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Abstract
We study theoretically the formation of a double radio-optical resonance (DROR) in 87Rb
vapour in a cell with an anti-relaxation coating. We develop a quantum-kinetic approach to the
study of the Dicke narrowing. We examine various DROR schemes for different polarizations
of the laser radiation. We find that the short-term stability σ y of a DROR-based frequency
standard improves significantly (by an order of magnitude) if a laser with a broad spectrum is
used, in comparison to the case of excitation by a narrow-band laser radiation, and reaches
ultimately the value σ y ∼ 1 × 10−14 τ−1/2, where τ is the integration time (in seconds).

1. Introduction

Resonant interaction of two electromagnetic waves (optical
and radiofrequency) with atoms is known as the double radio-
optical resonance (DROR). This effect has been used for
the creation of magnetometers [1–4] and quantum frequency
standards [4, 5]. Unprecedented precision of the most up-
to-date techniques of magnetic field measurement [6, 7]
makes optical magnetometers very promising tools for various
branches of both fundamental and applied science, such as
detecting weak magnetic fields of human heart and brain [8]
or space research [9]. Moreover nonlinear optics of four-
level (and, in general, multilevel) quantum systems irradiated
by combined optical and microwave fields is now of wide
interest. For example, sharp and high-contrast resonances
in Rb irradiated by resonant coherent optical and microwave
fields, theoretically studied in [10], were observed in [11].

No less significant are the fields of the application
of quantum frequency standards, including building up
global systems of navigation and positioning, synchronization
services in telecommunication networks and experimental
tests of the fundamental laws of physics.

A quantum discriminator is the principal part of a quantum
frequency standard. Its performance is characterized by the
figure of merit Q, which is determined by the amplitude and
the width of the resonance used for locking and stabilizing the
frequency. These parameters depend on the time of coherent
interaction of the atoms with the resonant electromagnetic
fields. The main factor that destroys the atom–field coherence
is the depolarization (angular-momentum randomization) of
an atom during its collision with a cell wall. Another adverse
factor is the thermal motion of an atom: the phase of the
electromagnetic field acting to atom changes in time, as the
atom traverses the distance comparable to the wavelength λ of
the microwave radiation. Therefore, to improve the figure of
merit, one has to extend the time of the coherent atom–field
interaction.

There are two main methods to increase this time: adding
a buffer gas into the cell containing the active atoms and
covering the cell walls with an anti-relaxant material. The
depolarization of active atoms caused by their collisions with
the atoms (or molecules) of the buffer gas is practically
negligible. However, the mean free path of active atoms
becomes significantly shorter. As a result, the frequency of
collision of the active atoms with the cell walls and, hence, the
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corresponding depolarization rate are reduced. In contrast, the
time required for an atom to travel to the distance of the order
of λ in the diffusion regime grows. This method has several
disadvantages, the most serious one being the shift and the
broadening of the frequency of the working (etalon) transition
due to exchange (Pauli) repulsion and van der Waals attraction
between the paramagnetic active atoms and the diamagnetic
atoms or molecules of the buffer gas.

The second method (anti-relaxation covering of the
cell walls), known for a long time [12], is free of these
disadvantages. The depolarization probability per collision
of an active atom with a cell wall coated by an anti-relaxant
(most commonly, paraffin is used for this purpose) drops
by four orders of magnitude [13], compared to the case of
an uncoated cell. Previous objections against anti-relaxation
coatings, because of their allegedly rapid ageing, have been
refuted recently [1]: the shift of the microwave transition
frequency has been proven to be less than 10 Hz in 30 years.
This makes DROR in coated cells a very promising line of
research, since the resonance width in such cells may be as
narrow as 47 Hz [14].

In the present work, we analyse DROR in 87Rb vapour
in a cell without a buffer gas. We numerically solve the set
of quantum kinetic equations for the atomic density matrix,
the presence or absence of the wall coating being taken into
account via boundary conditions. In contrast to [15], where the
DROR is analysed within the idealized three-level model and
the DROR excitation is provided by an incoherent radiation
source (a gas discharge lamp), in the present work we take
into account the full hyperfine and Zeeman structure of the
ground and excited states of 87Rb and consider the DROR
excitation by the laser (coherent) radiation. Special attention
is paid to the theoretical study of the dependence of the DROR
parameters on the width of the laser radiation spectrum. We
find that the excitation of atomic systems by a coherent (laser)
radiation can result in new effects.

2. The set of quantum kinetic equations

Consider a 87Rb atom that interacts with two electromagnetic
fields, laser and microwave. The constant external magnetic
field B lifts the degeneracy of the atomic levels with respect
to the projection of the total angular momentum to the
quantization axis defined by the magnetic field direction. We
denote the levels of the ground (S1/2) and excited (P1/2 or P3/2)
states of the 87Rb atom by g and e, respectively. We further
divide the ground-state sublevels into two subgroups, g1 and
g2, with regard to the corresponding value of the total angular
momentum Fg = 1 and Fg = 2 (see figure 1).

The electric component E of the optical field and the
magnetic component H of the microwave field are the running
waves:

E(r, t) = E0 exp [i (kr − ωt)] + c.c., (1)

H(r, t) = H0 exp [i (qr − ωrf t)] + c.c., (2)

with E0 and H0 being their amplitudes, k and q being their wave
vectors, ω and ωrf being their frequencies. The optical field

Figure 1. General sketch of the DROR excitation scheme (see the
text for details).

drives the electric dipole transition |Fg = 2〉 ↔ |Fe〉 between
the ground and the first excited state; the microwave field
drives the magnetic dipole transition |Fg = 1〉 ↔ |Fg = 2〉
between hyperfine sublevels of the ground state. The atomic
density matrix �

ρ(r, p, t) in the Wigner representation evolves
according to the equation

ρ̇ij (r, p, t) ≡ ∂ρij

∂t
+

p
m

∇ρij

= − i

h̄

∑
k

[Hikρkj − ρikHkj ] + (
�

�
�

�
ρ)ij . (3)

Here Hij is the matrix element of the Hamiltonian
�

H , the

subscripts i and j denote the atomic states,
�

�
�

is the relaxation

operator and m is the atomic mass. The Hamiltonian
�

H can
be represented as

�

H = �

H 0 + h̄
�

V , (4)

where
�

H 0 is the atomic Hamiltonian in the absence of the

external radiation and h̄
�

V describes the interaction of the atom
with the optical and microwave fields:
�

V =
∑
e,g2

|e〉V 0
eg2 exp[i(kr − ωt)]〈g2| +

∑
g2g1

|g2〉U 0
g1g2

× exp [i(qr − ωrf t)] 〈g1| + h.c., (5)

where V 0
eg2

and U 0
g1g2

are the Rabi frequencies for the optically-
and microwave-driven transitions, respectively.

Consider then the matrix elements �ij,kl of the relaxation

operator
�

�
�

in equation (3). The elements �ee,ee = −γ ≈
−3.5 × 107 c−1 define the rate of the decay of the excited
state due to spontaneous relaxation. The return of the atomic
population to the ground state is described by the matrix
elements �gg,ee = γPge, where Pge is the probability for an
atom to occur in the state g after spontaneous decay of the state
e (the branching ratio) [16]:

Pge = (2Fg + 1)(2Je + 1) ·
(

C
Feme
Fgmg1R

{
Jg I Fg

Fe 1 Je

})2

. (6)

Here Je and Jg are the electronic angular momenta, Fe

and Fg the total momenta, arising from coupling Je (or,
respectively, Jg) to the nuclear spin I (I = 3/2 for 87Rb),
me and mg are the projections of the total momenta to the
quantization axis, the subscript g or e indicates the values for
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the ground or the excited state, respectively, R = me − mg,
C

Feme
Fgmg1R is the Clebsch–Gordan coefficient, and {· · ·} is the 6J

symbol.
In the absence of a buffer gas, the decay of the off-

diagonal density matrix elements ρeg (the so-called optical
coherences) is given by �eg,eg = −γ ′ with γ ′ = γ /2 [17].
The relaxation of the ‘microwave coherences’ ρgg′ , g 	= g′ is
given by �gg′,gg′ = −�⊥. It is caused by collisions of the active
atoms to each other and thus is proportional to their number
density, which, in turn, is determined by the cell temperature.
The depolarization processes in the ground state manifold are
described by the matrix elements �gg,g′g′ = �‖P̃gg′ , g 	= g′

and �gg,gg = −�‖, where �‖ � �⊥ is the depolarization
rate and P̃gg′ is the normalized to 1 probability for an atom
to change its internal state from g′ to g in the course of an
inelastic (spin-changing) collision. Without loss of generality,
we assume that all these transitions are equally probable(
P̃gg′ = (

2
(
Fg1 + Fg2

)
+ 1

)−1
, g 	= g′).

We assume that the optical field is tuned exactly in
resonance with the respective transitions. Upon adiabatic
elimination of ρee and ρeg, we obtain the following set of
equations (in the interaction representation) for the populations
ρgg and coherences ρgg′ in the ground-state manifold:

ρ̇g1g′
1
= − i

[(
ωg1g′

1
− i�⊥

)
ρg1g′

1
+

∑
g2

(
U 0

g1g2
ρg2g′

1
− ρg1g2U

0
g2g′

1

)]

+ δg1g′
1

⎡
⎣�⊥ρg1g′

1
− �‖ ·

⎛
⎝ρg1g1 −

∑
g′′

P̃g1g′′ρg′′g′′

⎞
⎠

+
∑

e,g′′
2 ,g

′′′
2

2Pg1e

V 0
eg′′

1
V 0

g′′′
1 e

γ ′ G̃eρg′′
2g′′′

2

⎤
⎦ ,

ρ̇g2g′
2
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ωg2g′

2
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)
ρg2g′

2
+

∑
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g2g1
ρg1g′

2
− ρg2g1U

0
g1g′

2

)

+
∑
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2

V 0
g2eV

0
eg′′

2

γ ′
[
F̃e − iG̃e

]
ρg′′

2g′
2

−
∑
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2

V 0
g′′

2eV
0

eg′
2

γ ′
[
F̃e + iG̃e

]
ρg2g′′

2

⎤
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+ δg2g′
2
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2
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⎛
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⎞
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+
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′′′
2

2Pg2e
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2
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γ ′ G̃e

⎤
⎦ ,

ρ̇g1g2 = −i
[
(ωrf − �se − ωg2g1 − q · υ − i�⊥)ρg1g2

+
∑

g′
2

U 0
g1g′

2
ρg′

2g2 −
∑

g′
1

ρg1g′
1
U 0

g′
1g2

−
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e,g′

2

V 0
g′

2eV
0

eg2

γ ′
[
F̃e + iG̃e

]
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2

⎤
⎦ . (7)

Here ωij is the frequency interval between the states i and j,
υ = p/m is the atomic velocity, δij is the Kronecker symbol
and �se is the frequency shift caused by the spin-exchange
interactions of atoms. The real coefficients F̃e and G̃e are
defined as

G̃e + iF̃e =
∫ +∞

−∞

γ ′ · J (ω′)
γ ′ − i(ω′ − ωeg2 + L − kυ)

dω′, (8)

where J (ω′) is the spectral density of the laser radiation,
normalized to unity

(∫ +∞
−∞ J (ω′) dω′ = 1

)
. Since we consider

the stationary regime, the time derivatives in equation (7) are
set to zero.

Zeeman splitting of the magnetic sublevels of the
hyperfine states g1 and g2 is about 0.7 MHz G−1. In weak
magnetic fields (<1 G) used in quantum discriminators for
lifting the degeneracy this yields splitting values much less
than the Doppler broadening �D = 2

√
ln 2 ·kυT of the optical

transition (υT being the most probable velocity of the atoms
at the temperature T) and the rate γ ′ of the optical coherence
decay. Therefore, we neglect in equation (8) the dependence
of ωeg2 on the angular momentum projection.

The diffusion model of the laser radiation phase noise
predicts the Lorentzian shape of the spectral intensity [18]:

J (ω′) = �L/2π

(ω − ω′)2 + �2
L

/
4
, (9)

with �L being its width (FWHM). Then (8) reduces to

G̃e + iF̃e = γ ′ + �L/2

γ ′ + �L/2 − i(ω + L − kυ)
. (10)

If other types of noise dominate over the phase noise, the
general formula (8) should be used.

The excited-state populations are

ρexc =
∑

e,g′′
2 ,g

′′′
2

2
V 0

eg′′
2
V 0

g′′′
2 e

γ γ ′ G̃eρg′′
2g′′′

2
. (11)

Since at T = 323 K the Doppler width δD = 2
√

ln 2 · qυT

of the microwave transition |Fg = 1, m〉 ↔ |Fg = 2, m〉 is
of about 8 kHz, and the difference between the frequencies of
the working transition |Fg = 1, m = 0〉 ↔ |Fg = 2, m = 0〉
and another hyperfine transition |Fg = 1, m = ±1〉 ↔
|Fg = 2, m = ±1〉 is much larger (70 kHz for the external
magnetic field B as small as 0.05 G), the microwave-
induced transitions between the states |Fg = 1, m = ±1〉 and
|Fg = 2, m = ±1〉 are off-resonant and can be neglected. It
is convenient to introduce the microwave-field detuning

rf = ωrf − ω21, (12)

where |1〉 = |Fg = 1, m = 0〉, |2〉 = |Fg = 2, m = 0〉.
Since typical atomic velocity is much larger than the

photon recoil velocity, and the number density of active atoms
is low (their mean free path in a cell without a buffer gas is by
several orders of magnitude longer than the cell size), we can
treat the evolution of the density matrix as local with respect
to both the coordinate and momentum. Thermal equilibrium
for the atomic translational degrees of freedom results in the
following normalization condition:∑

i

ρii(r, p, t) = M(p)

Vcell
, M(p) = exp

(−p2
/
p2

T

)
(
pT

√
π

)3 , (13)
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where pT = √
2kBmT , kB is Boltzmann’s constant and Vcell

is the cell volume.
In our model, we make the following assumptions

regarding the collision of an active atom with the cell wall.
Firstly, the kinetic momenta of an atom p and p′ before and
after the collision are related to each other as p′ = p−2n·(n·p),
where n is the unit vector normal to the inner surface S of
the cell (mirror-like reflection). Secondly, the depolarization
processes do not depend on p. Finally, in a wall collision
followed by depolarization, the transitions between different
sublevels of the ground state occur with the same probability.
Then the boundary conditions for the atomic density matrix
can be written as

ρ̄gg(p′) − ρgg(r, p′)r∈S = β(ρ̄gg(p) − ρgg(r, p)r∈S),

ρgg′(r, p′)r∈S = α · ρgg′(r, p)r∈S, g 	= g′. (14)

Here ρ̄gg(p) = M(p)/(8 · Vcell) is the diagonal element of
the density matrix of completely depolarized atoms. The
coefficients α and β (0 � α, β � 1) characterize the degree of
relaxation of atomic populations ρgg and coherences ρgg′ after
a collision with the cell wall.

If the cell is coated with a special anti-relaxation material
(e.g., long-chain paraffin), then atoms do not adsorb at the
cell wall, and the collision-induced phase dispersion is also
very small. Hence, significant depolarization requires a very
high number of wall collisions. The idealized limiting case of
this situation is represented by the boundary conditions of the
specular-coherent type [15], implying that

α = β = 1. (15)

In the opposite limiting case each collision fully
randomizes the atomic spin. Such a situation is typical for
alkali metal vapours in uncoated glass cells. The reason is a
high dispersion of local magnetic fields. For example, in a
Pyrex glass, where the abundance of magnetite, which forms
ferromagnetic domains, reaches 0.1%, the rms of the random
local magnetic field is of about 5 G. This is sufficient to
provide complete relaxation of coherences and equilibration of
populations in atoms just after the collision with the wall. This
corresponds to the complete quenching boundary conditions
[15]:

α = β = 0. (16)

Solving numerically the set of equation (7) with the
boundary conditions (14), using equation (8) and integrating
over the cell volume and the kinetic momentum of an atom,
we find the total population of atoms in the optically excited
state:

ρ̄exc =
∫ ∫

ρexc (r, p) dr dp. (17)

The power δP of the laser radiation absorbed in the cell
is proportional to ρ̄exc [19]:

δP = h̄ω · γ · N · ρ̄exc, (18)

with N being the number of active atoms in the cell.

(a)

(b)

(c)

Figure 2. Excited transitions in the 87Rb atom. The microwave field
drives the working transition |Fg = 1, m = 0〉 ↔ |Fg = 2, m = 0〉
(double arrow), the laser light drives the transitions |Fg = 2〉 ↔ |Fe〉
(thin lines). The laser field polarization: (a) σ +; (b) linear; (c) π .

3. The results of numerical calculations

In figure 2, we present different schemes of DROR, depending
on the polarization of the laser radiation. In figure 2(a),
the scheme of optical pumping by a σ +-polarized light is
shown. There are three idle levels (‘pockets’, denoted
by black rectangles) |Fg = 1, m = −1〉, |Fg = 2, m = +2〉
and |Fg = 1, m = 1〉, which do not interact with the laser
radiation. After few optical pumping cycles all the atoms
accumulate in these ‘pockets’ and cease to contribute into
the DROR signal formation. This significantly decreases
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Figure 3. Geometrical configuration for the scheme of excitation by
a π -polarized laser radiation.

the amplitude of the resonance and, hence, worsens the
figure of merit. The |Fg = 2, m = +2〉 ‘pocket’ can be
avoided by using linearly polarized light (figure 2(b)).
However, a more detailed analysis shows that in the
system of levels |Fg = 2, m = −1〉, |Fg = 2, m = +1〉 and
|Fe, m = 0〉, coherently coupled by the laser field, the effect
of coherent population trapping (CPT) arises [20]. In this
situation, the influence of the CPT is negative: the atoms
being accumulated in a coherent superposition of the levels
|Fg = 2, m = 1〉 and |Fg = 2, m = −1〉 stop to contribute to
the DROR signal formation [17].

Finally, consider the excitation scheme presented in
figure 2(c) (π -polarization). This type of excitation is the most
efficient, since the number of ‘pockets’ there is minimized.
These ‘pockets’, associated with the states |Fg = 1, m = −1〉,
|Fg = 1, m = +1〉, are also present in the two previous
schemes. To avoid them, one has to apply two lasers for
pumping [21, 22]. However, practical implementation of the
latter scheme with two exactly perpendicular laser beams is
challenging. Therefore, we consider in the present paper the
single-laser optical pumping, which is used in most of the
experiments.

From now on we consider the optimum scheme of
figure 2(c) with the pumping by π -polarized laser radiation
resonant to the D1-line of 87Rb (π -polarization corresponds
to the light linearly polarized along the constant external
magnetic field B, whereas the propagation direction of the
light is perpendicular to B; for the sketch of the geometry of
this scheme see figure 3).

The DROR signal is the dependence of the photodetector
current j on the microwave field detuning rf . Since the
absorbed radiation power and, hence, the variation of j are
proportional to the excited-state population ρ̄exc, we call the
DROR signal the dependence ρ̄exc(rf). The definitions of
the basic parameter of the resonance are the following [23].
The DROR amplitude is the difference ρ̄NR

exc − ρ̄R
exc between the

excited-state population far outside the resonance
(
ρ̄NR

exc

)
and

exactly in resonance
(
ρ̄R

exc

)
. The DROR width �DROR is its

FWHM. The contrast is defined as C(rf) = ρ̄exc(rf)−ρ̄NR
exc

ρ̄exc(rf)
.

The optical field is tuned exactly in resonance with the
transition |Fg = 2〉 ↔ |Fe = 1〉. Since the hyperfine splitting
of the excited state is 817 MHz and the Doppler width of
the optical transition is �D ≈ 500 M�c, we also take into
account optically-induced transitions |Fg = 2〉 ↔ |Fe = 2〉.
The working transition driven by the microwave radiation is
|Fg = 1, m = 0〉 ↔ |Fg = 2, m = 0〉, as usual, since only

(a)

(b)

Figure 4. The DROR line contrast (dimensionless) versus the
microwave field detuning for different ratios of the cell length a to
the microwave radiation wavelength λ. The cell is coated, and the
specular-coherent boundary conditions (15) are assumed. The
ground-state coherence relaxation rate �⊥ = 100 s−1, the microwave
Rabi frequency U 0 = 300 s−1, the laser intensity I = 20 µW cm−2:
(a) ‘broad-band’ laser and (b) ‘narrow-band’ laser.

second-order Zeeman shift is present for it. In our calculations
we assume that B = 0.05 G.

We study the shape of the DROR signal for the two types
of laser, differing by the laser spectrum width. For the sake of
brevity, we call the laser with the spectrum width �L ≈ �D a
‘broad-band’ laser and the laser with �L � γ a ‘narrow-band’
laser.

3.1. The specular-coherent boundary conditions

In figure 4, we present the results of our numerical calculations
for the boundary conditions (15). We first consider the case
of a ‘broad-band’ laser (figure 4(a)). The plotted curves differ
in ratio a/λ, with a being the cell length and λ being the
wavelength of the microwave radiation. The influence of the
Dicke narrowing [24] on the DROR resonance shape for a < λ

is apparent in the cases of a = λ/4 and a = 3λ/4. If the cell
length exceeds the wavelength of the microwave radiation,
then the effect of the radio-induced transport (RIT) of the pure
or mixed quantum states (first considered in [15, 25, 26] for
the three-level model) strongly influences the DROR shape.

The physical essence of the RIT effect is the one caused
by the Doppler effect velocity selectivity of the interaction
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of radio (or microwave) field with active atoms, resulting in
Bennett dips and peaks [27] in the velocity distribution of
atoms in the ground-state sublevels coupled to the microwave
radiation. Asymmetry of the two velocity distributions
gives rise to the opposite-directed (along the microwave
propagation direction) fluxes of the atoms in these two states.
Therefore, a flux of the population inversion (or, equivalently,
of the longitudinal magnetization) arises, leading to spatial
separation of atoms in the two ground-state sublevels, coupled
to the microwave field (for details, see [26]).

Then consider the pumping by a ‘narrow-band’ laser
(figure 4(b)). The influence of the Dicke narrowing to the
DROR shape for a � λ is still observed. However, the DROR
contrast drops by a factor of 2, compared to the case of the
‘broad-band’ laser excitation, since only atoms belonging to
the resonant velocity group contribute to the signal formation
in the case of a ‘narrow-band’ laser. The next important feature
of the ‘narrow-band’ laser regime is the influence of the laser-
induced transport (LIT) [28, 29] of quantum states to the
DROR shape, observed for a � λ/8. It is noteworthy that
the simplified three-level model of the DROR formation does
not exhibit the LIT effect [15].

The LIT effect is quite similar to the RIT, namely, two
counter-propagating fluxes of atoms in different states appear.
However, in the LIT case, the emergence of Bennett dips
and peaks and, subsequently, the asymmetry of the velocity
distribution of atoms in different states, is caused by ‘narrow-
band’ coherent radiation and is more robust to variations of
the microwave field parameters. In particular, the LIT effect
is present in a standing microwave field as well as in a running
one, in contrast to the RIT, which takes place only in the
running microwave field configuration.

Although the RIT or LIT effects may be quite important
for the DROR line shape formation in a certain case,
there are also many factors that suppress the RIT and LIT
influence. First of all, in small cells (a < λ/8) these
effects become negligible. Secondly, the one-dimensional
model of an infinite-slab cell adopted in the present work
tends to overestimate these effects. In real cells, with the
diameter smaller than or of the order of their length in the light
propagation direction, the presence of the walls in all three
directions reduces the RIT and LIT effects significantly, and
so does the frequency modulation of the microwave field. In
our opinion, clear and unambiguous detection of the RIT and
LIT effects is a hard experimental task: thermal motion of
atoms in the radial dimensions and weakness of the applied
microwave and optical fields precluded the LIT influence to the
DROR shape in most of the experiments [1, 14, 30]. The LIT
effects have been detected for the DROR with strong exciting
fields [31] in a glass cell without an anti-relaxant covering (we
consider such a case in the next subsection).

In contrast, the results concerning the Dicke narrowing
still hold true, if we take into account the thermal motion of
atoms in three dimensions [32]. We briefly recall the main
results of [32]. In the one-dimensional model the atomic
mean free path is equal to the cell length a, and the frequency
of the wall collisions is ν = |vz|/a, with vz being the atomic
velocity. This is equivalent to the frequency modulation of

Figure 5. The DROR line versus microwave field detuning. The
cell is uncoated, the complete quenching boundary conditions (16)
are assumed. The pumping laser is ‘narrow-band’. Points:
experimental data [31]. Lines: our numerical results. DROR
parameters are taken from [31].

the microwave radiation at the frequency ν that results in
emergence (additionally to the central frequency ν21) of two
sidebands at ν21 ± ν. Therefore, averaging of the Maxwellian
distribution of vz brings about not only a sharp central peak
but also a broad ‘pedestal’. In a real situation of a three-
dimensional cell, the atomic mean free path has values in the
interval from zero to a (or the cell diameter, if it is less than
a). This makes the modulation frequency ν continuous, and
the sidebands become broad. The shape of the ‘pedestal’
changes, but the sharp central peak persists, thus signifying
the Dicke narrowing. It is noteworthy that the effects of
three-dimensional geometry make the Dicke narrowing more
apparent, although they hinder the LIT and RIT.

The main difference between the DROR contrast
predictions by our model that takes into account the whole
hyperfine and Zeeman structure of the involved 87Rb states
and the simplified three-level model [15] stems from the
presence of ‘pocket’ states, which are not taken into account
in the three-level model. However, atoms can be accumulated
in the ‘pocket’ states, decreasing the DROR contrast by
a factor of 5 or even more. Therefore, we conclude
that adequate description of the DROR resonance amplitude
requires accounting for the whole real structure of the atomic
levels. However, the three-level model is sufficient to correctly
predict the DROR resonance width.

3.2. The complete quenching boundary conditions

The DROR signal in an uncoated glass cell is too low to be
detected for relative small powers of laser and microwave
fields. The laser power and the microwave Rabi frequency
should be increased by several orders of magnitude to provide
a detectable DROR signal in this case. A complicated structure
of the DROR signal was detected in an experiment [31] on
the strong-field excitation of 85Rb vapour. We compared our
numerical results with the experimental data [31] and found a
good agreement (figure 5), thus proving the LIT influence to
the DROR signal shape.
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Figure 6. Short-term stability (for τ = 1 s) versus laser intensity for
a coated cell (boundary conditions (15)). The system parameters:
a = 3 cm (λ = 4, 4 cm for 87Rb), �⊥ = 100 s−1.

4. Short-term stability in the shot-noise limit

Here we analyse the short-term stability σ y(τ ) of a quantum
frequency standard with the active atoms being contained in a
cell with an anti-relaxation coating. The short-term stability
(Allen deviation) is inversely proportional to the figure of merit
and is given in the shot-noise limit by the following expression
[5, 19]:

σy(τ ) =
√

j · e

S · �S · ωhfs
√

τ
. (19)

Here e is the electron charge, ωhfs is the working (hyperfine)
transition frequency, τ is the integration time, �S is the width
of the linear part of the discrimination curve, i.e. the frequency
range near the resonance, where the second derivative of the
photodetector current j over the detuning rf is practically
constant. The absolute value of this second derivative near the
resonance (the steepness) is denoted by S.

In figure 6, we show the dependence of σ y on the laser
field intensity. The best short-term stability (1 × 10−14 for
τ = 1 s) is attained for a ‘broad-band’ laser and is by an order
of magnitude worse in the case of a ‘narrow-band’ laser. The
optimum laser intensity lies within the range from 6 µW cm−2

to 10 µW cm−2. The reason for the better performance of the
standard using a ‘broad-band’ laser is the greater fraction of
atoms contributing to the DROR signal formation. Pumping
by a ‘narrow-band’ laser can yield σ y ∼ 10−13 for τ = 1 s.
Our theoretical estimations are corroborated by the experiment
[33] where the short stability is of about 2 × 10−13 for τ = 1 s.
Note that our estimations are obtained in the idealized limit of
the shot noise, i.e. without taking into account the amplitude
noise and slow phase drift of the laser, noise of the electronic
equipment, etc.

5. Conclusions

We studied the formation of the double radio-optical resonance
in 87Rb vapour in a cell with an anti-relaxation coating. The
two regimes of excitation are examined, depending on a broad

(�L ≈ �D) or narrow (�L � γ ) width of the spectrum of the
laser. We show, by comparing to our numerical analysis that
takes into account the whole hyperfine and Zeeman structure
of the involved 87Rb states, that the three-level model [15]
correctly describes the Dicke narrowing of the DROR line. The
‘narrow-band’ laser excitation regime allows for observation
of the laser-induced transport of the long-lived atomic states
via its influence to the DROR signal shape. This effect was
not detected in [15] where the DROR was excited by a gas
discharge lamp.

The use of the ‘broad-band’ laser allows for improving
the short-term stability of a DROR-based quantum frequency
standard by an order of magnitude, compared to the case of
a ‘narrow-band’ laser, and attaining the Allen deviation σ y =
1 × 10−14 for the integration time τ = 1 s. Although we mainly
considered the applications to quantum frequency standards,
our results can find an application in the development of high-
precision quantum magnetometers.
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