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We present the full quantum mechanical expressions for the polarization differential cross sections
of the photofragments produced in slow predissociation of a parent molecule via isolated rotational
branches. Both radial and Coriolis nonadiabatic interactions between the molecular potential energy
surfaces have been taken into account. The expressions describe the recoil angle distribution of the
photofragments and the distributions of the photofragment angular momentum polarization
�orientation and alignment� in terms of the anisotropy parameters of the ranks K=0,1 ,2. The
explicit expressions for the anisotropy parameters are presented and analyzed which contain
contributions from different possible photolysis mechanisms including incoherent, or coherent
optical excitation of the parent molecule followed by the radial, or Coriolis nonadiabatic transitions
to the dissociative states. The obtained expression for the zeroth-rank anisotropy parameter � is
valid for any molecule and for an arbitrary value of the molecular total angular momentum J. The
expressions for the orientation �K=1� and alignment �K=2� anisotropy parameters are given in the
high-J limit in terms of the generalized dynamical functions which were analyzed for the case of
photolysis of linear/diatomic molecules. As shown, the Coriolis nonadiabatic interaction results in
several new photolysis mechanisms which can play an important role in the predissociation
dynamics. © 2009 American Institute of Physics. �DOI: 10.1063/1.3106402�

I. INTRODUCTION

Recently we have developed full quantum mechanical
expressions describing the recoil angle dependence of the
spin and orbital orientation and alignment of the fragments
produced in one-photon molecular photodissociation beyond
the axial recoil approximation.1–3 The parent molecules were
assumed to be isotropically distributed in space.

An important result of this theory is that within the first-
order time-dependent perturbation theory the recoil angle de-
pendence of the angular momentum polarization of the pho-
tofragments with the angular momentum jA can be presented
in the same universal form for any photodissociation process
in a diatomic or polyatomic molecule. The expressions can
be written in terms of the anisotropy parameters �, �K, sK,
�K, �K� , and �K of the ranks K=0, . . . ,2jA or, alternatively, in
terms of the anisotropy transforming coefficients ckdqk

K , where
kd=0,1 ,2 and qk=−min�K ,kd� . . .min�K ,kd� are the rank of
the photolysis photon and its projection onto the recoil direc-
tion, respectively.3

The particular expressions for the anisotropy parameters/
anisotropy transforming coefficients indeed depend on the
photodissociation mechanism �direct dissociation, predisso-
ciation, etc.� and on the symmetry of the parent molecules
�linear, bent, etc.�. In case of direct photodissociation of
linear/diatomic molecules, the theory provides analytical
quasiclassical expressions for the anisotropy parameters.1 In

case of slow predissociation, the theory provides full quan-
tum mechanical expressions for the anisotropy parameters in
the high-J limit.2

Two groups of nonadiabatic interactions between differ-
ent reactive potential energy surfaces �PESs� can be impor-
tant in the predissociation of a linear molecule: the homoge-
neous �radial� interaction and the inhomogeneous �Coriolis�
interaction.4,5 The former interaction preserves the quantum
number �, the projection of the molecular total angular mo-
mentum J onto the internuclear axis, while the latter interac-
tion changes the projection �. The spin-orbit interaction pre-
serves the projection � and, therefore, belongs to the former
group.

Slow predissociation when the molecule lives much
longer than the rotational period has been discussed in our
previous paper2 where we assumed that only the radial nona-
diabatic interactions occur. Slow predissociation in the pres-
ence of the Coriolis interactions has been discussed in our
paper3 for the case of the broadband excitation of the P, Q,
and R rotational branches; however, the more usual �and
likely more useful for experimentalist� case when the differ-
ent rotational branches are resolved has been dropped out in
that study.

The main aim of the present paper is to derive and dis-
cuss the recoil angle dependence of the angular momentum
polarization of the fragments produced in slow predissocia-
tion mediated by the radial and Coriolis nonadiabatic inter-
actions under the condition when all individual molecular J
states are resolved. The derivation has been carried out in thea�Electronic mail: osv@pms.ioffe.ru.
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line of our previous papers1–3 where the adiabatic basis set of
the diatomic molecule wave functions was used.

General expressions for the angular momentum distribu-
tion of photofragment state multipole moments �polarization
differential cross sections� produced in molecular photodis-
sociation are presented in Sec. II in the case of arbitrary J
values and in the case of the high-J limit.

These expressions were transformed to the case of slow
predissociation and then analyzed in detail in Sec. III for
several most important values of the polarization cross sec-
tion rank K=0, 1, and 2. The angular distribution of the
molecular photofragments �K=0� for arbitrary values of the
total angular momentum J is considered in Sec. III A. The
angular momentum distributions of the photofragment state
multipoles of the ranks K=1 �orientation� and K=2 �align-
ment� are derived and analyzed in detail in the high-J limit in
Secs. III B and III C, respectively. The obtained expressions
for the corresponding anisotropy parameters contain the con-
tributions from all possible photolysis mechanisms.

II. GENERAL EXPRESSION FOR THE
PHOTOFRAGMENT ANGULAR MOMENTUM
DISTRIBUTION IN MOLECULAR PREDISSOCIATION

The general expression for the recoil angle distribution
of the angular momentum polarization of the photofragments
produced in molecular photodissociation has been derived by
Kuznetsov and Vasyutinskii1 and by Shternin and
Vasyutinskii3 from the scattering wave function formalism
using the parity unadapted and parity adapted representations
of the total molecular wave function, respectively. As shown
in Ref. 3 �see also discussion in Ref. 2�, these two distribu-
tions are equivalent to each other because the expansion of
the total excited state scattering function can be done using

any appropriate orthogonal set of the wave functions which

depends on the recoil direction k̂, incoming vector R /R, and
all electronic coordinates of the molecule. Therefore, the
choice of a particular orthogonal set is mostly determined by
the convenience of its practical use.

The general expression for the recoil angle distribution
of the photofragment angular momenta polarization in mo-
lecular photodissociation can be presented in the form of
expansion over the product of the two D-functions:3

�KQ
�jA��k̂� =

�0

4�
�

kd,qd

�
qk

ckdqk

K DQqk

K�

��,	,0�Dqdqk

kd ��,	,0�Ekdqd
�e� ,

�1�

where Dqdqk

kd �� ,	 ,0� is a Wigner D-function,6 � and 	 are

polar angles specifying the recoil direction k̂, and �0

= ��00
�jA�� is the total photodissociation cross section, where

the angular brackets indicate integration over all recoil direc-
tions.

The �KQ
�jA��k̂� in Eq. �1� is the polarization differential

predissociation cross section describing the photofragment A

flying apart in the recoil direction k̂. The rank K and its
laboratory frame projection Q describe the orientation and
alignment7 of the fragment angular momentum jA; K
=0, . . . ,2jA and Q=−K , . . . ,K. Ekdqd

�e� is the photon polar-
ization matrix,8 where e is the light polarization vector, kd

=0, 1, 2 and qd=−kd , . . . ,kd are the photon rank and its labo-
ratory frame projection, respectively.

The anisotropy transforming coefficients ckdqk

K in Eq. �1�
are scalar values which contain all information about the
photodissociation dynamics and can be either determined
from experiment or calculated from theory:

ckdqk

K =
3�2K + 1�1/2

�2jA + 1�1/2 N−1 �
�k,�k�

�
�A,�B

�
�A�

�
n,n�

�
kd,qd,qk

�T jA�AjB�B

n�k ��T
jA�A� jB�B

n��k� �− 1�qk��2kd + 1��1/2CjA�AK−qk

jA�A�


�
J,J�

ei��/2��J−J���− 1�J+Ji�2J� + 1	J� J kd

1 1 Ji

�

q,q�
�

n̄,�R

�
n̄�,�R�

�
Ji,�i,vi

CJi�i1q
J�R CJi�i1q�

J��R� CJ��k�kdqk

J�k W�vi,Ji�


��n̄,�R

el �n̄�R;n�k

J �R��dq���i

el ��i

Ji �R�����n̄�,�R�
el

�n̄��R� ;n��k�
J �R��dq����i

el ��i

Ji �R�� , �2�

where N is the normalization factor:

N = �2jA + 1�−1/2�
J

�
�k

�
�A,�B

�
n,n�

�
q,q�

�
n̄,�R

�
n̄�,�R�

�
Ji,�i,vi

�T jA�AjB�B

n�k ��T jA�AjB�B

n��k CJi�i1q
J�R CJi�i1q�

J�R� W�vi,Ji�


��n̄,�R

el �n̄�R;n�k

J �R��dq���i

el ��i

Ji �R�����n̄�,�R�
el

�n̄��R� ;n��k

J �R��dq����i

el ��i

Ji �R�� . �3�

As can be shown from Eqs. �2� and �3�, c00
0 =−�3. The

set of the coefficients ckdqk

K is an alternative to the set of the
known anisotropy parameters �, �K, sK, �K, �K� , and �K,9,10

as they are simply proportional to the corresponding aniso-

tropy parameters in pairs. The relationship between the co-
efficients ckdqk

K and the anisotropy parameters has been tabu-
lated by Shternin and Vasyutinskii.3 Whereas the anisotropy
parameters are all real and normalized to the orientation and
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alignment of the photofragments averaged over all recoil
directions,9,10 the coefficients ckdqk

K are in general complex
and obey the symmetry relation

ckd−qk

K = �ckdqk

K ��. �4�

The values Ji and J in Eq. �2� are the initial �ground
state� and the final �excited state� total molecular angular

momenta, respectively. The term CjA�AK−qk

jA�A� is a Clebsch–
Gordan coefficient, and the term in the curly brackets is a 6j
symbol.6 The term W�vi ,Ji� describes the population of the
rovibrational energy levels of the parent molecules.

The helicity quantum number �i in Eqs. �2� and �3� is a
body-frame projection of the angular momentum Ji onto the
internuclear axis. The helicity quantum numbers �R and �k

are body-frame projections of the excited state angular mo-
mentum J onto the internuclear axis R and the recoil direc-

tion k̂, respectively. The angular momenta jA and jB are the
electronic angular momenta of the fragments A and B, re-
spectively, and �A and �B are the corresponding projections
onto the recoil direction. Due to the cylindrical symmetry of
the molecule in the long range �k=�A+�B.

The terms in the last line of Eq. �2� are transition dipole
moments written in the molecular frame. They obey the fol-
lowing selection rule: �R=�i+q, where the indices q denote
the spherical basis8 for the components of the dipole moment
dq with respect to the molecular frame. The indices q, q� are
limited to the values 0 and 1, indicating parallel and per-
pendicular optical transitions, respectively. In the transition
dipole matrix elements the functions �n̄�R

el and ��i

el denote
the electronic adiabatic wave functions of the molecular ex-
cited and ground states, respectively, and �n̄�R,n�k

J �R� and
��i

Ji �R� are the corresponding scattering �vibrational� wave
functions.1,2

The terms T jA�AjB�B

n�k in Eq. �2� are the expansion coeffi-
cients of the adiabatic molecular electronic states over the
fragment basis �jA�A��jB�B� in the asymptotic region:10,11

�n�k

el � �n�k� → �
�A�B

T jA�AjB�B

n�k �jA�A��jB�B�, R → � .

�5�

The index qk in Eq. �2� is the coherent quantum number
which is equal to the projection of the photon rank kd and of

the photofragment rank K onto the recoil direction k̂. As
recently shown by Shternin and Vasyutinskii,3 the quantum
number qk is preserved in any photolysis reaction irrespec-
tively of the photolysis mechanism. The physical meaning of
this statement can be clarified by presenting the photon po-
larization matrix in the recoil frame:

Ekdqk
�e� = �

�1�2

�− 1��2C1�11−�2

kdqk e�1
�e�2

��, �6�

where �1 and �2 are the projections of the photon angular

momentum �photon helicities� onto the recoil direction k̂.
According to the symmetry of the Clebsch–Gordan coeffi-
cient in Eq. �6�, the index qk=�1−�2 can take the values
qk=0, 1, 2 and describes the coherence introduced by
the incident photon to the molecular excited states. From the

other side, the symmetry of the Clebsch–-Gordan coefficient
in Eq. �2� implies the relationship qk=�A−�A� =�k−�k�,
where the angular momentum helicities �k and �k� are also
defined in the recoil frame. Therefore, the coherence intro-
duced by the absorbed photon to the molecule is preserved
during the photolysis and transferred to the residual coher-
ence in the photofragment quantum states.

Equation �2� takes into account both radial and Coriolis
nonadiabatic interactions resulting in the transitions between
the excited state PESs. The radial nonadiabatic transitions
obey the selection rule �k=�R, while the Coriolis nonadia-
batic transitions obey the selection rule �k=�R1.4

The kinematic �recoil-angle-dependent� part of the pho-
tofragment polarization cross section in Eq. �1� has a univer-
sal form which can be used for description of any photolysis
reaction of a diatomic or polyatomic molecule and is valid
for any integer or half-integer J values.3 The anisotropy
transforming coefficients ckdqk

K are presented in Eq. �2� in the
form of expansion over the diatomic-like molecular wave
functions. Therefore, they can be directly used for analysis of
this type of molecules.

The case of slow predissociation when the molecule
lives much longer than the rotational period can be readily
obtained from the general expression for the anisotropy
transforming coefficients in Eq. �2� by holding the condition
J=J� because in this case the rotational level J, J� coherence
can be neglected.2 An equivalent angle recoil distribution is
also given in Ref. 2.

The terms with �R=�R� in Eq. �2� describe incoherent
optical excitation, while the terms with �R��R� describe
coherent optical excitation from a single initial electronic
state ��i�. In the case of slow predissociation when an iso-
lated rotational J state is optically excited, the latter terms
describe excitation of a single J state which belongs either to
two coherently excited electronic states or to a single double
degenerate electronic state via the transitions 1�→ 1�1 or
��i�=1 /2→ ��R�=1 /2 �e.g., 2�1/2→ 2�1/2�.

In the high-J limit, �Ji ,J�1�, Eq. �2� can be simplified
using the asymptotic expressions for the Clebsch–Gordan co-
efficients and 6j symbols:6

ckdqk

K = 3�2K + 1�1/2N−1�
q,q�

�
A

�− 1�kd+qk+q�C1q1−q�
AQ�


 dQ�0
A �

2
�dqk0

kd �

2
�C1k1−k

A0 C1k1−k
kd0 �

q̃,q̃�

fK�q,q�, q̃, q̃��


��q̃−q̃��,qk
, �7�

where dQ�0
A �� /2� is the Wigner d-function6 and k=J−Ji. The

normalization coefficient N can be expressed in the high-J
limit as:

N = �
q,q�

�
A

�− 1�k+q�C1q1−q�
AQ� dQ�0

A �

2
�C1k1−k

A0 �
q̃

f0�q,q�, q̃, q̃� .

�8�

According to the symmetry of the Clebsch–Gordan co-
efficient in Eq. �7�, the index Q� is equal to Q�=q−q�. The
term fK�q ,q� , q̃ , q̃�� in Eq. �7� is the generalized predissocia-
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tion dynamical function which involves the terms describing
both the radial and the Coriolis nonadiabatic interactions. It
can be written as1,3

fK�q,q�, q̃, q̃��

= �
�k,�k�

�
�R,�R�

�
n,n�

�
n̄,n̄�

�
jB,�B

�
�A,�A�

�
Ji,vi,�i

�T jA�AjB�B

n�k ��


T
jA�A� jB�B

n��k� �− 1� jA+K+�A�


 jA jA K

− �A �A� �q̃ − q̃��
��− 1�2JiW�vi,Ji�


��n̄�R

el �n̄�R,n�k

J �R��dq���i

el ��i

Ji �R���


��n̄��R�
el

�n̄��R� ,n��k�
J �R��dq����i

el ��i

Ji �R�� , �9�

where the term in the parentheses is a 3j symbol.
The indices q̃ and q̃� in Eq. �9� are defined as q̃=�k

−�i and q̃�=�k�−�i. In the first order by the Coriolis inter-
action these indices are limited to the values q̃, q̃�
=0, 1, 2. If only the radial nonadiabatic interactions are
important, �k=�R, �k�=�R� , q= q̃, q�= q̃�, and the general-
ized dynamical function fK�q ,q� ,q ,q�� in Eq. �9� becomes
equivalent to the dynamical function fK�q ,q��.10

The dynamical functions fK�q ,q� , q̃ , q̃�� obey the follow-
ing symmetry rules:3,10

fK�− q,− q�,− q̃,− q̃�� = �− 1�KfK�q,q�, q̃, q̃�� ,

�10�
fK�q�,q, q̃�, q̃� = �− 1�q̃−q̃�fK

� �q,q�, q̃, q̃�� .

Instead of the polarization cross section �KQ
�jA��	 ,�� in

Eq. �1� it is convenient to use the atomic state multipole
moments �KQ

�jA��	 ,�� defined as

�KQ
�jA��	,�� =

�KQ
�jA��	,��

�2jA + 1�1/2�0
. �11�

Later we will skip the upper index �jA� in Eq. �11� for
brevity. In the next section Eqs. �1�, �2�, and �7� will be used
for the analysis of several important particular cases of the
recoil distribution of the fragment state multipole moments
of the ranks K=0, 1, and 2.

III. ANALYSIS OF THE RANK K=0,1,2 ANGULAR
MOMENTUM DISTRIBUTIONS

A. K=0

If the photofragment rank K is equal to zero, Eq. �1�
describes the differential cross section for the photofrag-
ments A flying apart in the direction specified by the polar
angles 	 , �. The corresponding angular distribution is well
known. In particular, if the photolysis light is linearly polar-
ized, the differential cross section can be written as8

�00�k̂� =
�0

4�
�1 + �P2�cos ��� , �12�

where � is the angle between the light polarization vector e
and the recoil vector k̂.

Assuming that the photolysis proceeds via a single dis-
sociative state ��k� and using Eqs. �2� and �3�, the anisotropy
parameter � in Eq. �12� can be presented in the following
compact form:

� = �30�− 1�J+Ji�2J + 1	J J 2

1 1 Ji

CJ�k20

J�k , �13�

which is valid for any integer or half-integer values of the
angular momenta Ji and J.

The parameter � in Eq. �13� depends on the total angular
momenta Ji, J and on the projection �k of J onto the direc-

tion of the recoil vector k̂ but not on the other helicity pro-
jections �i and �R. Note that the projection �k is always a
good quantum number in the asymptotic R→� region and
the quantum numbers J and Ji are in general preserved for
any molecule. Therefore, Eq. �13� is valid for slow predisso-
ciation of any diatomic or polyatomic molecule and for any
type of nonadiabatic interaction �radial, Coriolis� involved in
the reaction.

For Q, P, and R rotational branches the parameter � in
Eq. �13� can be written using the algebraic expressions for
the Clebsch–Gordan coefficients and 6j symbols6

��Q� = − � Ji�Ji + 1� − 3�k
2

Ji�Ji + 1� � �Q branch�J = Ji�� , �14�

��Q� = � Ji�Ji + 1� − 3�k
2

Ji�2Ji + 1� � �P branch�J = Ji − 1�� , �15�

��R� = � �Ji + 1��Ji + 2� − 3�k
2

�Ji + 1��2Ji + 1� � �R branch�J = Ji + 1�� .

�16�

Equations �13�–�15� generalize previous results reported
by Zare,12 Liyanage and Gordon,13 and Kuznetsov and
Vasyutinskii2 to the case when the Coriolis interactions can
be important. In the absence of the Coriolis interactions, the
quantum number �k in Eqs. �13�–�16� is equal to the quan-
tum number �R, which is the projection of the total angular
momentum J onto the internuclear distance in the predisso-
ciative state, see Fig. 1. In this case, Eqs. �14�–�16� are

FIG. 1. �Color online� Schematic diagram of the potential curves of a di-
atomic molecule relevant to the predissociation process.
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equivalent to Eqs. �18�–�20� in Ref. 2 where only radial
nonadiabatic interactions have been taken into account.

As follows from Eqs. �13�–�16�, in the high-J limit the
parameter � does not depend on the quantum numbers Jj, J,
and �k and has the following asymptotic values: ��Q�=−1,
��P�=��R�=1 /2, in agreement with all previous
results.2,12,13

B. K=1

If the photofragment rank K is equal to unity, the state
multipole moments in Eqs. �1� and �7� describe the recoil
angle distribution of the Q=0, 1 components of the frag-
ment orientation7,8 in the high-J limit. As known,9,10 in case
of direct photodissociation the photofragment orientation can
in general be produced by three independent photolysis
mechanisms labeled by the anisotropy parameters �1, �1, and
�1�. When the Coriolis interaction is not included, �R=�k

�see Fig. 1� and these mechanisms can be characterized by
various incoherent/coherent optical excitations of the predis-
sociative states �R, �R� in the parent molecule.

When the Coriolis interaction is included, the three pos-
sible photolysis mechanisms still can be labeled by the an-
isotropy parameters �1, �1, and �1�; however, in this case they
cannot be classified in accordance with their “parallel” or
“perpendicular” optical excitation character. Instead, they are
classified in accordance with the rank of the light polariza-
tion matrix kd and the coherent quantum number qk=�k

−�k� which describes the coherent superposition of the dis-
sociative states �k, �k�,

3 see Fig. 1. In particular, the param-
eter �1 is related to kd=1, qk=0, the parameter �1 is related
to kd=1, qk= 1, and the parameter �1� is related to kd=2,
qk= 1. The expressions for each of the three anisotropy
parameters in general contain several reaction channels char-
acterized by the radial or Coriolis nonadiabatic interactions
and coherent/incoherent optical excitation mechanisms in the
parent molecule.3

We now analyze the excitation of the P, R, and Q iso-
lated rotational branches on the basis of Eqs. �7� and �9�. The
first important result of the analysis is that in case of slow
predissociation only the mechanism related to the anisotropy
parameter �1 can produce the photofragment orientation.
This predissociation mechanism can be initiated only by the
circularly polarized photolysis light.9

If the photolysis light is circularly polarized and propa-
gates along the laboratory frame Z axis �geometry III9�, the
angle recoil distributions of the state multipole moments �10

are given by

�10�	,�� =
3�3��1�R�

8��2jA + 1�1/2sin2 	, R branch, �17�

�10�	,�� =
3�3��1�P�

8��2jA + 1�1/2sin2 	, P branch, �18�

�10�	,�� = 0, Q branch, �19�

where �= 1 for the right and the left circularly polarized
light, respectively.

Using Eq. �7� and Table III from Ref. 3, the expressions
for the anisotropy parameters �1�R� and �1�P� in Eqs. �17�
and �18� can be presented in terms of the generalized dy-
namical functions as

�1�R� =
1

NR
�− b1 + b2� , �20�

�1�P� =
1

NP
�b1 + b2� , �21�

where

b1 =
1
�2

�2 Re f1�0,0,0,1� + Re f1�1,1,1,2�

+ Re f1�1,1,0,1� − Re f1�1,− 1,0,− 1�� , �22�

b2 = �Re f1�1,0,1,0� + Re f1�1,0,2,1�

+ Re f1�1,0,0,− 1� − Re f1�1,0,0,1�� . �23�

The predissociation dynamical functions of rank K=1
f1�q ,q� , q̃ , q̃�� in Eqs. �22� and �23� are defined in Eq. �9�.
The normalization factors NR, NP in Eqs. �20� and �21� are
given by

NR = b3 + b4, �24�

NP = b3 − b4, �25�

where

b3 = f0�0,0,0,0� + f0�1,1,1,1� + 2f0�0,0,1,1�

+ f0�1,1,2,2� + f0�1,1,0,0� + f0�1,− 1,0,0� , �26�

b4 = 2�2�Re f0�1,0,0,0� + Re f0�1,0,1,1�� . �27�

The normalization factor NQ which will be used in sec-
tion C is given by

NQ = 2�f0�1,1,1,1� + f0�1,1,2,2� + f0�1,1,0,0�

− f0�1,− 1,0,0�� . �28�

Equations �17�–�27� describe the photofragment state
multipole �10 distributions in slow predissociation of isolated
rotational states taking into account the nonadiabatic radial
and Coriolis interactions. Each generalized dynamical func-
tion in Eqs. �22�, �23�, �26�, and �27� gives contribution from
a certain photolysis mechanism resulting in the photofrag-
ment orientation, see Tables I and II. Only the dynamical
functions f1�1,0 ,1 ,0�, f0�1,1 ,1 ,1�, f0�0,0 ,0 ,0� in Eqs.
�23� and �26� correspond to the cases of pure radial nonadia-
batic interactions or no nonadiabatic interactions at all. In
particular, the rank K=1 dynamical function f1�1,0 ,1 ,0�
= f1�1,0� describes coherent optical excitation of a parallel
and a perpendicular transition followed by the radial nona-
diabatic transition. The rank K=0 dynamical functions
f0�1,1 ,1 ,1�= f0�1,1�, f0�0,0 ,0 ,0�= f0�0,0� describe inco-
herent parallel and perpendicular optical excitations followed
by the radial nonadiabatic transition. In case if the Coriolis
interactions are not important Eqs. �22�, �23�, �26�, and �27�
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are equivalent to the expressions reported elsewhere,2 where
the parameter �̃1 is equal to the parameter �1 in Eqs. �17� and
�18�.

All other generalized dynamical functions in Eqs. �22�,
�23�, �26�, and �27� describe the photodissociation mecha-
nisms involving the Coriolis interactions. The physical
meanings of the possible photolysis mechanisms are illus-
trated in Tables I and II and in Figs. 1–4 in Ref. 3. It is
interesting to point out that the photofragment orientations in
the P and R rotational branches in Eqs. �17�–�27� have the
same value in case of the radial nonadiabatic interactions but
may differ from each other in case of the Coriolis interac-
tions.

As can be shown by comparing Eqs. �17� and �18� with
the results reported elsewhere,2,3,9 the angular distributions
of the photofragment orientation are the same for any pho-
todissociation mechanism. However, the particular aniso-
tropy parameter expressions depend on the photodissociation
mechanism.

As shown in Ref. 2 for the slow predissociation via a
single excited state �nR ,�R� mediated by the radial nonadia-
batic transition, the orientation dynamical function f1�1,0�
can differ from zero for a diatomic molecule only in the case
of ��i�=1 /2→ ��R�=1 /2 transition and if at least one of the
states involved is a mixture of the 2�1/2 and 2�1/2 states. As
can be seen from Eqs. �22� and �23�, when the Coriolis tran-
sitions are involved to the photolysis, the above restrictions
are not valid. In particular, the generalized dynamical func-
tions f1�0,0 ,0 ,1�, f1�1,1 ,1 ,2�, and f1�1,1 ,0 ,1� in Eq. �22�

describe the photolysis schemes 1�→ 1�→ �1� , 1��, 1�
→ 1�→ �1� , 1��, and 1�→ 1�→ �1� , 1��, respectively,
which all begin from incoherent optical excitation of the
ground 1� state to a single predissociative state continued by
a radial and a Coriolis nonadiabatic transition to the coherent
���k�=1 superposition of the dissociative states. Another
photolysis scheme is described by the dynamical function
f1�1,−1,0 ,−1� in Eq. �22�: 1�→ �1�1�→ �1� , 1��. This
scheme begins from coherent ����=2 optical excitation of
the ground 1� state to the predissociative 1� state and is
continued by a Coriolis and a radial nonadiabatic transition
to the coherent ���k�=1 superposition of the dissociative
states. Therefore, when the Coriolis interaction is not small,
the state multipole moments �10 for the R, P rotational
branches can differ from zero also for the 1� ground state.

In the case of the broadband optical excitation of the P,
Q, and R rotational branches, the summation over all rota-
tional branches in Eq. �7� should be proceeded. The obtained
expressions for the anisotropy coefficients agree with the re-
sults reported elsewhere.3

C. K=2

If the photofragment rank K is equal to 2, the state mul-
tipole moments in Eqs. �1� and �7� describe the recoil angle
distribution of the Q=0, 1, 2 components of the frag-
ment alignment7,8 in the high-J limit. As known,9,10 in case
of direct photodissociation the photofragment alignment can
in general be produced by five independent photolysis
mechanisms labeled by the anisotropy parameters �2, s2, �2,
�2�, and �2. When the Coriolis interaction is not included, the
parameters �2 and s2 are responsible for the incoherent op-
tical excitation of the predissociative states �R via the paral-
lel and perpendicular transitions, the parameters �2 and �2�
are responsible for the ��R= 1 coherent optical excitation
of a parallel and a perpendicular transition, and the parameter
�2 is responsible for the ��R= 2 coherent optical excita-
tion of two perpendicular transitions.

When the Coriolis interaction is included, the possible
photolysis mechanisms can in general be labeled by the an-
isotropy parameters �2, s2, �2, �2�, and �2; however, as dis-
cussed above in this case they can be classified in accordance
with the rank of the light polarization matrix kd and the co-
herent quantum number qk=�k−�k�. In particular, the pa-
rameter �2 is related to kd=2, qk=0, the parameter s2 is
related to kd=0, qk=0, the parameter �2 is related to kd=2,
qk= 1, the parameter �2� is related to kd=1, qk= 1, and
the parameter �2 is related to kd=2, qk= 2, see Table III in
Ref. 3. The expressions for each of the five anisotropy pa-
rameters in general contain several reaction channels charac-
terized by the radial and/or Coriolis nonadiabatic interactions
and coherent/incoherent optical excitation mechanisms in the
parent molecule.

Using Eqs. �1� and �7� with K=2, the expressions for the
photofragment state multipole moments �20, �22 produced via
excitation of the isolated rotational branches for three basic
experimental geometries9 can be presented in the following
forms:

Geometry I: photolysis light is linearly polarized along the Z

TABLE I. Interpretation of the rank K=0 generalized dynamical functions
f0�q ,q� , q̃ , q̃��.

Generalized dynamical
function Possible photolysis scheme

f0�0,0 ,0 ,0� �→�→�

f0�1,1 ,1 ,1� �→�→�

f0�0,0 ,1 ,1� �→�→�

f0�1,1 ,0 ,0� �→�→�

f0�1,1 ,2 ,2� �→�→�

f0�1,−1,0 ,0� �→�1→�

f0�1,0 ,0 ,0� �i=−1 /2→�R= 1 /2→�k=−1 /2
f0�1,0 ,1 ,1� �i=−1 /2→�R= 1 /2→�k=1 /2

TABLE II. Interpretation of the rank K=1 generalized dynamical functions
f1�q ,q� , q̃ , q̃��. Only excitation to a single predissociative state ��R� is con-
sidered. Only the dynamical functions which are relevant to the case of slow
predissociation are presented in the table.

Generalized dynamical
function Possible photolysis scheme

f1�1,0 ,1 ,0� �i=−1 /2→�R= 1 /2→�k= 1 /2
f1�0,0 ,0 ,1� �→�→ �� ,�� or �→�→ �� ,��
f1�1,1 ,1 ,2� �→�→ �� ,��
f1�1,1 ,0 ,1� �→�→ �� ,��
f1�1,−1,0 ,−1� �→�1→ �� ,��
f1�1,0 ,2 ,1� �i=−1 /2→�R= 1 /2→�k= �3 /2,1 /2�
f1�1,0 ,0 ,−1� �i=−1 /2→�R= 1 /2→�k= �−1 /2,−3 /2�
f1�1,0 ,0 ,1� �i=−1 /2→�R= 1 /2→�k= �1 /2

134312-6 Kuznetsov, Shternin, and Vasyutinskii J. Chem. Phys. 130, 134312 �2009�

Downloaded 21 Apr 2009 to 194.85.224.35. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



axis of the laboratory frame.
Q branch �J=Ji�:

�20�	,�� =
�5V2�jA�

4��2jA + 1�1/2	�P2�cos 	�

− �P2�cos 	��2�s2�Q� −
3�2�Q�

4
sin4 	
 ,

�29�

�22�	,�� =
�15V2�jA�

2�2�2jA + 1�1/2

1

4�
e2i�


sin2 		�1 − P2�cos 	��s2�Q�

−
�2�Q�

2
�1 + cos2 	�
 . �30�

R branch �J=Ji+1�:

�20�	,�� =
�5V2�jA�

4��2jA + 1�1/2	�P2�cos 	�

+
1

2
�P2�cos 	��2�s2�R� −

3�2�R�
4

sin4 	
 ,

�31�

�22�	,�� =
�15V2�jA�

8��2�2jA + 1�1/2e2i�


sin2 		1 +
1

2
P2�cos 	��s2�R�

−
�2�R�

2
�1 + cos2 	�
 . �32�

Geometry II: photolysis light is linearly polarized along
the Y axis of the laboratory frame.
Q branch �J=Ji�:

�20�	,�� =
�5V2�jA�

4��2jA + 1�1/2	P2�cos 	��1 +
1

2
�P2�cos 	�


�1 − cos 2�� + cos 2���s2�Q�

+
3

8
�2�Q�sin2 	�sin2 	

+ �1 + cos2 	�cos 2��
 , �33�

�22�	,�� =
�15V2�jA�e2i�

8��2�2jA + 1�1/2	sin2 	�1 +
1

2
�P2�cos 	�


�1 − cos 2�� + cos 2���s2�Q�

+
�2�Q�

4
�sin2 	�1 + cos2 	�

+ �1 + cos2 	�2cos 2� − 4i cos2 	 sin 2��
 .

�34�

R branch �J=Ji+1�:

�20�	,�� =
�5V2�jA�

4��2jA + 1�1/2	P2�cos 	��1 −
1

4
�P2�cos 	�


�1 − cos 2�� + cos 2���s2�R�

+
3�2�R�

8
sin2 	�sin2 	

+ �1 + cos2 	�cos 2��
 , �35�

TABLE III. Interpretation of the rank K=2 generalized dynamical functions
f2�q ,q� , q̃ , q̃��. Only excitation to a single predissociative state ��R� is con-
sidered. Only the dynamical functions which are relevant to the case of slow
predissociation are presented in the table.

Generalized dynamical
function Possible photolysis scheme

f2�1,1 ,1 ,1� �→�→�

f2�0,0 ,0 ,0� �→�→�

f2�1,1 ,0 ,0� �→�→�

f2�1,1 ,2 ,2� �→�→�

f2�0,0 ,1 ,1� �→�→�

f2�1,−1,0 ,0� �→ ��1�→�

f2�1,0 ,1 ,1� �i=−1 /2→�R= 1 /2→�k= +1 /2
f2�1,0 ,0 ,0� �i=−1 /2→�R= 1 /2→�k=−1 /2
f2�1,0 ,1 ,0� �i=−1 /2→�R= 1 /2→�k= 1 /2
f2�0,0 ,0 ,1� �→�→ �� ,��
f2�1,1 ,0 ,1� �→�→ �� ,��
f2�1,−1,0 ,−1� �→�1→ �� ,��
f2�1,1 ,1 ,2� �→�→ �� ,��
f2�1,0 ,2 ,1� �i=−1 /2→�R= 1 /2→ ��k=3 /2,�k=1 /2�
f2�1,0 ,0 ,1� �i=−1 /2→�R= 1 /2→ ��k=−1 /2,�k=1 /2�
f2�1,0 ,0 ,−1� �i=−1 /2→�R= 1 /2→ ��k=−1 /2,�k=−3 /2�
f2�1,−1,1 ,−1� �→ ��1�→ ��1�
f2�1,−1,2 ,0� �→ ��1�→ �� ,��
f2�1,1 ,2 ,0� �→�→ �� ,��
f2�0,0 ,1 ,−1� �→�→ ��1�
f2�1,0 ,2 ,0� �i=−1 /2→�R= 1 /2→ ��k=3 /2,�k=−1 /2�
f2�1,0 ,1 ,−1� �i=−1 /2→�R= 1 /2→ ��k=1 /2,�k=−3 /2�
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�22�	,�� =
�15V2�jA�e2i�

8��2�2jA + 1�1/2	sin2 	�1 −
1

4
�P2�cos 	�


�1 − cos 2��� + cos 2���s2�R�

+
�2�R�

4
�sin2 	�1 + cos2 	�

+ �1 + cos2 	�2cos 2� − 4i cos2 	 sin 2�� .

�36�

Geometry III: photolysis light is circularly polarized
and propagates along the Z axis of the laboratory frame.
Q branch �J=Ji�:

�20�	,�� =
�5V2�jA�

4��2jA + 1�1/2	�P2�cos 	�

+
1

2
�P2�cos 	��2�s2�Q� +

3�2�Q�
8

sin4 	
 ,

�37�

�22�	,�� =
�15V2�jA�e2i� sin2 	

8��2�2jA + 1�1/2


	1 +
1

2
P2�cos 	��s2�Q�

+
�2�Q�

4
�1 + cos2 	�
 . �38�

R branch �J=Ji+1�:

�20�	,�� =
�5V2�jA�

4��2jA + 1�1/2	�P2�cos 	�

−
1

4
�P2�cos 	��2�s2�R� +

3

8
sin4 	�2�R�
 ,

�39�

�22�	,�� =
�15V2�jA�e2i�

8��2�2jA + 1�1/2


sin2 		1 −
1

4
P2�cos 	��s2�R�

+
�2�R�

4
�1 + cos2 	� − i��2��R�
 . �40�

The expressions for the rotational P branch �J=Ji−1�
can be readily obtained from R-branch expressions in Eqs.
�31�, �32�, �35�, �36�, �39�, and �40� by replacing s2�R�
→s2�P�, �2�R�→�2�P�, and �2��R�→�2��P� given in Eqs.
�42�, �43�, �47�, �48�, �51�, and �52�.

The anisotropy parameters s2, �2, �2� in Eqs. �29�–�40�
can be defined as

s2�Q� =
2V2

−1�jA�
NQ

�f2�1,1,1,1� + f2�1,1,2,2�

+ f2�1,1,0,0� − Re f2�1,− 1,0,0�� , �41�

s2�R� =
V2

−1�jA�
NR

�b5 + b6� , �42�

s2�P� =
V2

−1�jA�
NP

�b5 − b6� , �43�

where

b5 = f2�1,1,1,1� + f2�0,0,0,0� + 2f2�0,0,1,1�

+ f2�1,1,2,2� + f2�1,1,0,0� + Re f2�1,− 1,0,0� ,

�44�

b6 = 2�2�Re f2�1,0,1,1� + Re f2�1,0,0,0�� , �45�

�2�Q� =
�6V2

−1�jA�
2NQ

�f2�1,− 1,1,− 1� + 2 Re f2�1,− 1,2,0�

− 2 Re f2�1,1,2,0�� , �46�

�2�R� =
�6V2

−1�jA�
8NR

�b7 + b8� , �47�

�2�P� =
�6V2

−1�jA�
8NP

�b7 − b8� , �48�

where

b7 = f2�1,− 1,1,− 1� + 2f2�0,0,1,− 1� + 2 Re f2�1,1,2,0�

+ 2 Re f2�1,− 1,2,0� , �49�

b8 = 2�2�Re f2�1,0,2,0� + Re f2�1,0,1,− 1�� , �50�

�2��R� =
�6V2

−1�jA�
2NR

�b9 + b10� , �51�

�2��P� =
�6V2

−1�jA�
2NP

�− b9 + b10� , �52�

where

b9 = 2 Im f2�0,0,0,1� + Im f2�1,1,1,2� + Im f2�1,1,0,1�

+ Im f2�1,− 1,0,− 1� , �53�

b10 = �2�Im f2�1,0,1,0� + Im f2�1,0,2,1�

+ Im f2�1,0,0,1� + Im f2�1,0,0,− 1�� . �54�

The dynamical functions f2�q ,q� , q̃ , q̃�� in Eqs. �41�,
�44�–�46�, �49�, �50�, �53�, and �54� are defined in Eq. �9� and
the normalization factors NQ, NR, and NP are given in Eqs.
�28�, �24�, and �25�, respectively. The factor V2�jA� is given
by
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V2�jA� = 5� jA�jA + 1�
�2jA + 3��2jA − 1��1/2

. �55�

In the absence of the Coriolis interactions, the param-
eters s2�Q�, s2�R�, s2�P�, �2�Q�, �2�R�, �2�P�, �2��R�, and
�2��P� in Eqs. �41�–�43�, �46�–�48�, �51�, and �52� are related
to the corresponding anisotropy parameters s2

�0�, s̃2, �2
�0�, �̃2� in

Ref. 2 as follows: s2�Q�=s2
�0�, s2�R�=s2�P�= s̃2, �2�Q�

= 1
2�2

�0�, �2�R�=�2�P�= 1
4�2

�0�, �2��R�=�2��P�= �̃2�.
Equations �29�–�54� describe the laboratory frame mul-

tipole moments �20, �22 in the slow predissociation of a
single rotational state where both radial and Coriolis nona-
diabatic interactions are taken into account. As can be seen
from Eqs. �29�–�40�, in the case of slow predissociation the
total number of the anisotropy parameters needed for de-
scription of the photofragment alignment is reduced to 3.

The multipole moment recoil angle distributions in the
case of slow predissociation in Eqs. �29�–�40� can be for-
mally obtained from those in the case of direct photodisso-
ciation tabulated by Wouters et al.9 by holding the parameter
�2 equal to zero and by assigning the relationship 2�2=s2 if
the Q rotational branch is excited and 4�2=−s2 if R or P
rotational branch is excited. However, the expressions for the
anisotropy parameters in terms of the dynamical functions in
these two cases are different.

Only the dynamical functions f2�1,1 ,1 ,1�= f2�1,1�,
f2�0,0 ,0 ,0�= f2�0,0�, f2�1,−1,1 ,−1�= f2�1,−1�, and
f2�1,0 ,1 ,0�= f2�1,0� in Eqs. �41�–�54� describe the radial
nonadiabatic interactions. All other dynamical functions con-
tain contributions from the Coriolis interactions. Each gener-
alized dynamical function in Eqs. �41�–�54� is related to a
certain photolysis mechanism resulting in the photofragment
alignment; the examples are given in Table III.

As can be seen from Eqs. �42�–�45� and �47�–�54�, in the
absence of the Coriolis interactions the alignment parameters
s2�R� and s2�P�, �2�R� and �2�P�, �2��R� and �2��P� which are
referred to the R and P rotational branches have the same
values in pairs. However, if the Coriolis interaction is in-
cluded, these parameters may differ from each other.

The multipole moments defined above refer to the labo-
ratory frame. The transformation to the frequently used mo-
lecular frame multipole moments �2qk

mol which are defined with

respect to the photofragment recoil vector k̂ can be obtained
using the transformation10

�2Q�	,�� = �2jA + 1�1/2�00�	,���
qk

DQqk

2� ��,	,0��2qk

mol,

�56�

where the projection qk=�k−�k�=�A−�A� is limited to the
values qk=0, 1, 2.

Equation �56� differs from the conventional irreducible
tensor transformation under rotation of the coordinate frame6

by an additional factor �2jA+1�1/2�00�	 ,�� in the right hand
side. The factor appears because the laboratory frame multi-
pole moment �2Q�	 ,�� in the left hand side of Eq. �56� is
normalized to the total number of the photofragments inte-
grated over all recoil angles, while the molecular frame mul-

tipole moment �2qk

mol in the right hand side of Eq. �56� is
normalized to the number of the photofragments moving in

the direction k̂�	 ,��.
When the photolysis light is linearly polarized along the

laboratory Z axis, explicit expressions for the molecular
frame multipole moments can be readily obtained by com-
paring Eqs. �29�–�32� with Eq. �56� and presented in the
form

�20
mol =

�5V2�jA�s2�i�
�2jA + 1�1/2 where

i = P,Q,R �P,Q,R branches� , �57�

�21
mol = 0 �P,Q,R branches� , �58�

�22
mol = −�5

6

V2�jA��2�Q�
�2jA + 1�1/2 �Q branch� , �59�

�22
mol = −�10

3

V2�jA��2�l�
�2jA + 1�1/2

sin2 	

1 + cos2 	
where

l = P,R �P,R branches� . �60�

The molecular frame multipole moment �20
mol refers to the

diagonal matrix elements of the photofragment density ma-
trix ��A�A

and the multipole moment �22
mol=�2−2

mol refers to the
off-diagonal matrix elements of the photofragment density
matrix ��A�A�

, where �A−�A� =2. In the absence of the Cori-
olis interaction multipole moment �20

mol is produced by the
incoherent �R=�R� optical excitation of the parent molecule
and the multipole moment �22

mol is produced by the coherent
�R−�R� =2 optical excitation of the parent molecule.

As shown in Eqs. �57�–�60�, the multipole moments �20
mol

for all P, Q, and R rotational branches and the multipole
moment �22

mol for the Q rotational branch in the high-J limit
do not depend on the angle 	 between the light polarization e
and the recoil direction k̂. However, the multipole moment
�22

mol for the P and R rotational branches does depend on the
angle 	.

For the moment, only a few experimental works have
been carried out in the field of the photofragment alignment
produced in slow predissociation of diatomic molecules.
Katô and Onomichi14 and Frohlich et al.15 investigated the
polarization of light emitted by photofragments produced in
slow predissociation of Cs2 and H2, respectively. In both
studies the theoretical treatments based on the analysis of the
alignment of the photofragment angular momenta averaged
over all recoil directions.

Very recently Rose et al.16 reported strong alignment of
the S�2P1,2� products in the predissociation of SH and SD
radicals via the X 2�→A 2� optical transition along with a
weak sensitivity of the fine-structure branching ratio to ex-
cess energy. Analyzing the experimental recoil angle distri-
bution of the photofragments produced and detected by lin-
early polarized light, Rose et al.16 neglected the effect of
coherence between the �k states and determined the photo-
fragment multipole moment �20

mol, see Eq. �57�. They resumed
that the experimental data do not fit the predictions of either
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adiabatic or diabatic photodissociation, emphasizing the need
for a fully quantum treatment. Note that Eqs. �9� and �41�–
�43� for the anisotropy parameters in terms of the dynamical
functions obtained in the high-J limit cannot be directly ap-
plied to the experimental data of Rose et al.16 obtained for
very low J values. However, the angular distributions of the
multipole moments in Eqs. �29�–�40� hold in general and
valid for any J value.

In the case of the broadband excitation of the Q, R, and
P rotational branches the summation over all rotational quan-
tum numbers J=Ji ,Ji1 should be proceeded in Eq. �7�.
The resulting expressions for the photofragment state multi-
pole moments coincide with the expressions reported
elsewhere.3 Note that the expressions for the parameters s2

and �2 in Ref. 3 contain errors. The dynamical function
f2�0,0 ,1 ,1� in Eq. �45� in Ref. 3 should be doubled. Simi-
larly, one should put 2 Re f2�1,−1,2 ,0� instead of f2�1,
−1,2 ,0� in Eq. �49� in Ref. 3.

Equations �12�, �17�–�19�, and �29�–�40� together with
the expressions for the intensity of the 2+1 Resonance En-
hanced Multiphoton Ionization �2+1 REMPI� for different
probe light polarizations tabulated by Wouters et al.9 provide
a theoretical link to the observations of the orbital polariza-
tion of products of predissociation and allow for determina-
tion of the anisotropy parameters of the ranks K=0,1 ,2 from
experiment. As shown above, when the Coriolis interaction
is included, the anisotropy parameters become linear combi-
nations of numerous dynamical functions each describing a
certain photolysis mechanism. Therefore, it seems unlikely
that the dynamical functions can be determined experimen-
tally within the frame of assumed experimental procedure of
detection of polarization of one of the reaction product at the
asymptotically large interfragment distance R. Possible ways
of increasing the number of information obtained from ex-
periment may be using the coincidence detection of polariza-
tion of both products and the femtosecond real-time detec-
tion technique.

It should be also noted that although the anisotropy
parameters/anisotropy transforming coefficients can be de-
fined at any value of the molecular total angular momentum
J, the dynamical functions in Eq. �9� can be defined only in
the high-J limit. Therefore, in case of small J values general
expression for the anisotropy transforming coefficients �2�
should be used which can unlikely provide a clear interpre-
tation of different dissociation mechanisms contributing to
each coefficient.

IV. CONCLUSION

Quantum mechanical expressions describing the recoil
angle dependence of the photofragment state multipoles in
the case of slow predissociation of isolated rotational states
have been derived on the basis of the theory developed

elsewhere2,3 where both radial and Coriolis nonadiabatic in-
teractions between different PESs have been taken into ac-
count.

The state multipole moments with the ranks K=0, 1, and
2 describing the photofragment angular distribution and the
photofragment angular momentum polarization �orientation
and alignment� have been derived and analyzed in detail. As
shown, the recoil-angle-dependent part of the state multipole
moments in terms of the anisotropy parameters have the
same universal form irrespective of the photolysis mecha-
nism. The particular expressions for the anisotropy param-
eters of the ranks K=0,1 ,2 have been derived. As shown,
the total number of the anisotropy parameters of the ranks
K=0,1 ,2 which completely describe the predissociation dy-
namics is equal to 5. These are one zeroth-rank parameter �,
one first-rank �orientation� parameter �1, and three second-
rank �alignment� parameters s2 ,�2� ,�2. The expressions for
the anisotropy parameters are presented in terms of the gen-
eralized dynamical functions fK�q ,q� , q̃ , q̃�� each containing
contribution from a certain photolysis mechanism including
incoherent/coherent optical excitation of the parent molecule
followed by the radial and/or Coriolis nonadiabatic transition
to the dissociative molecular state.
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