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Abstract
The paper reviews recent advantages in the theory of the rapidly growing field of the angular
momentum orientation and alignment in photolysis of small molecules. Particular emphasis is
put on the photofragment orbital orientation and alignment in molecular photolysis beyond the
axial-recoil approximation. One of the most important recent achievements is derivation of a
universal expression for the recoil-angle dependence of the polarization cross section in terms
of the anisotropy parameters (anisotropy transforming coefficients), which is valid for one
photon photolysis reaction of any diatomic or polyatomic molecule irrespective of the reaction
mechanism. The anisotropy parameters contain all information about the reaction dynamics in
the frame of the quantum scattering theory, they can be either determined from experiment or
calculated from ab initio theory. Expressions for the anisotropy parameters for the photolysis
of rotating diatomic/linear molecules are analyzed, which contain information on radial and
Coriolis nonadiabatic interactions as well as on the full range of interference effects. In the
case of direct photodissociation, the molecular rotation is taken into consideration in the
quasi-classical approximation by introducing the set of rotation factors, which depend on the
molecular axis rotation angle γ and on the quantum numbers of the photon polarization
matrix. In the case of slow predissociation, the molecular rotation is taken into consideration
by introducing the set of reduction factors. As shown, in most cases molecular rotation
decreases the angular momentum polarization of the photofragments.

PACS numbers: 33.80.−b, 33.80.Be, 33.80.Gj

1. Introduction

The photolysis of small molecules has attracted much
attention of research all over the world for decades because
it plays an important role in physics and chemistry of
atmospheres of planets as well as in many combustion and
industrial processes [1, 2]. The most informative up-to-date
method for studying the photolysis processes is investigation
of the recoil-angle distributions of photofragments produced
in a definite quantum state characterized by the full set of
their quantum numbers including the photofragment total
angular momentum j and its laboratory frame projection
m [3–7]. This approach is equivalent to the investigation of
the photofragment angular momentum polarization in terms
of the state multipole moments [8, 9].

Experimentally, these studies are now mainly based on
two methods both combining selectivity to the photofragment
recoil-angle distribution and to their angular momentum
polarization: polarization Doppler technique [10, 11] and ion
imaging [7, 12, 13].

A complete quantum mechanical treatment is required
in order to describe the full range of interference effects
and nonadiabatic interactions in molecular photolysis. Several
theoretical approaches have been developed for a number
of years for understanding in this area [14–24]. Most of
them have been built upon the foundation established by
Siebbeles et al [3] based on the expression for the recoil-angle
dependence of the fragment state multipole moments using
the axial-recoil approximation where the dissociation time
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τdiss is much shorter than the molecular rotation period Trot.
The important advantage of these approaches is that they
allow for the complete separation of the kinematical part and
the so named dynamical functions from each other and can in
many cases be used for analysis of the dynamical processes in
photodissociation and for interpretation of the experimental
data without actual solving of the set of closed coupling
equations.

However, the importance of taking the molecular rotation
into account is obvious, because it underlies many important
effects and nonadiabatic processes in diatomic and polyatomic
molecules. Although fully quantum expressions for the
differential state-to-state photodissociation polarization cross
sections that rely only on the assumption of the electric
dipole transition were reported relatively long ago by Balint-
Kurti and Shapiro [25, 26], Freed and co-workers [27, 28],
Roncero et al [29] and Mo and Suzuki [19], all these
expressions do not provide separation of the kinematical and
dynamical parts of the expression from each other which
makes the analysis complicated.

The generalization of the Siebbeles et al theory [3] to
the case of rotating molecules has recently been developed in
a series of our papers [30–33] using quasi-classical approxi-
mation. This achievement allowed to treat the fast dissociation
of rotating molecules, the predissociation, and to take into
consideration possible Coriolis nonadiabatic interactions. The
theory provides the isolation of different photodissociation
mechanisms from each other, it also provides a critical link
from theoretical description to the experimental observations
based on a set of the anisotropy parameters, which contain
all information about the dissociation dynamics and can be
either determined from experiment or computed from theory.
Moreover, the angle-recoil dependence of the state multipoles
of one of the photofragments for an arbitrary one-photon
photolysis reaction has been derived under the condition
that the average over the quantum numbers of another
(undetected) photofragment is performed. It was shown that
the polarization of atomic or molecular photofragments in the
photolysis of a diatomic or a polyatomic molecule can be
described in terms of the anisotropy parameters irrespective
of the photodissociation mechanism.

This paper reviews recent achievements of the theory
of the photofragment angular momentum polarization in
molecular photodissociation. The paper is organized as
follows.

Section 2 presents the main features of the general
recoil-angle distribution of the photofragment state multipoles
moments produced in the photodissociation of rotating
molecules. The particular case of direct photodissociation
is considered in section 3 and the particular case of slow
predissociation is considered in section 4. The perspectives of
further development of the theory are discussed in conclusions
(section 5).

2. General expressions

All theoretical treatments of the angle-recoil distribution
of the photofragment state multipole moments produced in
the photolysis reaction AB + h̄ω → A + B are based on the
expression for the generalized photodissociation differential

cross section σ(k, E, j ′m ′, jm). Here k = k(θ, φ) is the
recoil vector, E is the photofragment total energy, and j, m
are the product total angular momentum and its projection
onto the laboratory Z -axis. If both photofragments are open
shell atoms/molecules, j = jA + jB and m = m A + m B , where
jA, m A, jB and m B are the fragment angular momenta and
their Z -projections. The cross sections σ(k, E, j ′m ′, jm)

with j = j ′, m = m ′ describe the diagonal components of the
photofragment density matrix and the cross sections with j 6=

j ′ and/or m 6= m ′ describe the off-diagonal components of the
photofragment density matrix [8]. In the case that the parent
molecules are randomly oriented in space, the generalized
photodissociation differential cross section in the first-order
of the time-dependent perturbation theory can be presented in
the form [34, 35]:

σ(k, E, j ′m ′, jm) = C
∑
Mi

〈9−(k, j ′m ′)(R, r, E)|d̂ · e|9Ji Mi 〉

× 〈9−(k, jm)(R, r, E)|d̂ · e|9Ji Mi 〉
∗,

(1)

where e is a photolysis light polarization vector, d̂ is a
molecular dipole moment, R is the vector connecting the
centers of mass of the fragments, r denotes all internal
coordinates of the fragments, E = Ei + h̄ω is the total
photofragment energy, ω is the photolysis light frequency, and
C is a constant: C = πω/[cε0(2Ji + 1)] [31].

The term 9J i M i in equation (1) is the wavefunction of
the initial molecular state, where Ji and Mi are the molecular
total angular momentum and its laboratory frame projection,
respectively.

The term 9−(k, jm)(R, r, E) in equation (1) is the excited
state wavefunction. It is the solution of time-independent
Schrödinger equation for the molecular excited state of the
molecule at all possible interfragment distances 0 < R < ∞,
this wavefunction coincides with a 9− scattering function of
the collision theory [36]. In the case of photodissociation,
this function obeys the usual boundary condition at infinity
corresponding to an outgoing plane wave in the channel with
a specific internal state and incoming spherical waves in all
other possible open channels [26].

In the entire range of the internuclear distance R
the wavefunction 9−(k, jm)(R, r, E) can be expanded over
the partial waves in the total angular momentum J
representation [36, 37]. A convenient form of the expansion
using the Wigner D-functions can be written as [30]:

9−(k, jm)(R, r, E) =
1

R

∑
J M

∑
n̄n

∑
�R�k

2J + 1

4π
(−1)i(π/2)J

× 〈n�k | j�k〉D j
m�k

∗(φ, θ, 0)

× D J
M�k

(φ, θ, 0)D J
M�R

(φR, θR, 0)

× |n̄�R〉χ J
n̄�R; n�k

(R), (2)

where (θR, φR) are spherical angles specifying the direction
of the vector R.

The indices �k and �R in equation (2) are the projections
of the total angular momentum J onto the recoil direction
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k and onto the interfragment direction R, respectively
(helicity quantum numbers) and M is the projection of the
angular momentum J onto the laboratory frame Z-axis.
The term | j�R〉 in equation (2) is a body frame electronic
wavefunction of free photofragments and the term |n̄�R〉 ≡

9el
n̄�R

(r, R) is an adiabatic body frame molecular electronic
wavefunction, where the index n̄ counts the electronic states
with the same �R . It is an eigenfunction of the full electronic
Hamiltonian Hel = H0(r) + V (r, R) at fixed nuclei, where
H0(r) is the Hamiltonian of free fragments and V (r, R) is the
interaction.

The terms 〈n�k | j�k〉 are the expansion coefficients
of the adiabatic molecular electronic wavefunction |n�k〉

over functions of free fragments | j�k〉 in the asymptotic
region R → ∞ [30, 31]. The advantage of the expansion
in equation (2) is that the quantum numbers n̄, �R in the
case of linear molecules are preserved during dissociation
in the absence of nonadiabatic interactions. The functions
χ J

n̄�R;n�k
(R) in equation (2) are the scattering functions. They

can be found as a result of the solution of the molecular frame
coupled scattering equations [30, 37].

The expansion in equation (2) is written in a form that
does not take into account the parity of the molecular states.
The expansion that takes into account the molecular parity
has been presented in our paper [32]. The advantage of the
parity-adapted presentation of the molecular wavefunction
is that it allows for separation of the set of close-coupled
equations of scattering theory into two blocks corresponding
each to the positive or negative total parity of the molecule µ

that can greatly simplify the solution of scattering equations.
However, as shown in [31, 32] the final expression for the
photofragment state multipole moments is the same in both
approaches.

The general expression for the irreducible polarization
cross section σKQ(θ, φ) describing the angle-recoil
distribution of the fragment A angular momentum
polarization can be presented in the following universal
form [32]:

σ
( jA)

KQ (θ, φ) =
σ0

4π

∑
kd ,qd

∑
qk

cK
kd qk

DK
Q qk

∗(φ, θ, 0)

× Dkd
qd qk

(φ, θ, 0) Ekd qd (e), (3)

where σ0 is the total reaction cross section, Ekd qd (e) is the
photon polarization matrix [9] and cK

kd qk
are the anisotropy

transforming coefficients describing photodissociation
dynamics and c0

00 = −
√

3. The polarization rank K and
its projection Q are integer and limited to the values:
06 K 6 2 jA and −K 6 Q 6 K.

In case K = Q = 0 and if the photolysis light is linearly
polarized along the Z -axis, equation (3) is equivalent to the
conventional differential reaction cross section:

σ
( jA)

00 (θ, φ) =
σ0

4π
[1 + β P2(cos θ)] , (4)

where β = (2/3)1/2c0
20, while the terms with K > 0 describe

the photofragment angular momentum polarization (orienta-
tion and alignment [9]).

As shown in [32], equation (3) is general and can be
used for the description of any one-photon photolysis reaction
including photodissociation of diatomic and polyatomic
molecules in the frame of the first-order time-dependent
perturbation theory under the condition that the average over
the quantum numbers of the undetected photofragment B
is performed. The anisotropy transforming coefficients cK

kd qk

are proportional to the known anisotropy parameters β, sK ,
αK , γK , γ ′

K , ηK [7] in pairs. The relationship between these
two sets of parameters is tabulated in [32]. In general, the
coefficients cK

kd qk
depend on the photofragment polarization

rank K , on the photon rank kd , and on their projection onto
the recoil axis qk .

As shown in [32, 33], the ‘coherent’ quantum number
qk is preserved in any photochemical reaction due to the
symmetry of rotation of the body-frame state multipole
σ

( j A)

K qk
about the recoil axis k. This quantum number is

equal to qk = λ − λ′
= �k − �′

k where λ and �k are the
photon helicity and the photofragment helicity onto the
recoil axis, respectively. Therefore, the physical meaning of
preservation of the quantum number qk is that the coherence
of the photolysis photons λ − λ′, which is introduced to the
parent molecule, is preserved in the reaction and transferred
into the coherence of the produced photofragments �k −

�′

k , when both coherences are defined in the same recoil
frame.

The anisotropy transforming coefficients cK
kd qk

are
scalar values which contain all information about the
photodissociation dynamics and can be either calculated
theoretically or determined from experiment. It is clear that
the particular values of the coefficients cK

kd qk
depend on the

parent molecule and on the photolysis mechanism. In the case
of dissociation of diatomic molecules, the explicit expression
for the coefficients cK

kd qk
in terms of the quantum mechanical

scattering matrix S J
n̄�R; n�k

describing the dynamics of the
molecular excited state are presented in [33].

3. The role of molecular rotation in
direct photodissociation

The influence of rotation of molecular axis on the angular
momentum polarization of the photofragments produced in
the direct photodissociation has been theoretically treated
in [30, 32] in the frame of the quasi-classical approximation
in the high-J limit. Within the quasi-classical approximation
the entire internuclear distance area can be divided into wide
regions where the dissociation dynamics is mostly adiabatic
and relatively narrow regions where the nonadiabatic
interactions occur [37]. Within this approximation the
quantum mechanical scattering matrix S J

n̄�R;n�k
can be

factorized as

S J
n̄�R;n�k

≈ ηJ
n̄�R;n�k

e−2i δ J
n�k , (5)

where the phase δ J
n�k

is close to the elastic scattering phase
which is assumed to be large and leads to the fast oscillations
of the exponent as a function of J , while the term ηJ

n̄�R;n�k

describes nonadiabatic interactions and weakly depends on J
in the region Ji ± 1.

Equation (5) allows us to introduce the classical angle
of rotation of the molecular axis γ and to derive analytical
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Table 1. Anisotropy parameters describing the fragment angular momentum polarization in fast photodissociation of rotating molecules in
the high-J limit [30]. Only the radial nonadiabatic interactions are taken into account. The superscript index (0) labels the anisotropy
parameters calculated for photodissociation of nonrotating molecules in the axial-recoil approximation.

K 1 2 3 4

αK α
(0)

1 cos γ α
(0)

2 P2( cos γ ) α
(0)

3 cos γ α
(0)

4 P2( cos γ )

sK . . . s(0)

2 . . . s(0)

4

γK γ
(0)

1

1 + cos γ

2
γ

(0)

2

2 cos2 γ + cos γ − 1

2
γ

(0)

3

1 + cos γ

2
γ

(0)

4

2 cos2 γ + cos γ − 1

2

γ ′

K γ
′(0)

1

2 cos2 γ + cos γ − 1

2
γ

′(0)

2

1 + cos γ

2
γ

′(0)

3

2 cos2 γ + cos γ − 1

2
γ

′(0)

4

1 + cos γ

2

ηK . . . η
(0)

2

(1 + cos γ )2

4
η

(0)

3

(1 + cos γ )2

4
η

(0)

4

(1 + cos γ )2

4

expressions for the anisotropy parameters/anisotropy
transforming coefficients in equation (3) for the case of direct
photodissociation where the dissociation time τdiss is smaller
than the molecular rotation period Trot. These expressions take
into account radial and Coriolis nonadiabatic interactions as
well as the full range of interference effects. The influence of
molecular rotation on the photofragment angular momentum
polarization is described in these expressions by a set of the
rotational factors Dkd

qk qR
(π

2 , γ,−π
2 ), where kd = 0, 1, 2 is

the photon rank, see equation (3), whereas qk and qR are the
photon rank spherical projections [9] onto the directions k
and R, respectively.

If the Coriolis nonadiabatic interactions can be neglected,
qk = qR and each anisotropy parameter β, sK , αK , γK , γ ′

K ,
ηK can be presented as a product of the corresponding ‘axial
recoil’ anisotropy parameter β(0), s(0)

K , α
(0)
K , γ

(0)
K , γ

(0)′

K , η
(0)
K

and a rotational factor, where the ‘axial recoil’ anisotropy
parameters describe the photofragment angular momentum
polarization in nonrotating molecules [7].

The expressions for anisotropy parameters of the rank
K = 1, 2, 3, 4 as a function of the angle γ are collected in
table 1. As is clear from the table, the rotation of the molecular
axis in most cases decreases the values of the anisotropy
parameters, thus decreasing the fragment angular momentum
anisotropy.

For the zeroth rank anisotropy parameter β the theory
gives the expression

β = P2(cos γ )β(0), (6)

which is in perfect agreement with previously reported results
obtained by different classical and quantum mechanical
methods [38–41].

If both radial and Coriolis nonadiabatic interactions
are taken into account, the expression for the anisotropy
parameters β, sK , αK , γK , γ ′

K and ηK are more complicated
and can be presented as a sum of terms each related to
a certain photodissociation mechanism [32]. In this case,
the anisotropy parameters cannot be characterized by the
symmetry of optical excitation (parallel, perpendicular, etc)
because in general many types of optical excitation can be
involved in each parameter. For example, the parameter β can

be presented in the form [32]:

β = 2 d2
00(γ )

[ f0(0, 0, 0, 0) − f0(1, 1, 1, 1)]

N
+ 2 d2

00(γ )

×
[2 f0(0, 0, 1, 1) − f0(1, 1, 0, 0) − f0(1, 1, 2, 2)]

N

− 4
√

3 d2
01(γ )

Im[ f0(1, 0, 1, 1) + f0(1, 0, 0, 0)]

N

+ 2
√

6 d2
02(γ )

f0(1, −1, 0, 0)

N
, (7)

where the normalization factor N is given by

N = f0(0, 0, 0, 0) + 2 f0(1, 1, 1, 1) + 2 f0(0, 0, 1, 1)

+ 2 f0(1, 1, 0, 0) + 2 f0(1, 1, 2, 2), (8)

where d K
qk q R

(γ ) are the Wigner d-functions [42].
The terms fK (q, q ′, q̃, q̃ ′) in equations (7) and (8)

are generalized dynamical functions [30], which contain
all information on the photodissociation dynamics. They
depend on the photofragment rank K and on the indices
q, q ′, q̃ , q̃ ′. The indices q = �R − �i = 0, ±1, q ′

=

�′

R − �i = 0, ±1 and q̃ = �k − �i = 0, ±1, ±2, q̃ ′
= �′

k −

�i = 0, ±1, ±2 describe the symmetry of the optical and
nonadiabatic transitions, respectively, in such a way that for
the parallel optical transitions q = 0, for the perpendicular
optical transitions q = ±1, for the radial nonadiabatic
transitions q̃ = q and for the Coriolis nonadiabatic transitions
q̃ = q ± 1. The first line in equation (7) relates to the adiabatic
photodissociation or to the pure radial nonadiabatic transitions
during the photodissociation. Two other lines describe
different contributions from the Coriolis nonadiabatic
transitions.

As shown in [32], the Coriolis nonadiabatic interactions
can result in new dissociation mechanisms. For example, due
to the Coriolis interaction the photodissociation via a pure
parallel transition can produce the orientation (K = 1) of
the photofragment angular momenta. Explicit expressions for
the anisotropy parameters of the ranks K = 0, 1, 2 and
detailed discussion of all photolysis mechanisms that are
possible in the presence of the Coriolis interactions can be
found in [32].
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4. Slow predissociation

The case of slow predissociation when the excited state
life time is much larger than the rotation period, τdiss �

Trot has been theoretically treated in [31, 33]. In this case,
the J and J ′ coherent terms in the general expression for the
anisotropy parameters can be neglected resulting in noticeable
simplification of the obtained formulae. In particular, in
case K = 0, Q = 0 the general expression for the parameter
β can be written in the relatively simple form which is valid
to any integer and half-integer J values and takes into account
all possible radial and Coriolis nonadiabatic transitions [33]:

β =
√

30(−1)J+Ji
√

2J + 1

{
J J 2
1 1 Ji

}
C J�k

J�k 20, (9)

where C J�k
J�k 20 is the Clebsch–Gordan coefficient, and the term

in the curly brackets is a 6 j-symbol [42].
As shown in equation (9), the parameter β depends on the

final projection �k of the total angular momentum J , but not
on initial projection �i and the intermediate one �R . If only
the radial nonadiabatic interactions are important, �k = �R .

Equation (9) is the generalization of the previous results
reported by Zare [43] and by Liyanage and Gordon [44],
who did not take into account the Coriolis coupling. In the
high-J limit, Ji � 1, the parameter β for the P, Q and R
rotational branches is given by: β(Q) = −1, β(P, R) = 1/2
in agreement with the previous results [43, 44].

The expressions for recoil-angle dependences of the
photofragment anisotropy parameters of the rank K > 0 in the
high-J limit have been reported for the case of the broad-band
optical excitation when all rotational branches are excited
simultaneously [31, 32] and for the case when each of the
rotational branches is excited separately [31, 33]. As shown,
the expressions for the broad-band excitation can be formally
obtained from the expressions for direct photodissociation
by averaging the rotation factors Dkd

qk qR
(π

2 , γ,−π
2 ) over the

angle γ . The obtained terms which can be called the reduction
factors describe the reduction of the corresponding photolysis
mechanism in the limit of infinitely long molecular rotation.

For example, the rotational factor P2(cos γ ) in
equation (6) in the case of slow predissociation should
be replaced by 〈P2(cos γ )〉 = 1/4 which is in agreement with
the semiclassical result reported earlier by Jonah [39] and
with the quantum mechanical result reported by Mukamel
and Jortner [45]. The anisotropy parameters of the rank
K = 1–4 for the case of slow predissociation calculated
in the absence of the Coriolis interactions are presented
in table 2 and the corresponding expressions calculated in
presence of the Coriolis interactions are discussed in [32].
Some of the rotation factors after averaging of the angle
γ have zero value [31, 33], therefore the number of
possible photodissociation mechanisms resulting in the
photofragment angular momentum polarization in the case of
slow predissociation is in general smaller than the number
of photodissociation mechanisms in the case of direct
photodissociation. The obtained results for the radial and for
the Coriolis interactions differ from each other dramatically.

Particularly, in the absence of the Coriolis interactions the
photofragment orientation (K = 1) can be produced only via
the coherent 1�R = ±1 optical excitation of the �R = ±1/2

Table 2. Anisotropy parameters describing the fragment angular
momentum polarization in the case of slow predissociation in the
high-J limit [31]. Only the radial nonadiabatic interactions are
taken into account. The superscript index (0) labels the anisotropy
parameters calculated for photodissociation of nonrotating
molecules in the axial-recoil approximation.

K 1 2 3 4

αK 0 1
4 α

(0)

2 0 1
4 α

(0)

4

sK . . . s(0)

2 . . . s(0)

4

γK
1
2 γ

(0)

1 0 1
2 γ

(0)

3 0

γ ′

K 0 1
2 γ

′(0)

2 0 1
2 γ

′(0)

4

ηK . . . 3
8 η

(0)

2
3
8 η

(0)

3
3
8 η

(0)

4

electronic states on the |�i | = 1/2 → |�R| = 1/2 transition
where either the initial or the final electronic state must
be a mixture of the 261/2 and 251/2 states [31]. However,
when the Coriolis interaction is involved, several other
predissociation mechanisms are possible which begin with the
incoherent optical excitation from the ground electronic state
16 to a single predissociative state and then continue with
simultaneous radial and Coriolis nonadiabatic transitions [33].

In the cases of slow predissociation and intensive
Coriolis nonadiabatic interactions, the expression for the
anisotropy parameters β, sK , αK , γK , γ ′

K and ηK can be
presented as sums of the terms each related to a certain
photodissociation mechanism [32]. In this case, as in the case
of direct photodissociation, the anisotropy parameters cannot
be characterized by the parallel or perpendicular optical
excitation because in general many types of optical excitation
can be involved.

5. Conclusion

As shown above, the recoil-angle distribution of the
photofragment state multipole moments can be presented
in a universal form in terms of the anisotropy transforming
coefficients irrespective of the photolysis mechanism.
The explicit expressions for the anisotropy transforming
coefficients (anisotropy parameters) in the case of photolysis
of a diatomic molecules are now well understood. These
expressions contain contributions from the radial and
Coriolis nonadiabatic interactions, possible coherent
effects, long-range interactions, and can also take into
account the effect of molecular rotation (at least in the
high-J limit). Therefore, the anisotropy transforming
coefficients can be directly obtained from the experiment
and used for determination of important information on the
photodissociation dynamics. This is the information on: the
excited state symmetry and the photolysis reaction channels,
possible interference effects, symmetry, amplitudes and
phases of possible nonadiabatic transitions, rotation of the
molecular axis during dissociation [4, 7]. These expressions
also allow for calculation of the corresponding parameters
from ab initio theory (at least in principle), thus making
possible the complete experiment in the field of molecular
photolysis [7].

The next important step of the research in the field
seems to be the transformation of the ideas and methods,
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which are well established now for diatomic molecules, to
the photolysis of triatomic and small polyatomic molecules,
which play an important role in photochemical reactions in
the atmosphere and in industrial apparatus. Determination of
the corresponding anisotropy parameters from experiment is
straightforward, because it is based on the same universal
recoil-angle distribution for the polarization cross section in
equation (3). In fact, for the moment there have already
been performed a series of remarkable experimental studies
on spin and orbital momentum orientation and alignment in
photolysis of triatomic and polyatomic molecules in many
world laboratories, see the review papers [3–7]. However,
the interpretation of these experimental results is so far
rather poor, because the theoretical methods for extracting
the dynamical information from the experimental data are not
developed enough. To our mind, these theoretical methods
can be developed based on the results presented in this
review paper.
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