t))tc7
. (6)

These approximations have a fractional accuracy ≈10−4,
while calculations were performed with an accuracy of five

Table 2 Fitting parameters ai , bi and ci

i ai bi ci

1 0.00011896 1.1896 × 10−6 1.1896 × 10−6

2 −0.25073 0.0013725 0.003519

3 2.946 1.471 1.5812

4 34.409 0.71255 1575

5 3.1134 −3.17712 −0.085359

6 87.731 38.823 22.897

7 3.1488 3.2672 5.0573

8 0.0001 10−6 10−6

9 0.20664 0.00224 0.0053389

10 1.8819 1.5457 1.6404

11 0.10895 −3.233 1.5672

12 19.352 43.925 53.545

Table 3 ζ and u1 for bcc, fcc, and hcp lattices

bcc fcc hcp

ζ −0.8959292557 −0.8958736152 −0.8958381205

u1 0.5113877 0.513194 0.5133369

significant digits for t from 10−5 to 103. The fitting coeffi-
cients ai , bi , and ci are given in Table 2.

We are now in a position to compare the total Helmholtz
free energies of the bcc, fcc, and hcp lattices at any tem-
perature (below melting), ion density, charge and mass. In
harmonic approximation and neglecting the electron back-
ground polarizability effect, the free energy consists of the
static binding, the zero-point, and the thermal phonon con-
tributions:

F tot

NT
= ζΓ + 1.5u1/t + f th(t). (7)

In this case, ζ is the Madelung constant and Γ = Z2e2/(aT )

is the Coulomb coupling parameter. For reference, the val-
ues of ζ and u1 for the three lattices are summarized in Ta-
ble 3.

Consider the difference of F tot between the three lattices.
At any t and Γ > 175 (which corresponds to the crystal
phase), (ζhcp −ζfcc)Γ +1.5(u1hcp −u1fcc)/t > 0 and (ζfcc −
ζbcc)Γ +1.5(u1fcc −u1bcc)/t > 0, while at low temperatures
(t � 0.007), f th

hcp < f th
fcc < f th

bcc (cf. Fig. 3, f th < 0). Never-
theless, at these low temperatures the thermal phonon contri-
bution is much smaller than the zero-point one. For instance,
one can see in Fig. 3 that f th

hcp = f th
fcc at t ≈ 0.0078. At this

t , 1.5(u1hcp − u1fcc)/t = 0.02748 and it increases with de-
crease of temperature. But f th

hcp −f th
fcc reaches a minimum of

≈ −1.044 × 10−6 at t = 0.0057. It is, therefore, impossible
to compensate the difference of the static-binding and zero-
point energies by the difference of the thermal contributions
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at any Γ and t . Since these two parameters fully determine
thermodynamics of a Coulomb crystal, we conclude that for
any T , n, Z, and M , F tot

bcc < F tot
fcc < F tot

hcp. This means, that
under the assumptions stated above, in non-magnetized mat-
ter, formation of the bcc lattice is always thermodynamically
preferred.

4 Conclusions

It follows from the results of Nagai and Fukuyama (1983)
that formation of Coulomb crystals of ions with the hexag-
onal close-packed lattice may be expected in highly-magne-
tized neutron star crust, which underlines the importance of
this system for astrophysics. We have studied phonon modes
and have improved and corrected previous calculations (Pa-
per I) of spectral moments and thermodynamic functions
of this lattice using harmonic approximation. The phonon
spectrum of the hcp lattice displays a peculiar behavior near
the center of the first Brillouin zone, where two acoustic
modes have a crossing for certain directions of the phonon
wavevector. This feature is absent in other typically consid-
ered Coulomb lattices, and it affects noticeably thermody-
namic properties of the hcp lattice at low temperatures. The
phonon heat capacity of the hcp lattice at low temperatures
is found to be 1.2 times bigger than that of the bcc lattice. It
is shown, that at any temperature, mass density, ion charge,
and ion mass, the total Helmholtz free energy of the bcc lat-
tice is below that of the fcc lattice, which, in turn, is below
that of the hcp lattice (neglecting anharmonicity and electron

polarization effects). The ratios of phonon free energies, en-
ergies, and heat capacities of the hcp and bcc lattices are
fitted by simple analytic expressions. The phonon density of
states of the hcp lattice is also calculated.
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