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Shape-preserving adiabatic propagation of electro-
magnetic pulses, often termed adiabatons, in three-
level atomic media has been studied over the last
decade [1–3]. The underlying effect is the coherent
population trapping phenomenon [4] that is the accu-
mulation of atoms in a coherent superposition of states,
which is immune to excitation by the given frequency-
split laser radiation. Its extension to atomic or molecu-
lar systems containing more than just three levels, such
as four-level atoms with the tripod level configuration,
is becoming an active topic of current research [5].

The related effect of electromagnetically induced
transparency (the manifestation of coherent population
trapping in optically dense media) [6] is the basis for
several recent groundbreaking achievements, such as
reduction of the group velocity of weak light pulses to
remarkably low values [7] or even down to a complete
stop [8, 9], single-photon pulse generation [10], and
reversible quantum memories [11], which may eventu-
ally be employed to realize deterministic quantum
computation with single-photon qubits [12].

In recent paper [13], we studied the adiabatic pulse
propagation in a medium of atoms with the tripod level
scheme (hereinafter called a tripod medium). We there
considered strong coherent pulses of large amplitudes,
describable by the semiclassical approach. Weak quan-
tum pulse propagation in such a system was studied in
[14], where the possibility of achieving a quantum
phase gate between a pair of single-photon pulses was
demonstrated. Parametric generation of light in a
medium of tripod atoms prepared in a certain coherent

superposition of ground states was recently discussed
in [15].

The main result of the semiclassical analysis in [13]
is that a classical three-component light pulse propagat-
ing in a tripod medium under adiabatic conditions
asymptotically (at large propagation times or distances)
evolves into a pair of nonlinear, shape-preserving
pulses propagating at different group velocities. The
fast pulse propagates at the speed of light 

 

c

 

, whereas the
group velocity of the slow pulse is dynamically reduced
with respect to 

 

c

 

, in accordance with the standard for-
mula for slow-light velocity [1]. Remarkably, such an
adiabatic propagation is essentially governed by the
off-diagonal geometric phase that develops in the
atomic state in a self-consistent way under the action of
the light pulse. Before generalizing the treatment based
on geometric-phase effects to a system where all the
electromagnetic fields are quantized, it is reasonable to
first extend the polaritonic theory of slow light propa-
gation [8] to the case of a tripod medium.

In the present paper, we consider the interaction of
two quantized optical fields and a strong classical driv-
ing field with a medium of atoms having a tripod con-
figuration of levels (see figure). The lower states 
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and 
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〉

 

 are the relevant Zeeman sublevels of the elec-
tronic ground state of the atoms. The optically excited
state of the tripod scheme is denoted by 
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. The transi-
tion 
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 is driven by a classical, time-dependent
in the general case, electromagnetic field with a Rabi

frequency 

 

Ω

 

. The quantized fields , 

 

j

 

 = 1, 2 excite the
corresponding atomic transitions 

 

|

 

j

 

〉

 

  

 

|

 

0

 

〉

 

. All the
fields are tuned exactly to resonance with the corre-
sponding atomic transitions.
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—We consider adiabatic propagation of a pair of quantized light pulses in a coherently prepared
atomic medium with the tripod level configuration. We find that under conditions of electromagnetically
induced transparency, two distinct polariton modes are simultaneously formed in the medium. These polaritons,
represented by certain coherent superpositions of the quantized fields, have different group velocities; the fast
one propagates at essentially the speed of light, while the group velocity of the slow polariton can be dynami-
cally reduced to zero. The state mapping between the electromagnetic field and atomic ensemble is also dem-
onstrated.
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The interaction Hamiltonian is given by

(1)

where 

 

N

 

 is the total number of atoms in the quantization
volume 

 

AL, A

 

 being the cross-sectional area and 

 

L

 

being the length of the medium;

 

σ

 

µν

 

 ≡ |µ〉〈ν|

 

are the atomic operators; and

are the atom-field coupling constants, with 

 

d

 

0

 

j

 

 being the
optical transition dipole moments. We neglect thermal
motion of atoms; i.e., we set the atomic velocity to zero.

The field operators  admit the mode decomposition

where (

 

t

 

) is the photon annihilation operator obey-
ing the usual bosonic commutation rules. In the slowly
varying envelope approximation, the propagation equa-
tions for the quantum field operators are given by

(2)

On the other hand, the atomic operators 

 

σ

 

µν

 

 in the inter-
action representation satisfy the evolution equation

(3)
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where 

 

γ

 

µν

 

 are the relaxation constants and  are the
corresponding 

 

δ

 

-correlated Langevin noise operators.
In particular, Eqs. (3) explicitly yield

(4)

(5)

(6)

Let 

 

|Ω|

 

 be the largest frequency in the system.
Assuming that it changes slowly enough,

we can use the standard approximations commonly
used in adiabatic pulse propagation analysis [1, 8]. We
can then neglect the noise terms for atomic coherences
(

 

µ

 

 

 

≠

 

 

 

ν

 

) and use Eqs. (4)–(6) to obtain

(7)

For simplicity, we assume 

 

Ω

 

(

 

t

 

) and 

 

σ

 

12

 

 to be real; we

recall that the number of photons in weak fields  is
so small that the populations of the atomic levels 

 

|

 

1

 

〉

 

 and

 

|

 

2〉 and the coherence between them remain practically
unchanged throughout the evolution. We can therefore
replace the operators , l, j = 1, 2 by constant c-num-
bers σlj. Then, propagation equations (2) for the quan-
tized fields are reduced to

(8)

We consider two linear combinations of the operator

variables  having the form

(9)

where

(10)

are the mixing angles and α± and P± are certain con-
stants to be determined. We now prove that the above
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Level scheme of tripod atoms interacting with two weak
fields E1, E2 and a strong driving field of a Rabi frequency Ω.
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polariton operators  satisfy the corresponding prop-
agation equations

(11)

where

evidently play the role of group velocities. Through the
direct substitution, using Eq. (8), and temporarily drop-
ping the subscripts “±,” we obtain

or, in other words,

(12)
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Recalling Eq. (10), we transform Eq. (12) into

(13)

Because  and  are arbitrary and linearly indepen-
dent, Eq. (13) results in the following set of equations
for the unknown variables sinα and cosα:
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The solvability condition for set of Eqs. (14), (15),

yields the eigenvalues of P, given by
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Ê1 Ê2
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We note that

(18)

In what follows, we assume that the medium is pre-
pared in a pure state [13, 15], such that

(19)

Also, we neglect the spatial dependence of the Rabi fre-
quency, assuming that it is a function of the time vari-
able only, Ω = Ω(t). By setting Ω = Ω(t), we neglect the
propagation effects linear in the ratio of the pulse prop-

agation velocity to c. This ratio is small for the (z, t)

polariton, but approaches 1 for the (z, t) polariton.
However, in analogy with the classical pulse propaga-
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σ12 σ11σ22.=
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tion in a tripod medium studied in [13], we find that in
the quantum case, the fast mode also propagates at c,
provided the medium is prepared in a pure state. Alter-
natively, we can assume that the classical driving field
propagates in the direction perpendicular to the propa-

gation direction of the quantized fields .

We then have

(20)

meaning that the group velocity of the (z, t) polari-
ton is equal to the speed of light,
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For the (z, t) polariton, we obtain

(21)

The group velocity of the (z, t) polariton can there-
fore become much smaller than c if the driving field
Rabi frequency satisfies

Ω � P+.

The corresponding solution is then given by

where

is the time-dependent group velocity. Thus, once the

 polariton has been fully accommodated in the
medium, one can stop it completely by rotating the
mixing angle ϑ+ defined in Eq. (10) from its initial
value 0 ≤ ϑ+ < π/2 to ϑ+ = π/2, which amounts to
switching off the Rabi frequency Ω. In the case of a
constant Rabi frequency Ω , the above solution can be
rewritten as

From Eq. (9), using Eq. (18), we obtain
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At large times t > L/c, when the fast polariton runs away
from the medium and only the slow polariton remains
inside the medium, the quantized field operators are
expressed as
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Their plane-wave decomposition is given by

From Eq. (7), we find for large t that
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The plane-wave decomposition operator coefficients of
Eq. (28) are expressed via the photon annihilation oper-

ators  as
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by the down-conversion process and therefore contains
equal numbers of 1 and 2 photons,

then stopping the  polariton makes the number of
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=  
N ϑ+ t( )cos

Ω t( )
------------------------------ g1 σ11 α–cos g2 σ22 α–sin–( )–

× Ψ̂+ z t,( ),

φ̂3 z t,( ) ϑ+ t( )Ψ̂+ 0 t, z/v +–( ).sin–=
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To summarize, we have considered adiabatic propa-
gation of a pair of quantized light pulses in an atomic
medium with the tripod level configuration under con-
ditions of electromagnetically induced transparency.
We have identified the fast propagating and slowly
propagating polariton modes of the system, and showed
that the latter can be used for a state mapping between
the electromagnetic field produced in a nondegenerate
parametric down-conversion process and the coher-
ently prepared atomic ensemble. A remarkable conse-
quence of the large difference between the group veloc-
ity of the two polaritons is the possibility to create
atomic subensembles with the definite (even) parity of
the particle numbers.

The author is grateful to Dr. D. Petrosyan for draw-
ing the author’s attention to the problem considered
here and for many helpful discussions.

REFERENCES

1. R. Grobe, F. T. Hioe, and J. H. Eberly, Phys. Rev. Lett.
73, 3183 (1994).

2. I. E. Mazets, Phys. Rev. A 54, 3539 (1996).

3. I. E. Mazets and B. G. Matisov, Quantum Semiclassic.
Opt. 8, 909 (1996).

4. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo
Cimento B 36, 5 (1976); E. Arimondo and G. Orriols,
Lett. Nuovo Cimento 17, 333 (1976).

5. F. Vewinger, M. Heinz, R. G. Fernandez, et al., Phys.
Rev. Lett. 91, 213001 (2003).

6. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev.
Mod. Phys. 77, 633 (2005).

7. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi,
Nature 397, 594 (1999); M. M. Kash, V. A. Sautenkov,
A. S. Zibrov, et al., Phys. Rev. Lett. 82, 5229 (1999);
D. Budker, D. F. Kimball, S. M. Rochester, and
V. V. Yashchuk, Phys. Rev. Lett. 83, 1767 (1999).

8. M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84,
5094 (2000); Phys. Rev. A 65, 022314 (2002).

9. D. F. Phillips, A. Fleischhauer, A. Mair, et al., Phys. Rev.
Lett. 86, 783 (2001); C. Liu, Z. Dutton, C. H. Behroozi,
and L. V. Hau, Nature 409, 490 (2001).

10. C. W. Chou, S. V. Polyakov, A. Kuzmich, and H. J. Kim-
ble, Phys. Rev. Lett. 92, 213601 (2004); M. D. Eisaman,
L. Childress, A. Andre, et al., Phys. Rev. Lett. 93,
233602 (2004).

11. T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, et al.,
Nature 438, 833 (2005); M. D. Eisaman, A. Andre,
F. Massou, et al., Nature 438, 837 (2005).

12. D. Petrosyan, J. Opt. B: Quantum Semiclassic. Opt. 7,
S141 (2005).

13. I. E. Mazets, Phys. Rev. A 71, 023806 (2005).
14. D. Petrosyan and Yu. P. Malakyan, Phys. Rev. A 70,

023822 (2004).
15. E. Paspalakis, N. J. Kylstra, and P. Knight, Phys. Rev. A

65, 053808 (2002); E. Paspalakis and P. Knight, J. Mod.
Opt. 49, 87 (2002).


