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Electrostatic energy of Coulomb crystals with polarized electron background
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Outer crusts of neutron stars and interiors of cool white dwarfs consist of bare atomic nuclei, arranged in a
crystal lattice and immersed in a Fermi gas of degenerate electrons. We study electrostatic properties of such
Coulomb crystals, taking into account the polarizability of the electron gas and considering different structures,
which can form the ground state: body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed
(hcp), and MgB2-like lattices. At zero temperature the electrostatic energy provides a fundamental contribution to
the total energy of the classical Coulomb crystal, which allows us to study structural transitions in the neutron-star
crusts and crystallized white-dwarf interiors. To take the electron background polarization into account, we use
the linear response theory with the electron dielectric function given either by the Thomas-Fermi approximation
or by the random-phase approximation (RPA). We compare the widely used nonrelativistic (Lindhard) version
of the RPA with the more general, relativistic (Jancovici) version. The results of the different approximations
are compared to assess the importance of going beyond the Thomas-Fermi or Lindhard approximations. We
also include the contribution of zero-point vibrations of ions into the ground-state energy. We show that the
bcc lattice forms the ground state for any charge number Z of the atomic nuclei at the densities where the
electrons are relativistic (ρ � 106 g cm−3), while at the nonrelativistic densities (ρ � 106 g cm−3) the fcc and
hcp lattices can form the ground state. The MgB2-like lattice never forms the ground state at realistic densities
in the crystallized regions of degenerate stars. The RPA corrections strongly affect the boundaries between the
phases. As a result, transitions between different ground-state structures depend on Z in a nontrivial way. The
relativistic and quantum corrections produce less dramatic effects, moderately shifting the phase boundaries.
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I. INTRODUCTION

A model of Coulomb plasma assumes that the system
consists of pointlike charged particles and the neutralizing
background. The basic physics behind this model was ex-
plored in many works and summarized in a number of review
papers, textbooks, and monographs (e.g., [1–3] and references
therein). This model is quite universal and is used in many
areas of physics, for example, in astrophysics, for the descrip-
tion of vastly different objects such as neutron stars, white
dwarfs, gas giants, and dusty clouds (see, e.g., [4–10]).

At sufficiently low temperatures or high densities, the
Coulomb plasma forms a crystal (see, e.g., Ref. [11] for a
discussion of the phase diagram of Coulomb crystals in clas-
sical and quantum plasmas). In particular, some regions of the
degenerate stars, namely, crusts of neutron stars (see, e.g., [9]
and references therein) and cores of sufficiently cool white
dwarfs (see, e.g., [9,12] and references therein), are formed
by Coulomb crystals, where a lattice of bare atomic nuclei
is embedded in the background of degenerate electrons. The
question of which type of crystal lattice forms in such stars is
not completely resolved. For crystals with the same ion charge
number Z , it was discussed in [9,13–15]. More complex sys-
tems with two or three different charged ions were studied in
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[14–17]. In all of the papers cited above, the uniform electron
background was considered.

The aim of the present paper is to take into account the
influence of the electron background polarization on the elec-
trostatic energy and the ground state of a Coulomb crystal.
Previously this problem was studied only for body-centered-
cubic (bcc) and face-centered-cubic (fcc) lattices [1,18–21].
In this paper we investigate other lattices, such as hexagonal
close-packed (hcp) and one-component MgB2. This allows us
to construct a more complete picture of structural transitions
in degenerate stars. Like previous authors, we assume that the
electron screening is weak, which is justified in the case of
strongly degenerate electrons. We consider different lattices,
calculate their ground-state energies, and find which lattice
is preferable. The electron polarization effects are described
in terms of the linear response theory by the dielectric func-
tion, for which we use and compare three approximations:
the widely used Thomas-Fermi theory, the Lindhard model
[22] based on the nonrelativistic random-phase approxima-
tion (RPA), and the extension of the Lindhard model for the
relativistic electrons [23] (see also, e.g., [1,24]). Comparing
the results obtained using these three models, we estimate
the importance of the corrections beyond the Thomas-Fermi
approximation and of the effects of special relativity.

The paper is organized as follows. In Sec. II we introduce
the basic parameters of the polarized electron background and
present the three different approximations for the dielectric
function, which are used in the subsequent sections. In Sec. III
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we determine the ground-state structure of the Coulomb
plasma, following the approach of Chamel and Fantina [14].
According to this approach, at zero temperature the type of
lattice is mainly determined by the electrostatic energy, all
pointlike ions being in equilibrium positions Rl . We compute
the electrostatic energy in different approximations and com-
pare the results for the phase boundaries between different
ground-state structures. In Sec. IV we go beyond the approach
of Chamel and Fantina [14] by taking into account the zero-
point vibrations of ions around their equilibrium positions. In
Sec. V we check the accuracy of the calculated ground-state
energy and positions of phase boundaries by evaluation of
possible corrections to our approximations. Results are dis-
cussed and conclusions are given in Sec. VI.

II. PARAMETERS AND APPROXIMATIONS
FOR POLARIZED BACKGROUND

Since ions move slowly, it is sufficient to use the linear
response approximation and the static longitudinal dielectric
function ε(q) to describe the degenerate electron background
[25]. In the approximation of the uniform (rigid) back-
ground, ε(q) = 1. In the present paper we take the background
nonuniformity into account by considering only the first-order
perturbation corrections to the dielectric function ε(q). It is
convenient to write

ε(q) = 1 + κ2
TF

q2
ε2(q), (1)

where q is the wave number, ε2(q) is the correction, which
will be discussed later, and

κTF =
√

4πe2
∂ne

∂μe
≈ 2

√
e2

π h̄vF

pF

h̄
(2)

is the Thomas-Fermi electron wave number. Here ne is the
electron number density, μe is the electron chemical poten-
tial, pF = h̄(3π2ne)1/3 is the Fermi momentum, and vF =
∂EF /∂ pF is the Fermi velocity, with EF the Fermi energy. The
first equality in Eq. (2) is quite general, while the second is ap-
proximately valid in the case of strongly degenerate electrons,
where μe ≈ EF .

In degenerate stars, the electrons can be relativistic due to
high densities. The relativity parameter [26] is

x ≡ pF

mec
≈ 0.01(ρZ/A)1/3, (3)

where me is the electron mass, ρ is mass density in units of
g cm−3, Z is the ion charge number, and A is the relative
atomic weight of the considered isotope. The second part of
Eq. (3) assumes the neutrality condition ne = Zn, where n is
the ion number density.

In plasma physics, it is customary to use the dimensionless
density parameter rs = ae/aB, where ae = (4πne/3)−1/3 is the
electron sphere radius and aB ≡ h̄2/mee2 is the Bohr radius. It
is related to the relativity parameter as rs = (9π/4)1/3α/x ≈
0.014/x, where α ≡ e2/h̄c is the fine structure constant.

In general, Eq. (2) is valid both for the nonrelativistic
treatment and for the special relativity taken into account. In

the latter case, Eq. (2) leads to the expression

κTFae =
(

18√
π

)1/3√
αγ

x
≈ 0.185

√
γ

x
, (4)

where γ ≡ √
1 + x2 is the electron Lorentz factor on the

Fermi surface.
The importance of the electron polarization is mainly in-

dicated by the Thomas-Fermi parameter κTFa, where a ≡
(4πn/3)−1/3 is the ion sphere radius. The charge neutrality
requires that a = aeZ1/3, and then Eq. (4) yields

κTFa ≈ 0.185Z1/3

√
γ

x
. (5)

The model of a uniform electron background is equivalent
to neglecting the term with ε2(q) in Eq. (1). To go beyond this
approximation, we use three expressions for ε2(q). The most
common of them is the Thomas-Fermi approximation, which
is valid in the long-distance (short-wave-number) limit at any
x. It gives

ε2TF(q) = 1. (6)

In the nonrelativistic case (x � 1) and for strongly degenerate
electrons, the RPA leads to the Lindhard dielectric function
[22]

ε2L(q) = 1

2
+ 1 − y2

4y
ln

∣∣∣∣1 + y

1 − y

∣∣∣∣, (7)

where y = h̄q/2pF ≈ 0.26qae. The RPA with allowance for
the electron relativity leads to the Jancovici model [23]

ε2J (q) = 2

3
− 2

3

y2x

γ
ln(x + γ ) + x2 + 1 − 3x2y2

6yx2
ln

∣∣∣∣1 + y

1 − y

∣∣∣∣
+ 2y2x2 − 1

6yx2

√
1 + x2y2

γ
ln

∣∣∣∣∣yγ +
√

1 + x2y2

yγ −
√

1 + x2y2

∣∣∣∣∣. (8)

The Jancovici dielectric function reduces to the Lindhard di-
electric function in the nonrelativistic limit x → 0, and both
the Lindhard and Jancovici models reduce to the Thomas-
Fermi model in the long-wavelength limit y → 0.

III. ELECTROSTATIC ENERGY

A. Uniform background

First let us outline the main results for the Coulomb crys-
tals with the uniform background. The electrostatic energy of
such crystals can be written as

UM = N
Z2e2

a
ζ , (9)

where ζ is called a Madelung constant and N is the total
number of ions. Accurate values of the Madelung constant for
four lattices with the lowest UM are quoted in Table I from
previous works (see the recent review [15] and references
therein).

Here we use the traditional geometry of the hcp lattice (see,
e.g., [27]) with the distance between hexagonal layers h0/2 =√

2/3al ≈ 0.816 497al , where al is the lattice constant and
h0 is the height of the primitive Bravais cell, while for the
one-component lattice of the MgB2 type the lowest-energy
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TABLE I. Madelung constant ζ in Eq. (9) and coefficient ηTF of
the quadratic approximation (15) for the bcc, fcc, hcp, and MgB2

lattice types.

Lattice ζ ηTF

bcc −0.895929255682 −0.103732333707
fcc −0.895873615195 −0.103795687531
hcp −0.895838120459 −0.103809851801
MgB2 −0.89450562823 −0.104080616256

configuration is used. The electrostatic energy of the Coulomb
hcp lattice is the lowest for the lattice with h0/2 replaced
by hmin/2 ≈ 0.817 82al , but this difference affects only the
seventh significant digit of UM and is unimportant, as we show
in Sec. V below.

From Table I we see that the bcc lattice has the lowest
electrostatic energy. So its formation among all lattices with
one type of ion in the elementary cell and uniform background
is most likely. For the multicomponent crystals, formation of
other lattices is also possible (see, e.g., [14,15] and references
therein).

B. Polarized background: Basic notation

Expressions for the electron screening corrections to the
thermodynamic functions of the one-component plasmas have
been derived in terms of the thermodynamic perturbation the-
ory by Galam and Hansen [28]. In the particular case of the
one-component Coulomb crystal in the harmonic approxima-
tion, the polarization correction to the electrostatic energy can
be written as [20]

�Upol = N
Z2e2

a

3

2N2
cell

′∑
m

1

(Gma)2

[
1

ε(Gm)
− 1

]

×
∑
p,p′

eiGm (χp−χp′ ), (10)

where Ncell is the number of ions in the elementary cell and
the sums run over all basis vectors χp in the elementary cell (p
and p′) and all reciprocal lattice vectors Gm with the exception
of G = 0. The total electrostatic energy with the polarization
correction becomes

U = UM + �Upol. (11)

Three approximations for the dielectric function, given by
Eqs. (6)–(8), yield three different values of electrostatic en-
ergy, which we denote by UTF, UL, and UJ , respectively.

Equation (1) is written in the linear response approxima-
tion, which is valid if the typical energy of the electron-ion
interaction Ze2/a is small compared to the Fermi energy EF .
Since

Ze2/a

EF
= x2

γ (γ − 1)

(κTFa)2

34/3
< 0.463(κTFa)2, (12)

the condition Ze2/a � EF is satisfied to a good accuracy,
provided κTFa � 1. This condition is usually fulfilled in the
crystallized regions of the degenerate stars. It justifies ε(q) in
Eq. (1) containing only polarization corrections proportional

to κ2
TF. Higher-order corrections to the dielectric function are

unknown. To estimate the possible effect of the higher-order
terms, we expand the electrostatic energy in a series in powers
of κTFa up to the quadratic terms. Then Eq. (10) is reduced to

U2pol = −N
Z2e2

a
(κTFa)2

× 3

2N2
cell

′∑
m

ε2(Gm)

(Gma)4

∑
p,p′

eiGm (χp−χp′ ). (13)

Energies U2 ≡ UM + U2pol are denoted further in the text by
U2J , U2L, and U2TF for the Thomas-Fermi, Lindhard, and
Jancovici models, respectively.

C. Thomas-Fermi model

The Thomas-Fermi model is the simplest and most widely
used approximation for describing the effects of electron po-
larization. It was applied to studies of the Coulomb crystals in
degenerate stars in many works (e.g., [18–20] and references
therein). However, all previous investigations concerned only
the bcc and fcc lattices. Here we extend the consideration to
two other types, hcp and MgB2 lattices.

As can be seen from Eqs. (1), (6), (9), and (10), for each
lattice type the dimensionless ratio UTF/NZ2e2a−1 depends
only on the single parameter κTFa. To obtain the electrostatic
energy, as can be seen from Eq. (13), one has to calculate
slowly converging sums like

∑
m(−1)mG−4

m . In the Thomas-
Fermi model, this difficulty can be overcome by the Ewald
rearrangement [29], which reduces Eqs. (9) and (10) to

UTF = NZ2e2

{
1

Ncell

∑
l,p,p′

(1 − δRl 0δpp′ )
E− + E+

4Yl

− κTF

2
erf

(κTF

2A
)

− A√
π

exp

(
− κ2

TF

4A2

)

− 2πn

κ2
TF

+ 1

N2
cell

∑
m,p,p′

2πn

G2
m + κ2

TF

× exp

[
−G2

m + κ2
TF

4A2
− iGm(χp − χp′ )

]}
, (14)

where E± = e±κTFYl erfc(AYl ± κTF/2A), Y l = Rl + χp − χp′ ,
erf (x) is the error function, erfc(x) ≡ 1 − erf (x), and A is
an arbitrary constant; a good numerical convergence of both
sums is provided by A ≈ 2/a [20].

In Fig. 1 the electrostatic energy U is plotted in different
approximations for the bcc lattice. In the chosen scale, the
difference between the results for different lattice types is
not noticeable. In the full Thomas-Fermi model (14), the bcc
lattice has the lowest electrostatic energy at κTFa < 1.065 714,
while the fcc lattice has the lowest UTF at larger κTFa.

The situation changes if we take the first two terms of the
series expansion in the parameter κTFa only. This approxima-
tion gives

U2TF = N
Z2e2

a
[ζ + ηTF(κTFa)2], (15)
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FIG. 1. Electrostatic energy of the bcc lattice in units of NZ2e2/a
in different approximations. The full Thomas-Fermi approximation
UTF [Eq. (14), solid curve] and in the second-order approximation
U2TF [Eq. (15), dashed curve] are compared with the rigid back-
ground approximation UM [Eq. (9), the horizontal line] and with
the more accurate approximations due to Lindhard (UL , Sec. III D,
dotted lines) and Jancovici (UJ , Sec. III E, dot-dashed lines) for
carbon (Z = 6) and iron (Z = 26). The triangle and circle mark the
minimum of κTFa in the relativistic (Jancovici) theory for C and Fe,
respectively.

where the constant ηTF depends on the type of lattice and is
presented in the last column of Table I. At the selected scale
in Fig. 1 the difference between UTF (solid line) and U2TF

(dashed line) is noticeable only at κTFa � 1. The difference
between energies of different lattices is very small, and the
structural transition between the bcc and fcc lattice moves
from κTFa = 1.065 714 to κTFa = 0.937 15. Furthermore, at
κTFa > 1.583 01 the hcp lattice will possess the smallest U2TF,
while at κTFa > 2.218 38 the MgB2 lattice becomes energet-
ically preferable. However, with the exception of the bcc-fcc
transition, all other transitions are outside the limits of the the-
ory applicability. The dotted and dot-dashed curves in Fig. 1
show the electrostatic energy in more advanced approxima-
tions, which are discussed below.

D. Lindhard model

The Lindhard expression for the dielectric function [22]
and its generalization by Mermin [30] are widely used in
plasma physics (see, e.g., [28,31]). The underlying RPA
makes this model more accurate than the Thomas-Fermi
model.

In this case, the Ewald resummation cannot be performed
explicitly. Therefore, we calculate the total electrostatic en-
ergy UL according to Eqs. (7), (10), and (11). Unlike the
Thomas-Fermi model, the single parameter κTFa is not suf-
ficient anymore. Since ε2L(q) in Eq. (7) contains an argument
y ∝ qae, the second dimensionless parameter appears, ae/a,

FIG. 2. Ranges of charge number Z , relativity parameter x, and
density parameter rs, at which the fcc or hcp lattice (hatched ar-
eas according to the legend) forms the ground state of a classical
Coulomb crystal with polarizable electron background. The dashed
and solid hatchings correspond respectively to the Lindhard and
Jancovici approximations to the dielectric function of the electron
background. In the white area, the ground state is formed by the
bcc lattice. The dot-dashed line corresponds to κTFa = 1.065 714 and
separates the regions where the ground state is bcc (above the line,
where κTFa is smaller) or fcc (below the line, where κTFa is larger) in
the Thomas-Fermi approximation.

which equals Z−1/3 due to the charge neutrality. In Fig. 1
the dotted lines show UL for carbon and iron, which are
most typical chemical elements in the white-dwarf cores and
neutron-star envelopes. In both cases the polarization correc-
tion appears smaller than in the Thomas-Fermi model. The
difference UL − UTF is smaller for the larger Z , which reflects
the well-known fact that the Thomas-Fermi theory becomes
more accurate with increasing Z .

Results for the ground-state structure are presented in
Fig. 2, where the different regions hatched by the dashed lines
show the range of parameters Z and x at which the fcc or
hcp lattice has the lowest total energy, while the white area
corresponds to the bcc lattice. The MgB2 lattice is never en-
ergetically preferred in the density range shown in this figure,
where formation of Coulomb crystals can be expected in the
degenerate stars. The right vertical axis displays the density
parameter rs, which is more customary than x in the nonrel-
ativistic theory. The dot-dashed line corresponds to κTFa =
1.0657, which describes the structural transition between the
bcc and fcc lattices in the Thomas-Fermi model. Recalling
that the linear response theory is justified at κTFa � 1, we
should accept the results in the region below this line with
caution. Anyway, we see a remarkable difference between
the results obtained using the Thomas-Fermi and Lindhard
models. For the latter model (unlike the former one), the
ground-state structure depends on Z in a nontrivial way, if the
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density parameter rs � 0.01 (x � 1.4). However, in any case,
the bcc lattice forms the true ground state at rs < 0.01.

E. Jancovici model

The Lindhard expression for the dielectric function is
derived in the nonrelativistic formalism; therefore, it is appli-
cable only at x � 1. The Jancovici model [23] generalizes the
Lindhard model, taking the effects of special relativity into
account. Since the relativity parameter x is not small in the
crystallized regions of the most typical neutron stars and white
dwarfs, the Jancovici model is more suitable in the theory of
these stars (see, e.g., [1,9]), although it is used relatively rarely
(e.g., [20,32,33]). For studying the electrostatic energy, it was
employed only in Ref. [20] for the bcc and fcc (but not hcp)
lattices.

The electrostatic energy for the Coulomb plasma of carbon
and iron, calculated using the Jancovici model (UJ ), is shown
in Fig. 1 by dot-dashed curves (see the data in [34]). These
curves are not continued to κTFa = 0, because in the rela-
tivistic theory the Thomas-Fermi parameter cannot be smaller
than (κTFa)min = 0.185Z1/3, according to Eq. (5). Hence the
electrostatic energy noticeably differs from the limit UM at
any density. We see that UL and UJ are almost identical at
κTFa � 2(κTFa)min, but the results of the two models sub-
stantially differ at smaller values of κTFa; thus, the special
relativity effects reduce the polarization correction by ∼30%
at κTFa ∼ (κTFa)min.

The areas hatched with the solid lines in Fig. 2 show
the ranges of the parameters Z and x where the fcc or hcp
lattices have the lowest electrostatic energy according to the
relativistic (Jancovici) model of the dielectric function. They
can be compared with the areas hatched with the dashed lines,
which show analogous regions according to the nonrelativistic
(Lindhard) model, which we considered in Sec. III D. The
difference between these two approximations is noticeable
only at x ∼ 1. Qualitatively, the results are very similar. This
means that the relativistic corrections to the dielectric function
are not very important for the structural transitions of the
Coulomb crystals. This is quite expected since the structural
transitions occur mostly at x � 1. Note that relativistic cor-
rections are rather insignificant also for the phonon spectra of
Coulomb crystals [17,20].

In Fig. 3 we plot structural transitions for the second-order
approximation U2J . Here x and κTFa are chosen as inde-
pendent parameters. Our results for the bcc and fcc lattices
reproduce the results of Baiko [20]. At high x the transition
between the bcc and fcc lattices takes place at κTFa between
0.935 and 0.945, which is consistent with the result of the
Thomas-Fermi approximation (which gives the transition at
κTFa ≈ 0.937 15). At low densities the pattern of ground-state
structures is more complicated. In the latter case, several do-
mains appear in the parameter plane where the hcp lattice is
energetically preferable according to the Jancovici model.

IV. ZERO-POINT VIBRATIONS

In the previous sections we did not consider zero-point
quantum vibrations of ions around their equilibrium posi-
tions. This model would be accurate for very massive ions.

FIG. 3. Ranges of parameters x and κTFa at which one or another
lattice has the smallest U2J . The bcc lattice forms the ground state
in the white region, the fcc lattice in the blue cross-hatched regions,
and the hcp in the red filled regions. The dashed lines corresponds to
Z = 3, 4, 6, 8, 26, and 40 (marked near the curves).

In reality, the relative atomic weight A varies from A ≈ 2Z
in the outer shells of neutron-star crusts or crystallized cores
of white dwarfs to A ≈ 3.5Z near the neutron-drip point in
the neutron-star crust. In this section we consider the effects
of the quantum vibrations on the ground-state structure of a
Coulomb crystal, assuming A = 2Z . In this way we obtain an
estimate of the upper limits for these effects, because a larger
A would result in a smaller vibration energy and accordingly
a smaller difference from the results obtained for the classical
(fixed in space) ions.

The energy of the ground-state quantum vibrations of a
three-dimensional harmonic lattice equals (cf., e.g., [24])

E0 = 3
2 Nh̄〈ω〉, (16)

where 〈ω〉 is the phonon frequency ων (k), averaged over all
phonon modes ν and wave vectors k in the first Brillouin
zone. In the first approximation, the total ground-state energy
is given by the sum E = U + E0, where U is the electrostatic
energy (11). Equation (16) can be written in the dimensionless
form as

E0

NZ2e2/a
= 3

2

√
3

RS
u1, (17)

where RS ≡ a/[h̄/mion(Ze)2] ≈ 1823AZ7/3rs is the ion den-
sity parameter (analogous to rs for the electrons), u1 ≡
〈ω〉/ωp, ωp =

√
4πnZ2e2/mion is the ion plasma frequency,

mion = Amu is the ion mass, and mu is the unified atomic mass
unit.

To calculate 〈ω〉 and thus u1, the phonon spectrum was
obtained by solving the dispersion equation, as described in
Ref. [17], det{Dαβ

ss′ (k) − ω2
ν (k)δαβδss′ } = 0, where s and s′

run over the ions in the elementary cell and Dαβ

ss′ (k) is the
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TABLE II. Parameters of Eq. (18).

Lattice u0
1 p1 p2 p3 p4

bcc 0.5113874 0.246236 0.05496 0.0026 0.08457
fcc 0.5131940 0.244996 0.05490 0.0025 0.08463
hcp 0.5133369 0.245250 0.05663 0.0021 0.08599

dynamic matrix. Generally, Dαβ

ss′ (k) is given, e.g., by Eq. (5.6)
of Ref. [18], but in this section we calculate it in the Thomas-
Fermi approximation [according to Eqs. (3)–(5) of Ref. [16]].

The electron polarization decreases u1 and slightly affects
the differences �u1 between the different lattice types. In the
Thomas-Fermi model this dependence is well described by the
simple Padé approximation

u1 = u0
1[1 + p4(κTFa)3]

1 + p1(κTFa)2 + p2(κTFa)4 + p3(κTFa)6
, (18)

where u0
1 is the value of u1 in the one-component plasma

model with the rigid background and pi are fitting param-
eters, which are given in Table II. The computed and fitted
dependences of u1 on κTFa are shown in Fig. 4. The residuals
between the fit, Eq. (18), and the numerical results are smaller
than 5×10−6 [see Fig. 4(b)], which provides a good analytic
approximation to the differences �u1, which are typically a
few times 10−3–10−4 in this approximation [Fig. 4(c)].

(a)

(b)

(c)

FIG. 4. (a) Dependence of the first phonon moment u1 on the
Thomas-Fermi parameter: computed values (black circles, blue
squares, and red triangles for the bcc, fcc, and hcp Coulomb lattices,
respectively) and the analytic fit (18) (solid, dashed, and dotted lines,
respectively). (b) Fit residuals, multiplied by 106. (c) Excess of the
first phonon moment u1 for the fcc and hcp Coulomb lattices over that
for the bcc lattice, calculated from the numerical results (symbols)
and the analytic fit (lines).

FIG. 5. Same as in Fig. 2, but taking the zero-point ion vibrations
into account (solid lines and hatched areas). For comparison, the
dashed lines and dashed hatched areas show the results without the
zero-point vibrations. The Jancovici model for the electron dielectric
function is used in all the cases.

The zero-point energy given by Eqs. (16) and (18) was
added to the electrostatic energy, computed according to
Eqs. (10) and (9), to obtain the total ground-state energy E of
a Coulomb crystal. Its absolute ground state is formed by the
lattice that delivers the lowest ground-state energy. The results
of this evaluation are shown in Fig. 5. Here we have assumed
A = 2Z . A larger value of A would lead to smaller differences
from the classical ion model, whose results are also repro-
duced in this figure. We see that the zero-point vibrations
almost do not affect the boundaries of the hcp domain. They
somewhat decrease the densities of the fcc-bcc transition, but
this effect is not profound; it is even smaller than the one due
to the special relativity corrections (cf. Fig. 3).

V. POSSIBLE SMALL CORRECTIONS

One may note that the results presented in Figs. 4 and 5
rely on the dependence of u1 on the polarization parameter
κTFa obtained using the Thomas-Fermi model, which results
in the one-parameter dependence u1(κTFa). A more accurate
(e.g., Lindhard or Jancovici) model gives a two-parametric
dependence u1(κTFa, x). An example of the bcc Coulomb
lattice at κTFa = 0.5 presented in Ref. [35] indicates that the
difference of the first phonon moment in the Thomas-Fermi
approximation u1 relative to its rigid-background value u(0)

1
may be slightly smaller in the Jancovici model than in the
Thomas-Fermi model. It is difficult to evaluate the differ-
ences between �u1 between the different lattice types beyond
the Thomas-Fermi approximation with the accuracy that is
needed to determine the effect on the boundaries between dif-
ferent ground-state lattice types, but the rough estimation for
κTFa = 0.5 shows that u1 of the fcc lattice is greater than the
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u1 of the bcc lattice at any x. For instance, at x = 1, u1,bcc ≈
0.485 87 while u1,fcc ≈ 0.486 86. Hence we expect that the
x dependence of u1 cannot qualitatively change the results
presented in Fig. 5. To check this last statement, we repeated
our calculations in the extreme case, where the polarization
dependence of u1 was completely suppressed (i.e., u1 = u(0)

1 ),
and found that the boundaries between different structural
phases in Fig. 5 shift by no more than � log10 x � 0.0065,
provided x � 0.1, which means that the densities of phase
boundaries vary by less than 1.5%. Clearly, such a small shift
of the boundary cannot have any observable consequence, so
it is safe to use Eq. (16) with the one-parameter expression
(18) for evaluation of the zero-point ion vibration energy.

As mentioned above, in the bulk of our numerical calcula-
tions we set the height of the primitive cell in the hcp lattice at
h0 = √

8/3al . However, the true minimum of the electrostatic
energy U (h) as a function of the cell height h is reached
at a slightly larger height value hmin. In the Thomas-Fermi
approximation for the polarizable electron background, hmin

slowly decreases with increasing κTFa and can be reproduced
at κTFa � 3 by the fitting expression

hmin ≈ h0 + 0.002 65

{
1 − 0.155(κTFa)2

1 + 0.11(κTFa)2

}
. (19)

The corresponding difference in the ground-state energy is
described by the fit

�ζh ≡ U (hmin) − U (h0)

NZ2e2/a
≈ −3.3×10−7 exp

[
− (κTFa)2

2

]
.

(20)

At κTFa � 3 these expressions provide absolute accuracy
within ∼10−5 for hmin and within ∼5×10−9 for �ζh. This
correction shifts the densities of transitions between different
ground-state structural phases in Figs. 2 and 5 by �0.7%.

The MgB2 lattice has a similar insignificant dependence
hmin on κTFa (see the discussion in Ref. [21]).

VI. DISCUSSION AND CONCLUSIONS

We used and compared several theoretical models to study
the influence of the polarization of a degenerate electron
background to the electrostatic properties of Coulomb crystals
and to their structure in neutron-star crusts and white-dwarf
interiors.

The studies of the electrostatic energies of Coulomb crys-
tals with uniform background appear to be quite complete
now, as presented in the review in [15]. Based on the results
of Ref. [15], we chose four lattices with the lowest Madelung
constant (bcc, fcc, hcp, and MgB2) and investigated polariza-
tion effects for them. Since the MgB2 lattice never has the
lowest energy, the formation of other lattices, which were not
considered in the present work, is very unlikely.

The Thomas-Fermi model predicts that at κTFa <

1.065 714 the bcc lattice forms the ground state, while at
higher κTFa the fcc lattice is energetically preferable. The
Thomas-Fermi model, as well as the linear response theory
in general, allows one to obtain only corrections ∼(κTFa)2.
Our estimate of the effect of the higher-order corrections
shows that they can noticeably change the general picture of
structural transitions. For instance, omitting all higher-order

corrections to the electrostatic energy within the Thomas-
Fermi model leads to the shift of the transition between bcc
and fcc lattices to κTFa ≈ 0.937 15, while at κTFa ≈ 1.583 01
the transition between the fcc and hcp lattices appears.

The Lindhard and Jancovici RPA-based models give quite
similar results for the ground-state lattice structure, which
qualitatively differ from the Thomas-Fermi approximation.
Instead of a single structural transition from the bcc to the fcc
lattice, a strong nontrivial dependence on the charge number Z
appears. In addition, the hcp lattice can form the ground state
for some Z at relatively low density. The relativistic correc-
tions to the dielectric function, given by the Jancovici model,
as well as the quantum corrections due to zero-point vibrations
of ions only moderately shift the structural transition densi-
ties. In all considered models, the bcc lattice possesses the
lowest electrostatic energy at the density parameters rs < 0.01
(mass densities ρ � 5 × 106 g cm−3) for any Z . In the most
advanced of the models (Fig. 5), the unconditional bcc sta-
bility range extends down to the relativity parameters x � 0.8
(mass densities ρ � 106 g cm−3).

As shown in Ref. [21], the equation for the electrostatic en-
ergy of the Coulomb crystal with the Thomas-Fermi dielectric
function is almost the same as the equation for the electrostatic
energy of the Yukawa crystal, which is a usual model for or-
dered dusty plasmas [6,8,36–39]. A slight difference is that in
the Yukawa crystal the screening parameter is the Debye wave
number κD and there is no restriction analogous to κTFa � 1.
The Yukawa crystal model is used up to κDa = 4.76, when it
becomes unstable against phonon oscillations [21,40]. Hence
both systems have the same structural transitions. Thus, while
in the Lindhard model at κTFa � 1 the fcc and hcp lattices
become energetically preferable and the strong dependence of
structural transitions on Z appears, we can expect a similar
situation if higher-order corrections to the Yukawa crystal
model are taken into account. Since in the dusty plasmas it is
impossible to maintain strictly the same charge for all grains,
the formation of the hcp-fcc crystal mixture is more likely.

The appearance of the hcp ground state at sufficiently
large κTFa in the linear response theory may be a key to
explanation of data of the experiment KPT-10 “Kulonovskiy
Kristall” (Coulomb Crystal) onboard the International Space
Station. This experiment has revealed that dusty particles with
κDa = 0.5–3 form an ordered system with the hcp and fcc
structures (see, e.g., [41,42]). Since equations for the electro-
static energy of the Coulomb crystal with the Thomas-Fermi
dielectric function and of the Yukawa crystal are the same, it
makes sense to assume that for systems with a nondegener-
ate background (such as the dusty crystals) the higher-order
screening corrections may lead to a situation similar to the
degenerate case, which is described above, where the fcc and
hcp lattices may form the ground state.

It may be of interest for the reader to note that, besides
the dusty plasmas mentioned above, the normal electron-hole
plasmas in semiconductors also demonstrate some similari-
ties to the dense ion-electron plasmas. The crystallization of
the electron-hole plasmas with heavy holes was studied in
Refs. [43,44], using the path integral Monte Carlo simula-
tions.

Returning to degenerate stars, let us note that our re-
ported model improvements are likely unimportant for the
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ground-state equation of state or chemical composition. Pre-
viously, Chamel and Fantina [45] studied this problem based
on the Thomas-Fermi model of electron polarization, scaled
so as to approach the more accurate polarization results of
Ref. [19]. In particular, Chamel and Fantina found that cor-
rections to the electron-capture threshold in white-dwarf cores
are very small and the neutron-drip density and pressure in
the crusts of neutron stars are only slightly shifted. Although
electron polarization may change the composition of the crust
of nonaccreting neutron stars, uncertainties in the masses of
neutron-rich isotopes were found to be more important than
electron exchange and polarization effects. As can be seen
from our Fig. 1, the polarization correction to the energy has
the same order of magnitude in the Thomas-Fermi model as in
the more accurate Lindhard and Jancovici models. Therefore,
these improvements in the model cannot qualitatively change
the conclusions by Chamel and Fantina [45]. Let us also note
that some modern neutron-star equations of state take suffi-
ciently accurate account of the electron polarization effects
(see, e.g., Ref. [46]).

On the other hand, our results show that the replacement
of the traditional Thomas-Fermi model by the RPA-based
models of the polarization corrections can strongly shift the
boundaries between the bcc and fcc lattice types and lead to
the appearance of the hcp lattices in the cores of white dwarfs
and crusts of neutron stars. The interfaces between different
lattice structures may affect the kinetic properties of the crust.
For example, crust failure due to accumulated stresses during
neutron-star evolution (see, e.g., Refs. [47–49]) can likely de-
velop along the surfaces separating the different lattice types,
where the breaking stress can be smaller than its standard
value in the bulk of the crust [50].

Based on the presented results, we can conclude that most
of the crust of neutron stars and crystallized cores of white
dwarfs at ρ � 106 g/cm3 consist of the bcc lattice at any Z ,
which is the standard assumption for their modeling. At lower

densities, however, the fcc and hcp lattices can form the true
ground state. Crystallization of the one-component plasma
occurs at � ≈ 175, where � ≡ Z2e2/akBT = 22.5Z5/3x/T6

is the Coulomb coupling parameter, T is temperature, T6 ≡
T/106 K, and kB is the Boltzmann constant [19]. This implies
T � 1.3 × 105Z5/3x K, which leads to T � (3 × 107)x K for
an envelope of a neutron star composed of iron or nickel or
T � (2.5 × 106)x K for a carbon plasma in a white dwarf
or in an accreted crust of a neutron star. Taking the electron
polarization into account, one finds that the crystallization
may occur at somewhat smaller � (larger T ) [51]. Hence the
Coulomb crystals can exist in the degenerate stars not only at
x � 1, but also in the nonrelativistic (x < 1) parts of envelopes
of sufficiently old and cold neutron stars (see, e.g., Fig. 2.2. in
Ref. [9]) or white dwarfs (see, e.g., Fig. 4 in Ref. [52]), where
one can anticipate formation of the fcc and hcp structures.

However, the smallness of energy differences between
these structures makes it possible that thermal fluctuations
destroy the long-range order at the temperature of crystal-
lization and thus make the structure of some domains out of
the true ground state. Therefore, the neutron-star crust and
white-dwarf matter at such low densities and temperatures
may consist of polycrystalline mixtures of different types of
lattices or an even amorphous solid. Besides the influence on
the elastic and breaking properties of the crust, the presence
of polycrystalline or amorphous structures can suppress the
electrical and thermal conductivities, causing observable con-
sequences for the magnetic and thermal evolution of a neutron
star. This possibility deserves further study.
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