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We calculate electrostatic, spectral, and thermal properties of two-component Coulomb crystals of

ions and determine the limits of applicability of the linear mixing theory to such systems. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4930215]

I. INTRODUCTION

It is generally accepted that matter in white dwarf cores

and neutron star envelopes at not too low densities represents

a mixture of atomic nuclei of various types immersed into a

strongly degenerate electron gas and fully ionized by the gas

pressure (e.g., Ref. 1). In particular, the inner layers of white

dwarfs are composed of a carbon and oxygen plasma with

traces of other elements such as neon and iron (e.g., Ref. 2).

At the initial stages of evolution, this mixture is in a liquid

state (a Coulomb liquid of ions). As a star cools, the plasma

crystallizes with a formation of a Coulomb crystal of ions.

The occurrence of this crystallization process has been

inferred from observations of a white dwarf in the globular

cluster NGC 6397.3

In plasma physics, a Coulomb crystal is a system of

point charges of one sign arranged in a crystal lattice with a

strictly uniform neutralizing background of opposite charge

(e.g., Refs. 1 and 4). It is customary to consider Coulomb

crystals with a single ion type (one-component crystals or

occ). If quantization of the ion motion is neglected, the prop-

erties of this system are determined by one parameter, the

Coulomb coupling parameter C � ðZ ieÞ2=ða iTÞ. In this case,

Z ie is the ion charge, T is the temperature (kB ¼ 1),

a i ¼ ð4pn i=3Þ�1=3
is the ion sphere radius, and n i is the ion

number density. Such classic occ is known to melt at

C � 175 (e.g., Ref. 1).

In the compact stars, one typically expects C� 1.

Moreover, in the crusts of neutron stars, C > 175 except the

outermost low-density layers and/or the very early stages of

the star life. Therefore, for astrophysical applications, it is

necessary to study thermodynamic properties of Coulomb

crystals (both occ and mixtures). For instance, heat capacity

of matter in the inner layers of white dwarfs controls the

cooling rate and is thus required for a reliable estimate of the

star age (e.g., Refs. 2 and 4). Precise knowledge of the elec-

trostatic energy and thermal free energy is indispensable for

determination of the crystallization temperature.

Thermodynamic properties of occ in the harmonic

lattice approximation have been studied in Refs. 5–7 and

fitted with comparable accuracy for body-centered cubic

(bcc) and face-centered cubic (fcc) lattices in Refs. 8 and 9.

The influence of magnetic field on thermodynamics of occ

was analyzed in detail in Refs. 10 and 11, while electron

screening has been discussed in Refs. 12–14. Various ana-

lytic and numerical methods were employed to study classic

and quantum anharmonic corrections in a large number of

works (e.g., Refs. 9, 15, 16, and references therein). Among

all investigated lattices the bcc lattice was found to have the

lowest free energy, but the difference between the energies

of several lattices is very small, and, if the electron polariza-

tion is taken into account, the fcc lattice may become more

energetically favorable.13

Far less work has been devoted to a description of

Coulomb mixtures, i.e., multi-component plasmas composed

of fully ionized atomic nuclei of several types and a uniform

charge-compensating electron background (e.g., Ref. 17).

Physical properties of these systems are usually obtained

from the linear mixing (lm) theory (e.g., Refs. 18 and 19) or

numerically, from molecular dynamics (e.g., Refs. 20–22

and references therein) or Monte-Carlo (e.g., Refs. 23–26)

simulations. A high level of accuracy of the lm approach for

the Coulomb liquid has been demonstrated27 and confirmed

later by Monte-Carlo modeling (e.g., Refs. 25 and 28). The

lm rule has been applied to Coulomb crystals for the first

time in Ref. 29. These authors calculated the electrostatic

energy of substitutionally disordered (i.e., ions of different

types are randomly distributed over nodes of a perfect

lattice) bcc, fcc, and CsCl lattices as an average of the local

minima of the interaction energies, obtained from several in-

dependent molecular dynamics runs, and made a comparison

with respective lm predictions. Recently, a simple analytic

estimate of the free energy deviation from the lm result has

been proposed.19

Unfortunately, none of these methods is applicable at

temperatures below the crystal Debye temperature, where

quantum effects of the ion motion play a decisive role, and

thus, there is no assessment of the validity of the lm theory

under such conditions. However, the quantum regime is

highly relevant for the astrophysical objects mentioned

above.

In this paper, we refine and expand our work30 and pres-

ent a detailed analytic and numerical study of physical prop-

erties of an ordered binary Coulomb crystal, i.e., a perfect

Coulomb crystal with ions of two different sorts (different

charges and masses) in each elementary cell. We focus on

thermodynamic functions of the ion component only treating

electrons simply as a uniform neutralizing background. In

principle, thermodynamic functions of strongly degenerate

electron gas are well understood and should be addeda)Electronic mail: kozhberov.astro@mail.ioffe.ru.
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directly to the respective ion contributions. Let us note that

electrons are responsible for the dominant contribution to the

crystal pressure and for a substantial contribution to the

system heat capacity, particularly at low temperatures. We

analyze electrostatic, spectral, and thermal properties of the

binary Coulomb crystal mixture within the harmonic lattice

model framework. This allows us to take into account the

quantum effects. For simplicity, we neglect anharmonic

effects, which become significant near the melting transition,

as well as effects of the electron background polarization.

The latter invalidate the assumption of constant and uniform

electron background and are important for large-Z ions at

rather low densities. We compare our results with predictions

of the lm theory and discuss its applicability to Coulomb

crystal mixtures at low temperatures.

II. NOTATIONS

Consider an ordered Coulomb crystal mixture (or a

multi-component Coulomb crystal), i.e., a regular arrange-

ment of ions of several types in a lattice. The position of an

ion of type p (with charge number Zp and mass Mp,

p ¼ 1:::Ncell; Ncell is the number of ions in the lattice elemen-

tary cell) in a crystal is given by its radius vector rlp ¼ Xlp

þulp, where ulp is the ion displacement from its equilibrium

position. Equilibrium positions of ions are given by Xlp ¼ Rl

þvp, where Rl ¼ l1a1 þ l2a2 þ l3a3 is a lattice vector,

l1; l2; l3 are arbitrary integers, vectors a1; a2; a3 are the lattice

main translation vectors, and vp is the basis vector of the

p-ion in the elementary cell (by construction we always have

v1 ¼ 0, vp 6¼ 0 for p> 1). The reciprocal lattice is formed by

vectors Gm ¼ m1g1 þ m2g2 þ m3g3, where g1; g2; g3 are the

reciprocal lattice main translation vectors satisfying

giaj ¼ 2pdij, and m1;m2;m3 are arbitrary integers.

We shall study in detail and compare two binary lattices:

a simple cubic lattice with Ncell ¼ 2 (sc2) and a hexagonal

lattice with Ncell ¼ 2 (h2). The ions at v1 and v2 are different,

while the number density is the same for ions of both types.

Figure 1 illustrates the two lattice structures with different

colors corresponding to different ions. The sc2 and h2 latti-

ces coincide with the bcc and hexagonal close-packed (hcp)

lattices, respectively, if all ions are identical. The origin of a

Cartesian coordinate system is always assumed to coincide

with a Z1-ion, while a � Z2=Z1 � 1. We shall describe the

sc2 lattice by the simple cubic (sc) lattice main translation

vectors a1 ¼ alð1; 0; 0Þ, a2 ¼ alð0; 1; 0Þ, a3 ¼ alð0; 0; 1Þ, and

the basis vector v2 ¼ 0:5alð1; 1; 1Þ. The h2 lattice is

described by the main translation vectors of the hexagonal

(hex) lattice a1 ¼ alð1; 0; 0Þ, a2 ¼ 0:5alð1;
ffiffiffi
3
p

; 0Þ, and

a3 ¼ alð0; 0;
ffiffiffiffiffiffiffiffi
8=3

p
Þ with the basis vector v2 ¼ alð1=3; 1=3;ffiffiffiffiffiffiffiffi

2=3
p

Þ. In both cases, al is the lattice constant (cf. Fig. 1).

The primitive subzones of the Brillouin zones of these latti-

ces are determined by the following inequalities: kx � ky �
kz � 0; kxal � p for the sc2 lattice, and 0 � kxal � p

ffiffiffiffiffiffiffiffi
4=3

p
,

0 � ky � kx=
ffiffiffi
3
p

, and 0 � kzal � p
ffiffiffiffiffiffiffiffi
3=8

p
for the h2 lattice,

where k is a wavevector.

III. ELECTROSTATIC ENERGY

The potential energy of a multi-component Coulomb

crystal with an arbitrary number and type of ions in the ele-

mentary cell is given by

U ¼ 1

2

X
lpl0p0

0 ZpZp0e
2

jrlp � rl0p0 j
� ne

X
lp

ð
dr

Zpe2

jrlp � rj

þ n2
ee2

2

ð ð
dr dr0

jr� r0j ; (1)

where sums over l and l0 are extended to infinity, sums over

p and p0 go over all ions in the elementary cell, prime at the

first sum means that terms with l ¼ l0 and p ¼ p0 are omitted,

Zp is the charge number of ions located at rlp, ne¼Zn is the

electron number density, Z is the average ion charge number,

and n is the total ion number density. For binary crystals con-

sidered in this work, ne ¼ 0:5nðZ1 þ Z2Þ. The first sum is

divergent, whereas the second and the third terms serve to

cancel this infinity, so that the electrostatic energy per one

ion becomes finite.

If all ions are fixed at their equilibrium positions,

rlp ¼ Xlp, Eq. (1) yields the static-lattice binding energy of

the crystal, or the Madelung energy, UM. Equation (1) is

obviously impractical and we have used Ewald transforma-

tions31 to derive a rapidly converging practical formula for

calculating the Madelung energy of a completely general

perfectly ordered multi-component Coulomb crystal

UM ¼ N
e2

a
n;

n ¼ a

2Ncell

X
lpp0

ZpZp0 1� dpp0dRl0ð Þ
erfc AYlpp0ð Þ

Ylpp0

� Aa

Ncell

ffiffiffi
p
p
X

p

Z2
p �

3

8N2
cellA

2a2

X
pp0

ZpZp0

þ 3

2N2
cella

2

X
mpp0

ZpZp0 1� dGm0ð Þ

� 1

G2
m

exp � G2
m

4A2
þ iGm vp � vp0ð Þ

� �
: (2)

In this case, Ylpp0 ¼ Rl þ vp � vp0 , N is the total number of

ions, a � ð4pn=3Þ�1=3
, and erfcðxÞ is the complementary

error function. An arbitrary parameter A is chosen so that

sums over direct and reciprocal lattice vectors, Rl and Gm,FIG. 1. The sc2 (left) and h2 (right) lattices.
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converge equally rapidly. Equation (2) reproduces Eq. (10)

of Ref. 32 for an occ with N cell ¼ 1. For an occ with

N cell > 1, this formula reproduces, e.g., Eq. (5) of Ref. 8.

For multi-component crystals, to our knowledge, such a for-

mula has not been previously published.

For ordered binary crystal mixtures in consideration, Eq.

(2) reduces to30

UM ¼ N
e2

a

Z2
1 þ Z2

2

24=3
f1 þ Z1Z2 f2 �

f1

21=3

� �" #
: (3)

In the case of the sc2 lattice, f1 and f2 are the Madelung con-

stants of the sc and bcc lattices, respectively (f1 ¼ f sc

¼ �0:88005944211 and f2 ¼ f bcc ¼ �0:89592925568). For

the h2 lattice, f1 and f2 are the Madelung constants of the hex

and hcp lattices, respectively (f1 ¼ f hex ¼ �0:77943336427

and f2 ¼ f hcp ¼ �0:89583812046). It is clear, that in the spe-

cial cases Z1¼Z2 and Z2 ¼ 0, Eq. (3) reproduces correctly

the Madelung energy of the respective occ.

Interestingly, Eq. (3) can be easily obtained from sym-

metry considerations. Since densities of both types of ions

are equal and the lattices do not change under the ion inter-

change (Z1 $ Z2), the electrostatic energy must have the

form: UM ¼ c1ðZ2
1 þ Z2

2Þ þ c2Z1Z2. Constants c1 and c2 can

now be found from the special cases above. If Z2 ¼ 0, the

number of ions is halved and c1 ¼ Ne2f1=ð24=3aÞ. If Z1¼Z2,

2c1 þ c2 ¼ Ne2f2=a.

It is useful to compare the exact Madelung energy with

that obtained from the lm theory. According to Ref. 18, lin-

ear mixing yields the Madelung energy of a binary crystal as

Ulm
M ¼ N1

Z2
1e2

a1

f2 þ N2

Z2
2e2

a2

f2; (4)

where aj ¼ ð4pnj=3Þ�1=3; nj ¼ ne=Zj, and the electron num-

ber density ne in both terms should be the same as in the mix-

ture; Nj is the total number of j-ions. Hence, for a perfectly

ordered binary crystal with N1¼N2,

Ulm
M

UM

¼ 1þ að Þ1=3
1þ a5=3ð Þf2

a� 1ð Þ2f1 þ 24=3af2

: (5)

Equation (5) is symmetric under the replacement of a by

1=a, is 1 at a¼ 1, and reaches 1.00094 and 1.00215 for the

sc2 and h2 lattices, respectively, at the maximum allowed

charge ratio for these lattices, a ¼ 3:6 and a ¼ 1:25 (see

below). For the carbon-oxygen mixture with the sc2 lattice,

Ulm
M =UM � 1 � �6:67� 10�5. This difference seems small,

but it may still be important, because the Madelung energy is

by far the dominant contribution to the crystal energy. For

some applications (such as determination of the crystal melt-

ing point), it is desirable to know it with the best possible

precision.

IV. DYNAMIC MATRIX AND COLLECTIVE MODES

The potential energy Eq. (1) can be expanded in powers

of ion displacements and, in the harmonic lattice model, only

the second order terms are retained. These terms determine the

phonon spectrum of the crystal, which can be found by solving

the dispersion equation detfDlk
pp0ðkÞ � x2dlkdpp0 g ¼ 0 for the

squared frequency, x2, at any wavevector k. For a perfect lat-

tice with arbitrary number and type of ions in the elementary

cell, the dynamic matrix Dlk
pp0ðkÞ is equal to

Dlk
pp0 kð Þ ¼ ZpZp0e

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
MpMp0

p Blk
pp0 kð Þ þ Zpe2

Mp
Wlk

p dpp0 ; (6)

where

Blk
pp0 kð Þ ¼ � @2

@ul@uk

X
Rl 6¼0

exp ikRlð Þ
ju� Rl � vp þ vp0 j

����
u!0

;

Wlk
p ¼

@2

@ul@uk

X
Rl 6¼0

X
p00

Zp00

ju� Rl � vp þ vp00 j

(

�ne

ð
dr

ju� vp � rj

)�����
u!0

: (7)

Using Ewald transformations one can recast matrices

Blk
pp0ðkÞ and Wlk

p in a form of rapidly converging lattice

sums,30 which we reproduce here for completeness

Blk
pp0 kð Þ ¼ 4pn

N cell

X
m

Gl
m � klð Þ Gk

m � kk
� 	

jGm � kj2
exp � jGm � kj2

4A2
þ i Gm � kð Þ vp � vp0ð Þ

� �
� 4A3

3
ffiffiffi
p
p dlkdpp0

�
X

l

1� dpp0dRl0ð Þ
3Ya

lpp0Y
k
lpp0

Y2
lpp0

� dlk

 !
erfc AYlpp0ð Þ

Y3
lpp0

þ 2Affiffiffi
p
p

Y2
lpp0

e
�A2Y2

lpp0

" #
þ 4A3ffiffiffi

p
p

Yl
lpp0Y

k
lpp0

Y2
lpp0

e
�A2Y2

lpp0

8<
:

9=
;eikRl ;

Wlk
p ¼ �

4pn

N cell

X
p00

Zp00
X

m

0 Gl
mGk

m

G2
m

exp � G2
m

4A2
þ iGm vp � vp00ð Þ

� �
þ 4A3

3
ffiffiffi
p
p Zpd

lk

þ
X
lp00

Zp00 1� dpp00dRl0ð Þ
3Yl

lpp00Y
k
lpp00

Y2
lpp00

� dlk

 !
erfc AYlpp00ð Þ

Y3
lpp00

þ 2Affiffiffi
p
p

Y2
lpp00

e
�A2Y2

lpp00

" #
þ 4A3ffiffiffi

p
p

Yl
lpp00Y

k
lpp00

Y2
lpp00

e
�A2Y2

lpp00

8<
:

9=
; ; (8)
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where Ylpp00 ¼ Rl þ vp � vp00 , indices l; k denote Cartesian

components, and A is again arbitrary. For cubic occ with

Ncell ¼ 1, Eqs. (6) and (8) reproduce Eq. (3) of Ref. 8. For

non-cubic occ (e.g., for hcp), Eq. (3) of Ref. 8 is incorrect.

One can show30 thatX
�

x2
�ðkÞ ¼ Ncellx

2
s; (9)

x2
s ¼

4pne2

N2
cell

X
pp0

ZpZp0

Mp
; (10)

where � enumerates frequencies at fixed k (� ¼ 1…3Ncell).

For an occ with N cell � 1, Zp¼ Z, and Mp¼M for all p, xs

becomes the regular plasma frequency xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnZ2e2=M

p
.

For this reason, x s can be called the multi-component

plasma frequency. An occ can also be obtained by setting Zp

to Z and Mp to M for some values of p, and Zp¼ 0 for all the

other values of p. Equation (9) will yield a correct sum rule

in this case as well.

For binary crystals under consideration, xs ¼ ½pnZ2
1e2

ð1þ aÞð1þ a=bÞ=M1	1=2
and the spectrum depends on wave-

vector k and two parameters, a ¼ Z2=Z1 and b � M2=M1. In

Figs. 2–5, we plot dispersion curves of the sc2 and h2 lattices

in several high-symmetry directions for various a and b as

functions of the distance from the respective Brillouin zone

vertex measured in units of 1=a. Also, we plot dispersion

curves of the bcc and hcp lattices (case a ¼ b ¼ 1), which

coincide with those shown in Refs. 33 and 34, respectively.

We use standard notations for the vertices of the primitive

subzones of the Brillouin zones of the sc and hex lattices

(e.g., Ref. 35). For instance, C denotes the first Brillouin zone

center. At any k, a, and b, the phonon spectrum consists of

six modes. Two of them are acoustic (x / k at small k) and

the others are optic (x is finite at k¼ 0).

In a stable Coulomb crystal in the harmonic lattice

approximation, the phonon frequencies cannot acquire imag-

inary parts. By this criterion, the sc2 lattice can exist only up

to a ¼ 3:60 (by definition a � 1), whereas the h2 lattice is

stable only up to a ¼ 1:25.30 (The same result for the sc2

lattice was recently found in molecular dynamics simula-

tions.38) Hence, for instance, the one-to-one 12Cþ 16O mix-

ture cannot crystalize into the perfect h2 lattice. These

results are not surprising given the fact that the bcc and hcp

lattices are stable while the sc and hex lattices (which can be

viewed as the sc2 and h2 lattices with a ¼ 1) are not.36,37

For illustration, in Fig. 2, we plot the lowest frequency of the

sc2 lattice at a¼ 4. Its real part becomes 0 near the point M,

FIG. 2. Phonon frequencies of the sc2 lattice in certain high-symmetry directions for b¼ 1 and several values of a.

FIG. 3. Same as in Fig. 2 but for a¼ 1 and several values of b.
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and the frequency becomes imaginary. The same picture can

be observed in Fig. 4 for the h2 lattice with a ¼ 1:3.

Ion masses do not affect the crystal stability. For com-

pleteness, we have investigated the properties of lattice pho-

nons in the limit of very different ion masses (M2 � M1 or

M2 
 M1) at similar ion charges. (This limit may be relevant

for compact star matter at lower densities, where there is par-

tial ionization and the concept of effective ion charge is

thought to be adequate.) In this regime, there appear two

widely separated groups of phonon modes (Fig. 6). The three

upper modes describe the oscillations of the lighter ions with

respect to the heavier ones. The frequencies of these oscilla-

tions, normalized by xs, do not depend on b. The three lower

modes describe the joint motion of all ions, in which the

kinetic energy of the lighter ones is negligible. For these

modes, x�ðkÞ=xs scales as b�0:5 at b� 1 (x�ðkÞ=xs / b0:5

at b
 1), while the shape of the modes essentially does not

change.

V. FREQUENCY SPECTRUM MOMENTS AND THE
ENERGY OF ZERO-POINT VIBRATIONS

In applications, it is often necessary to know averages of

various functions of phonon frequencies over the phonon

phase space. Such an average can be written as

hf xð Þi ¼ 1

3Ncell

X
�

1

VBZ

ð
BZ

f x� kð Þð Þdk; (11)

where the integration is over the whole volume of the first

Brillouin zone VBZ ¼ ð2pÞ3n=Ncell and the summation at

each k runs over all �. We will use the three-dimensional

modified Gaussian quadrature and Holas integration method

for such averages.8,39,40

Among the most frequently used averages are the

moments of the phonon spectrum un ¼ hðx=x sÞni and

the average logarithm of frequency u ln ¼ hlnðx=x sÞi. The

moment u1 determines the zero-point energy of the crystal,

moments u�1 and u�2 yield the rms ion displacement from a

lattice node at quantum and classic temperatures, respec-

tively, whereas u ln enters the classic asymptote of the

Helmholtz free energy.

In a Coulomb occ, the moments in question depend only

on the crystal type. But in a binary Coulomb crystal, they

also depend on a and b, which we denote as uiða; bÞ, where i
stands for� 2, �1, 1, or ln. The results of our calculations

are reported in Figs. 7–9. (For any other parameter values,

the data are available upon request.) In Fig. 7, we plot

uiða; bÞ=uiða; 1Þ as functions of b at a¼ 1, 2, and 3 for the

sc2 lattice. To avoid numerous intersections of the curves, at

FIG. 5. Same as in Fig. 3 but for the h2 lattice.

FIG. 4. Same as in Fig. 2 but for the h2 lattice.
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a¼ 1 and 3, the ratios are multiplied by 1.25 and 0.75,

respectively. At a¼ 1, the curves for the h2 lattice practically

merge with the corresponding curves for the sc2 lattice for

this range of b (cf. Fig. 10). Figs. 8 and 9 demonstrate the

dependence of the moments on a for the sc2 and h2

lattices, respectively. In Fig. 8, we show uiða; bÞ=uið1; bÞ at

b ¼ 0:75, 1, 1.5, and 2. For clarity, in the case of u1, u�1,

and u�2, the ratios are again multiplied by 1.15, 0.9, and 0.8,

respectively. In Fig. 9, everything is the same, but the

u�2; u ln, and u1 data are multiplied by 1.02, 0.98, and 0.97,

respectively, and the range of a, where the lattice is stable, is

much more narrow. The moment values used in the denomi-

nators of all these ratios are collected in Table I.

The energy of zero-point vibrations is E0 ¼ 1:5N�hhxi
¼ 1:5N�hx su1ða; bÞ. For the bcc and hcp lattices, u1 is equal

to 0.51139 and 0.51334, respectively, and therefore, as is

well known, the bcc lattice remains energetically preferred at

temperature T¼ 0 to the hcp lattice, if both electrostatic and

zero-point energies are taken into account. However, in a

binary crystal with a¼ 1, E0 for the h2 lattice is bigger

than that for the sc2 lattice only at 1=3:69 � b � 3:69.

FIG. 8. The dependence of moments on a for different b for the sc2 lattice.

FIG. 9. Same as in Fig. 8 but for the h2 lattice.

FIG. 10. The behavior of the moments at a¼ 1 and b� 1 for the sc2 and h2

lattices. See text for details.

FIG. 6. Dispersion curves for the sc2 lattice at M2 � M1 and a¼ 1.

FIG. 7. The dependence of moments on b for a ¼ 1; 2 and 3 for the sc2

lattice.
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Accordingly, for systems with a sufficiently large mass ratio

the h2 lattice may become energetically preferred at T¼ 0 to

the sc2 lattice. On the other hand, at a ¼ 1:2; u1ð1:2; bÞ for

the sc2 lattice is always bigger than that for the h2 lattice.

Hence, for such charge ratio, there are densities at which the

h2 lattice is more favorable regardless of the mass ratio.41

Let us also discuss the behavior of the spectral averages

in the limit of a very large mass ratio of the constituent ions,

where some analytic results can be obtained. Clearly, for

u1ða; bÞ, the three upper frequencies x � x s produce the

dominant contribution. Thus, at b� 1 or b
 1, u1ða; bÞ
approaches a constant value. This can be seen in Fig. 10,

where we plot v1 � u1ð1; bÞ=u1ð1; 1Þ as a function of b. The

opposite situation takes place for u�1ða; bÞ and u�2ða; bÞ.
The three lower modes yield the dominant contribution to

these moments and, consequently, u�1ða; bÞ behaves as b0:5

at b� 1 (b�0:5 at b
 1), while u�2ða; bÞ grows / b
(/ 1=b) at b� 1 (b
 1). In Fig. 10, we show v�1 � u�1

ð1; bÞ=u�1ð1; 1Þ=
ffiffiffi
b
p

and v�2 � u�2ð1; bÞ=u�2ð1; 1Þ=b. As

expected, these quantities approach constant values at

b� 1. Finally, in the case of u ln both groups of modes pro-

duce comparable contributions. The upper modes result in a

constant term and the lower modes yield a / lnb term in the

high-b asymptote. It is illustrated in Fig. 10, where v ln �
u lnð1; bÞ=u lnð1; 1Þ=ð1þ q1lnbÞ is plotted with q1 ¼ 0:5214

for the sc2 lattice and q1 ¼ 0:5313 for the h2 lattice. All

these conclusions also hold for a > 1.

VI. PHONON THERMODYNAMICS

Thermal phonon Helmholtz free energy F, thermal pho-

non energy U, and heat capacity C are given by

F ¼ 3NThln 1� e�wð Þi ;

U ¼ 3NT
w

ew � 1

D E
;

C ¼ 3N
w2

4sinh2 w=2ð Þ


 �
; (12)

where w � �hx=T and phonon chemical potential is zero. The

thermodynamic potentials of a binary Coulomb crystal are

fully determined by three parameters, T=T s, a, and b, where

T s � �hx s is the multi-component plasma temperature. If

a ¼ b ¼ 1, T s becomes the usual ion plasma temperature of

the respective occ, T p � �hx p.

Using the Holas integration method, we have calculated

thermodynamic functions Eq. (12) for the sc2 and h2 lattices

in a wide range of T=T s and b for dense grids of a spanning

the stability bands of these lattices. The numerical data on

the thermodynamic functions are available upon request.

Here, we summarize the main features of these results.

Let us recall, that the thermodynamic functions of a

Coulomb occ have two asymptotic regimes of high and low

(or classic and quantum) temperatures. At high temperatures,

where the occupation numbers are big for all phonon modes,

the Dulong-Petit law takes place, which states that the heat

capacity saturates at C occ ¼ 3N, the thermal energy is

U occ ¼ 3NT, and the free energy is F occ ¼ 3NT½lnðT p=TÞ
þu ln	 � 1:5N�hx pu1. At low temperatures, only acoustic

phonons near the Brillouin zone center are excited and con-

tribute to the thermodynamic quantities. This results in the

Debye T3-law for the heat capacity and T4-law for the energy

and free energy.

The Dulong-Petit and Debye laws are also satisfied

for binary mixtures (bin). At high temperatures, F bin

¼ 3NT½lnðT s=TÞ þ u lnða; bÞ	 � 1:5N�hx su1ða; bÞ. At low

temperatures, the heat capacity behaves as Cbin ¼ NHða; bÞ
ðT=T sÞ3, where Hða; bÞ is a quantum asymptote coefficient,

which depends on a, b, and the lattice type. Furthermore,

Fbin ¼ CbinT=12 and Ubin ¼ CbinT=4.

In Figs. 11 and 12, we plot the ratios of the three ther-

modynamic functions of binary mixtures for several a and b
to the same thermodynamic functions of the occ (a ¼ b ¼ 1)

with respective lattice (i.e., bcc for the sc2-mixtures and hcp

for the h2-mixtures). The ratios are calculated as functions of

T=T s, while the thermodynamic functions in the denomina-

tor are taken at T=T p ¼ T=T s. Accordingly, to find the value

of a thermodynamic function of a binary crystal at

T=T s ¼ x0, one has to take the ratio at argument x0 and

multiply by the thermodynamic function of the occ at

T=T p ¼ x0. The latter can be taken from Ref. 8 for the bcc

crystal and will be published elsewhere42 for the hcp crystal.

In Fig. 11(a), we consider the thermodynamic functions

at a¼ 1 for several representative values of b, for both types

of lattices. One can see that the dependencies are qualita-

tively very similar for the ratios of different thermodynamic

functions. The energy and heat capacity ratios tend to 1 at

high temperatures and to a constant, which depends on b but

not on the lattice type, at low temperatures. The free energy

ratio also tends to the same constant in the quantum limit but

at high temperatures, due to the logarithmic character of the

asymptotes, its convergence to 1 is much slower. The ther-

modynamic functions in the quantum regime are higher for

mixtures with a¼ 1 and b 6¼ 1 than for the occ, which can be

attributed to softening of acoustic modes near the Brillouin

zone center (cf. Figs. 3 and 5). In general, for a¼ 1, there is

only a slight difference between the lattice types.

The situation is drastically different in Fig. 11(b), where

a ¼ 1:2. In this case, the behavior of the ratios, including

their low temperature limits, is very sensitive to the lattice

type. Since a ¼ 1:2 is already close to the lattice destruction

TABLE I. Moments of the sc2 and h2 lattices used to obtain the ratios plotted in Figs. 7–9. The values of a and b are given in parenthesis.

sc2 (1,1) sc2 (1,0.75) sc2 (1,1.5) sc2 (1,2) sc2 (2,1) sc2 (3,1) h2 (1,1) h2 (1,0.75) h2 (1,1.5) h2 (1,2)

u1 0.5113877 0.51034 0.509323 0.505521 0.506311 0.496956 0.5133369 0.512183 0.511061 0.506868

u�1 2.79853 2.82212 2.84545 2.93644 2.77208 2.87589 2.70183 2.72385 2.74563 2.83054

u�2 12.9725 13.2431 13.5131 14.5941 11.4364 12.0446 11.8421 12.0888 12.3356 13.3225

�uln 0.831295 0.836452 0.841501 0.860741 0.84212 0.875976 0.816031 0.821185 0.826236 0.845477
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for the h2 mixture, one observes a strong increase of the

ratios (and thermodynamic functions) at intermediate tem-

peratures. It can be explained by a strong reduction of

phonon mode frequencies near the Brillouin zone point H

(cf. Fig. 4), as a approaches 1.25.

The heat capacity ratio at a � 2 is plotted in Fig. 12 for

the sc2 lattice only. At such a, the sound speed increases in

some directions of the wavevector and decreases in some

other (cf. Fig. 2), the net effect being a reduction of the ther-

modynamic functions of the mixtures in the quantum limit.

For some combinations of parameters (most notably a¼ 2,

b¼ 3, and a ¼ 3:5; b ¼ 3:5), an interesting structure with a

hump and a trough can be observed at intermediate T=T s.

Most likely it is associated with a gradually emerging gap

between the upper and lower frequencies with increase of b
(cf. Fig. 3, where the gap around x � 0:4xs is already fully

developed at b¼ 10 in the directions shown).

At very high b, due to the wide separation between the

upper and lower modes (Sect. IV), the thermodynamic func-

tions of a mixture demonstrate a rather peculiar behavior.

There exists a range of temperatures, where the three lower

modes are fully excited, while the three upper ones are still

exponentially suppressed (Fig. 6). The specific heat becomes

equal to 1.5 and stays at this value for a wide range of

intermediate temperatures. When the temperature exceeds

T s, the specific heat approaches 3. It thus has a pronounced

staircase shape. Similar effects take place for the energy and

free energy. In Fig. 13 (a¼ 1, b ¼ 105), the dashed line

shows the contribution to the specific heat of the three lower

modes, while the solid line is the total specific heat of the

sc2 lattice.

Based on the numerical data, we have found a conven-

ient fitting formula for the quantum asymptote coefficient

H a; bð Þ ¼H0

a0 þ a1aþ a2a2 þ a3a3

16
ffiffiffi
2
p

a2:5 1þ b1aþ b2a2 þ b3a3ð Þ

� 1þ að Þ3=2
1þ bð Þ3=2

1þ a
b

� �3=2

; (13)

where ai, bi are given in Table II. By construction of the fit

Hð1; 1Þ ¼ H0, where H0 ¼ 2512:0 and 2988.2 for the bcc

and hcp crystals, respectively. The dependence of Hða; bÞ on

b is very simple. H has a minimum at b ¼
ffiffiffi
a
p

, and also

Hða; bÞ ¼ Hða; a=bÞ. At a¼ 1, this reflects the fact that

mixtures with b ¼ b0 and b ¼ 1=b0 are identical (see

Fig. 11(a)). The validity of this equality at a¼ 2 is seen in

Fig. 12, where the curves with b ¼ b0 and b ¼ 2=b0 merge

at low temperatures.

FIG. 13. Heat capacity for the sc2 lattice at M2 � M1 and a¼ 1.

FIG. 11. Ratio of heat capacity, thermal energy and thermal free energy of a binary lattice (sc2 or h2) at different b and a¼ 1 (a) or a ¼ 1:2 (b) to heat

capacity, thermal energy and thermal free energy of the respective occ (bcc or hcp).

FIG. 12. Ratio of heat capacity of the sc2 lattice at different a and b to heat

capacity of the bcc lattice.
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Finally, it is worthwhile to compare the thermodynamic

functions of a one-to-one Coulomb crystal mixture calcu-

lated using the linear mixing theory with the exact results

obtained from the phonon spectrum. Using the heat capacity

as an example and following Ref. 18, we can write

Clm ¼ N1C1ðZ1;M1Þ þ N2C2ðZ2;M2Þ, where CiðZi;MiÞ is

the specific heat of the occ at the same temperature and elec-

tron number density as in the mixture. Our calculations show

noticeable deviation of the lm predictions from the exact

results at intermediate and low temperatures for crystals with

significant difference between ions (Fig. 14). For example,

for a¼ 2 and b¼ 1, the specific heat calculated by the lm

rule is 2.4 times greater than the actual one at low tempera-

tures. For the carbon-oxygen mixture (12Cþ16O), Clm=Cbin

varies from 1 at T=Ts � 1 to 1.268 at T 
 Ts. In Fig. 14,

only for the 62Ni þ78Ni and 56Fe þ62Ni mixtures, the differ-

ence between Clm and Cbin at low temperatures is small and

does not exceed a few percent. For these two mixtures, the

right-hand y-axis should be used. Similar conclusions also

hold true for the thermal energy and thermal free energy.

VII. CONCLUSIONS

We have studied physical properties of ordered

Coulomb crystal mixtures from the first principles in the har-

monic lattice model. We have derived rapidly converging

practical expressions for the electrostatic energy and the

dynamic matrix of an arbitrary multi-component Coulomb

crystal. The general expressions have been applied to binary

Coulomb crystals with equal number of ions of two different

types with sc2 and h2 lattices, and these systems have been

analyzed in considerable detail (the sc2 and h2 lattices turn

into the bcc and hcp lattices if all ions are identical).

We have confirmed our earlier findings that the sc2 and

h2 lattices are stable if the ratio of ion charges a in the binary

crystal is below 3.60 and 1.25, respectively, regardless of the

ion mass ratio b (by definition a � 1). We have also com-

pared the exact binary crystal electrostatic energy with that

obtained from the linear mixing theory. The relative inaccur-

acy of the latter for the electrostatic energy is shown to be

not worse than a few parts per thousand.

The dynamic matrix allows one to determine the phonon

spectrum of a crystal. Phonon spectrum moments and ther-

modynamic functions have been calculated by numerical

integration over the first Brillouin zone for a wide range of

temperatures, a, and b. For all mixtures, the Dulong-Petit

and Debye laws are satisfied. The dependence of the Debye-

law coefficient on a and b have been approximated by a con-

venient analytic formula with good accuracy for both latti-

ces. We have also investigated the phonon properties for

binary crystals with very different ion masses (b� 1). In

this limit, a gap develops in the crystal spectrum, which

separates the low-frequency (�xs=
ffiffiffi
b
p

) modes, correspond-

ing to a joint motion of both types of ions, from the high-

frequency (�xs) modes, describing the oscillations of the

lighter ions with respect to the heavier ones. As a result, the

spectrum moments have very simple asymptotic behavior.

Also, the temperature dependence of the crystal thermody-

namic functions assumes a pronounced staircase shape,

because the low-frequency modes saturate at temperatures,

where the high-frequency modes are still exponentially

suppressed.

Finally, we have checked the accuracy of the linear mix-

ing predictions for the phonon thermodynamic functions

against our results based on the actual phonon spectra of bi-

nary mixtures. It turned out that the linear mixing theory

does a rather poor job being off by tens to hundreds per cent

at intermediate and low temperatures, especially, for crystals

with significantly different ions.
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